Difference between revisions of "Team:Newcastle/Results"

Line 488: Line 488:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Conclusions and Future Work </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Conclusions and Future Work </h2>
 +
</br>
 
           <p><i>E. coli</i> cells naturally have the C-P lyase pathway which degrades glyphosate into sarcosine. The fact that no formaldehyde was produced when glyphosate was added, but was when sarcosine was added, indicates that we have not overexpressed the C-P lyase pathway enough to produce enough sarcosine for SOX to convert into formaldehyde to be detected.
 
           <p><i>E. coli</i> cells naturally have the C-P lyase pathway which degrades glyphosate into sarcosine. The fact that no formaldehyde was produced when glyphosate was added, but was when sarcosine was added, indicates that we have not overexpressed the C-P lyase pathway enough to produce enough sarcosine for SOX to convert into formaldehyde to be detected.
 
           </br></br>
 
           </br></br>
Line 494: Line 495:
  
 
             <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> References </h2>
 
             <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> References </h2>
 +
</br>
 
           <p>Ling YP, Heng LY (2010). A Potentiometric Formaldehyde Biosensor Based on Immobilization of Alcohol Oxidase on Acryloxysuccinimide-modified Acrylic Microspheres. Sensors 10:9963-9981.
 
           <p>Ling YP, Heng LY (2010). A Potentiometric Formaldehyde Biosensor Based on Immobilization of Alcohol Oxidase on Acryloxysuccinimide-modified Acrylic Microspheres. Sensors 10:9963-9981.
 
           </br></br>
 
           </br></br>
Line 509: Line 511:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Rationale and Aim </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Rationale and Aim </h2>
 +
</br>
 
           <p>The Sensynova multicellular biosensor platform has been developed to overcome the limitations identified by our team (<a href="https://2017.igem.org/Team:Newcastle/HP/Gold_Integrated">here</a>) that hamper the success in biosensors development. One of these limits regards the lack of modularity and reusability of the various components. Our platform design, based on the expression of three main modules (Detector, Processor and Output) by three <i>E.coli</i> strains in co-culture, allows the switch of possible variances for each module and the production of multiple customised biosensors.
 
           <p>The Sensynova multicellular biosensor platform has been developed to overcome the limitations identified by our team (<a href="https://2017.igem.org/Team:Newcastle/HP/Gold_Integrated">here</a>) that hamper the success in biosensors development. One of these limits regards the lack of modularity and reusability of the various components. Our platform design, based on the expression of three main modules (Detector, Processor and Output) by three <i>E.coli</i> strains in co-culture, allows the switch of possible variances for each module and the production of multiple customised biosensors.
 
           </br></br>
 
           </br></br>
Line 516: Line 519:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Background Information </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Background Information </h2>
 +
</br>
 
           <p>Promoter libraries can be created by varying many different as-pects of a wildtype promoter such as the upstream element prior to the -35 region, the downstream element, after the -10 region prior to -1, and its core sequence, between the -35 and -10 regions (Schlabach <i>et al</i>., 2010). In this study, we propose to use the PLac promoter sequence as our wildtype for creating promoter designs varying different areas of its sequence. One of such variation will be the substitution of the -35 and -10 currently found in PLac with the -35 (TTGACA) and -10 (TATAAT) regions found to be the most commonly occurring in <i>E. coli</i> natural promoters (Hawley and McClure, 1983, DeBoer, 1985, Harley and Reynolds, 1987). These were chosen to be the constant region between different promoter designs.</p>
 
           <p>Promoter libraries can be created by varying many different as-pects of a wildtype promoter such as the upstream element prior to the -35 region, the downstream element, after the -10 region prior to -1, and its core sequence, between the -35 and -10 regions (Schlabach <i>et al</i>., 2010). In this study, we propose to use the PLac promoter sequence as our wildtype for creating promoter designs varying different areas of its sequence. One of such variation will be the substitution of the -35 and -10 currently found in PLac with the -35 (TTGACA) and -10 (TATAAT) regions found to be the most commonly occurring in <i>E. coli</i> natural promoters (Hawley and McClure, 1983, DeBoer, 1985, Harley and Reynolds, 1987). These were chosen to be the constant region between different promoter designs.</p>
 
           </br>
 
           </br>
Line 533: Line 537:
 
           </br>         
 
           </br>         
 
   <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Design Stage </h2>
 
   <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Design Stage </h2>
 +
</br>
 
<p>As seen in Figure 3(B), the regions known to be important for a reliable promoter expression (-35 and -10 regions) were changed to variant of the wildtype but kept constant between the three distinctive designs. These regions were discovered to be the most frequent occurring -35 and -10 regions in native <i>E. coli</i> promoters by Harley and Roberts in 1987. The sequences between such converged regions were kept constant as per the wildtype for designs 2 (P2) and 3 (P3). For design 1 (P1) however, they were randomized in order to test its effect. The decision to reduce the number of base pairs from 18, found in PLac, to 17 was made due to the results of the study by Harley and Roberts in 1987, listing this number to be the most frequent occurring number of base pairs gap found in regions in native <i>E. coli</i> promoters.
 
<p>As seen in Figure 3(B), the regions known to be important for a reliable promoter expression (-35 and -10 regions) were changed to variant of the wildtype but kept constant between the three distinctive designs. These regions were discovered to be the most frequent occurring -35 and -10 regions in native <i>E. coli</i> promoters by Harley and Roberts in 1987. The sequences between such converged regions were kept constant as per the wildtype for designs 2 (P2) and 3 (P3). For design 1 (P1) however, they were randomized in order to test its effect. The decision to reduce the number of base pairs from 18, found in PLac, to 17 was made due to the results of the study by Harley and Roberts in 1987, listing this number to be the most frequent occurring number of base pairs gap found in regions in native <i>E. coli</i> promoters.
 
           </br></br>
 
           </br></br>
Line 556: Line 561:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Implementation </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Implementation </h2>
 +
</br>
 
<p>The promoter designs were sent off for synthesis by IDT as single stranded oligos.
 
<p>The promoter designs were sent off for synthesis by IDT as single stranded oligos.
 
         <br/><br/>
 
         <br/><br/>
Line 574: Line 580:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Conclusions and Future Work </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Conclusions and Future Work </h2>
 +
</br>
 
           <p>Though we have generated a sizable library of promoters of varying strengths and functions, we lacked the time to complete its characterization by the screening against targeted molecules.  
 
           <p>Though we have generated a sizable library of promoters of varying strengths and functions, we lacked the time to complete its characterization by the screening against targeted molecules.  
 
         <br/><br/>
 
         <br/><br/>
Line 580: Line 587:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> References </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> References </h2>
 +
</br>
 
           <p>Becker, N., Peters, J., Lionberger, T. and Maher, L. (2012). Mechanism of promoter repression by Lac repressor–DNA loops. Nucleic Acids Research, 41(1), pp.156-166. <br/>
 
           <p>Becker, N., Peters, J., Lionberger, T. and Maher, L. (2012). Mechanism of promoter repression by Lac repressor–DNA loops. Nucleic Acids Research, 41(1), pp.156-166. <br/>
 
DeBoer, H. (1985). Microbial hybrid promoters. US4551433 A.
 
DeBoer, H. (1985). Microbial hybrid promoters. US4551433 A.
Line 604: Line 612:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Rationale and Aim </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Rationale and Aim </h2>
 +
</br>
 
           <p>The Sensynova multicellular biosensor platform has been developed to overcome the <a href="https://2017.igem.org/Team:Newcastle/HP/Silver">limitations identified by our team</a> that hamper the success in biosensor development. One of these limits regards the lack of modularity and reusability of the various components. Our platform design, based on the expression of three main modules (Detector, Processor and Reporter) by three  <i> E. coli</i>  strains in co-culture, allows the switch of possible variances for each module and the production of multiple customised biosensors.
 
           <p>The Sensynova multicellular biosensor platform has been developed to overcome the <a href="https://2017.igem.org/Team:Newcastle/HP/Silver">limitations identified by our team</a> that hamper the success in biosensor development. One of these limits regards the lack of modularity and reusability of the various components. Our platform design, based on the expression of three main modules (Detector, Processor and Reporter) by three  <i> E. coli</i>  strains in co-culture, allows the switch of possible variances for each module and the production of multiple customised biosensors.
 
           </br></br>
 
           </br></br>
Line 609: Line 618:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Background Information </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Background Information </h2>
 +
</br>
 
           <p>The part <a href="http://parts.igem.org/Part:BBa_J33201">BBa_J33201</a> was made by the Edinburgh team in 2006.</p>
 
           <p>The part <a href="http://parts.igem.org/Part:BBa_J33201">BBa_J33201</a> was made by the Edinburgh team in 2006.</p>
  
Line 619: Line 629:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Design Stage </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Design Stage </h2>
 +
</br>
 
<p>In order to introduce the Arsenic sensing part in the Sensinova framework, the part <a href="http://parts.igem.org/Part:BBa_K2205008">BBa_K2205008</a> containing the RBS B0034, the <i>lasI</i> coding sequence and the double terminator B0015 has been included in the design. The new part <a href="http://parts.igem.org/Part:BBa_K2205022">BBa_K2205022</a> presents biobrickable suffix and prefix and has been designed to have specific overhangs to be assembled in the plasmid pSB1C3 by Gibson assembly method. </p>
 
<p>In order to introduce the Arsenic sensing part in the Sensinova framework, the part <a href="http://parts.igem.org/Part:BBa_K2205008">BBa_K2205008</a> containing the RBS B0034, the <i>lasI</i> coding sequence and the double terminator B0015 has been included in the design. The new part <a href="http://parts.igem.org/Part:BBa_K2205022">BBa_K2205022</a> presents biobrickable suffix and prefix and has been designed to have specific overhangs to be assembled in the plasmid pSB1C3 by Gibson assembly method. </p>
 
         <table class="image_table" style="background:none">
 
         <table class="image_table" style="background:none">
Line 640: Line 651:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Implementation </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Implementation </h2>
 
+
</br>
 
<p>The part has been obtained by gBlock synthesis from IDT and subsequently assembled into the plasmid using NEB HI-Fi kit. The assembly mix was heat-shock transformed in competent DH5α and plated on Chloramphenicol LB plates. The colonies were tested through colony PCR and confirmed by sequencing.</p>
 
<p>The part has been obtained by gBlock synthesis from IDT and subsequently assembled into the plasmid using NEB HI-Fi kit. The assembly mix was heat-shock transformed in competent DH5α and plated on Chloramphenicol LB plates. The colonies were tested through colony PCR and confirmed by sequencing.</p>
  
Line 652: Line 663:
 
<br />
 
<br />
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Characterisation </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Characterisation </h2>
 +
</br>
 
           <p><b>Qualitative assay.</b> Due to time constraints only a preliminary qualitative assay was carried out. Co-cultures of Arsenic detector, processor unit and 3 different reporter modules carrying 2 chromoproteins (<a href="http://parts.igem.org/Part:BBa_K2205016">BBa_K2205016</a>, <a href="http://parts.igem.org/Part:BBa_K2205018">BBa_K2205018</a>) and sfGFP (<a href="http://parts.igem.org/Part:BBa_K2205015">BBa_K2205015</a>) were inoculated and grown overnight in LB+chloramphenicol (12.5ng/ul). The day after the cultures were diluted at OD600 0.1 and mixed together to obtain co-cultures with ratio 1:1:13 (detector:processor:reporter). The samples were supplemented with different concentration of Arsenic (0ppb, 10ppb, 50ppb, 100ppb) to induce the expression of quorum sensing molecules and eventually achieve the chromoproteins visualisation (Figures 6, 7, 8). </p>
 
           <p><b>Qualitative assay.</b> Due to time constraints only a preliminary qualitative assay was carried out. Co-cultures of Arsenic detector, processor unit and 3 different reporter modules carrying 2 chromoproteins (<a href="http://parts.igem.org/Part:BBa_K2205016">BBa_K2205016</a>, <a href="http://parts.igem.org/Part:BBa_K2205018">BBa_K2205018</a>) and sfGFP (<a href="http://parts.igem.org/Part:BBa_K2205015">BBa_K2205015</a>) were inoculated and grown overnight in LB+chloramphenicol (12.5ng/ul). The day after the cultures were diluted at OD600 0.1 and mixed together to obtain co-cultures with ratio 1:1:13 (detector:processor:reporter). The samples were supplemented with different concentration of Arsenic (0ppb, 10ppb, 50ppb, 100ppb) to induce the expression of quorum sensing molecules and eventually achieve the chromoproteins visualisation (Figures 6, 7, 8). </p>
 
<table class="image_table" style="background:none">
 
<table class="image_table" style="background:none">
Line 690: Line 702:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Conclusions and Future Work </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Conclusions and Future Work </h2>
 +
</br>
 
           <p>The results demonstrate that further characterisation needs to be conducted in order to optimise the Arsenic detector variant in the Sensynova platform. However, due to time constraints, we adapted the IPTG framework modelling results to the preliminary experiments conducted for the framework customised as the Arsenic biosensor. In order for future characterisation of this part, the model should be modified in order to guide <i>in vivo</i> efforts accordingly.
 
           <p>The results demonstrate that further characterisation needs to be conducted in order to optimise the Arsenic detector variant in the Sensynova platform. However, due to time constraints, we adapted the IPTG framework modelling results to the preliminary experiments conducted for the framework customised as the Arsenic biosensor. In order for future characterisation of this part, the model should be modified in order to guide <i>in vivo</i> efforts accordingly.
  
Line 695: Line 708:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> References </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> References </h2>
 +
</br>
 
           <p>Brenner K, Karing D, Weiss R, Arnold F (2007) Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proc Natl Acad Sci USA 104(44): 17300 - 17304 </br> de Mora K, Joshi N, Balint BL, Ward FB, Elfick A, French CE (2011) A pH-based biosensor for detection of arsenic in drinking water. Anal Bioanal Chem 400(4):1031-9 (Epub 2011 Mar 27).</p>
 
           <p>Brenner K, Karing D, Weiss R, Arnold F (2007) Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proc Natl Acad Sci USA 104(44): 17300 - 17304 </br> de Mora K, Joshi N, Balint BL, Ward FB, Elfick A, French CE (2011) A pH-based biosensor for detection of arsenic in drinking water. Anal Bioanal Chem 400(4):1031-9 (Epub 2011 Mar 27).</p>
 
         </div>
 
         </div>
Line 706: Line 720:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Rationale and Aim </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Rationale and Aim </h2>
 +
</br>
 
           <p>The Sensynova multicellular biosensor platform has been developed to overcome the <a href="https://2017.igem.org/Team:Newcastle/HP/Silver">limitations identified by our team</a> that hamper the success in biosensor development. One of these limits regards the lack of modularity and reusability of the various components. Our platform design, based on the expression of three main modules (Detector, Processor and Output) by three <i>E.coli </i> strains in co-culture, allows the switch of possible variances for each module and the production of multiple customised biosensors.
 
           <p>The Sensynova multicellular biosensor platform has been developed to overcome the <a href="https://2017.igem.org/Team:Newcastle/HP/Silver">limitations identified by our team</a> that hamper the success in biosensor development. One of these limits regards the lack of modularity and reusability of the various components. Our platform design, based on the expression of three main modules (Detector, Processor and Output) by three <i>E.coli </i> strains in co-culture, allows the switch of possible variances for each module and the production of multiple customised biosensors.
 
           </br></br>
 
           </br></br>
Line 711: Line 726:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Background Information </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Background Information </h2>
 +
</br>
 
           <p>This biosensor was designed, made and submitted to the iGEM registry by the Evry Paris-Saclay 2017 team.
 
           <p>This biosensor was designed, made and submitted to the iGEM registry by the Evry Paris-Saclay 2017 team.
 
           </br></br>
 
           </br></br>
Line 732: Line 748:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Design Stage </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Design Stage </h2>
 +
</br>
 
           <p>In order to implement the psicose biosensor variant to the Sensynova platform, a design was created by replacing the IPTG sensing system in the original detector module with the construct detailed above, creating part <a href="http://parts.igem.org/Part:BBa_K2205023">BBa_K2205023 </a>.
 
           <p>In order to implement the psicose biosensor variant to the Sensynova platform, a design was created by replacing the IPTG sensing system in the original detector module with the construct detailed above, creating part <a href="http://parts.igem.org/Part:BBa_K2205023">BBa_K2205023 </a>.
 
           </br></br>
 
           </br></br>
Line 753: Line 770:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Implementation </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Implementation </h2>
 +
</br>
 
           <p>The Psicose detector construct obtained by gBlock synthesis has been designed to include required overhangs for Gibson assembly into the linearized plasmid pSB1C3.
 
           <p>The Psicose detector construct obtained by gBlock synthesis has been designed to include required overhangs for Gibson assembly into the linearized plasmid pSB1C3.
 
           </br></br>
 
           </br></br>
Line 762: Line 780:
  
 
<h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Characterisation</h2>
 
<h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Characterisation</h2>
 +
</br>
 
  <p> A preliminary qualitative assay was carried out as an initial test for this construct. Co-cultures of Psicose detector, processor unit and sfGFP reporter (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2205015">BBa_K2205015</a>) were inoculated and grown overnight in LB+chloramphenicol (12.5 ng/ul).  
 
  <p> A preliminary qualitative assay was carried out as an initial test for this construct. Co-cultures of Psicose detector, processor unit and sfGFP reporter (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2205015">BBa_K2205015</a>) were inoculated and grown overnight in LB+chloramphenicol (12.5 ng/ul).  
 
           </br></br>
 
           </br></br>
Line 771: Line 790:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Conclusions and Future Work </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Conclusions and Future Work </h2>
 +
</br>
 
           <p>The results demonstrate that further characterisation needs to be conducted in order to optimise the psicose detector variant in the Sensynova platform however, due to time constraints resulted from synthesis delays, we lacked the time to be able to do so. The preliminary experiments conducted for the framework customised as the psicose biosensor were conducted by following data resulted from the model of the framework customised as the IPTG sensor. In order for future characterisation of this part, the model should be modified in order to guide <i>in vivo</i> efforts accordingly.
 
           <p>The results demonstrate that further characterisation needs to be conducted in order to optimise the psicose detector variant in the Sensynova platform however, due to time constraints resulted from synthesis delays, we lacked the time to be able to do so. The preliminary experiments conducted for the framework customised as the psicose biosensor were conducted by following data resulted from the model of the framework customised as the IPTG sensor. In order for future characterisation of this part, the model should be modified in order to guide <i>in vivo</i> efforts accordingly.
 
           </br></br>
 
           </br></br>
Line 776: Line 796:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> References </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> References </h2>
 +
</br>
 
           <p>iGEM Community. (2017). Team Evry Paris-Saclay 2017. [online] Available at: https://2017.igem.org/Team:Evry_Paris-Saclay [Accessed 30 Oct. 2017].</p>
 
           <p>iGEM Community. (2017). Team Evry Paris-Saclay 2017. [online] Available at: https://2017.igem.org/Team:Evry_Paris-Saclay [Accessed 30 Oct. 2017].</p>
 
         </div>
 
         </div>

Revision as of 17:03, 1 November 2017

spacefill

Our Experimental Results


Below is a diagram of our Sensynova Framework. Clicking on each part of the framework (e.g. detector modules) links to the relevant results.

Alternatively, at the bottom of this page are tabs which will show you results for every part of the project



Framework

Framework Chassis

Biochemical Adaptor

Target

Detector Modules

Multicellular Framework Testing

C12 HSL: Connector 1

Processor Modules

Framework in Cell Free Protein Synthesis Systems

C4 HSL: Connector 2

Reporter Modules



Looking for Interlab Study
related results? Click below!