Difference between revisions of "Team:Newcastle/Results Jack"

Line 119: Line 119:
  
 
     <h1 style="font-weight:normal; font-family: Rubik; margin: 0">Our Experimental Results</h1>
 
     <h1 style="font-weight:normal; font-family: Rubik; margin: 0">Our Experimental Results</h1>
<br />
+
 
 +
    <div class="jumbotron">
 +
      <h1 class="display-3">Key Achievements</h1>
 +
      <p class="lead">A condensed list of our most notable results</p>
 +
      <hr class="my-4">
 +
      <ul style="font-family: Rubik">
 +
        <li>Designed a novel framework for biosensor development</li>
 +
        <li>Proved that multicellular biosensors are able to co-ordinate responses to input molecules through a proof-of-concept IPTG responsive biosensor</li>
 +
        <li>Successful characterisation of a transpose-based “stand-by switch” capable of producing eforRed in the “OFF” state, and C4 AHL in the “ON” state</li>
 +
        <li>Used a Design of Experiments approach to successfully optimise a cell-free system</li>
 +
        <li>Improved the BLANK plasmid for promoter screening</li>
 +
        <li>Expressed and characterised Sarcosine Oxidase, showing successful degradation of sarcosine to formaldehyde</li>
 +
        <li>Designed, and began to construct, a variety of framework compatible systems, including a synthetic promoter library</li>
 +
      </ul>
 +
      </p>
 +
    </div>
 +
 
 
<p>
 
<p>
 
Below is a diagram of our Sensynova Framework. Clicking on each part of the framework (e.g. detector modules) links to the relevant results.<br />
 
Below is a diagram of our Sensynova Framework. Clicking on each part of the framework (e.g. detector modules) links to the relevant results.<br />
Line 467: Line 483:
 
<p>To determine whether the now correct SOX had been successfully expressed another SDS-Page gel was performed. After inducing, harvesting and washing the cells 1 ml was taken from each culture to be loaded into the gel. The cells were lysed using lysozyme and boiled for 3 minutes at 100°C loading 10 µl into the gel (Figure 7).
 
<p>To determine whether the now correct SOX had been successfully expressed another SDS-Page gel was performed. After inducing, harvesting and washing the cells 1 ml was taken from each culture to be loaded into the gel. The cells were lysed using lysozyme and boiled for 3 minutes at 100°C loading 10 µl into the gel (Figure 7).
 
           </br></br>
 
           </br></br>
<div class="SOX"><img src="https://static.igem.org/mediawiki/2017/8/89/T--Newcastle--Correct_sox_protein_gel_2.png" width="30%" style="background-color:white; margin-right: 2%; margin-bottom: 2%;" alt="" class="img-fluid border border-dark rounded mx-auto d-block"/>  
+
<div class="SOX"><img src="https://static.igem.org/mediawiki/2017/8/89/T--Newcastle--Correct_sox_protein_gel_2.png" width="30%" style="background-color:white; margin-right: 2%; margin-bottom: 2%;" alt="" class="img-fluid border border-dark rounded mx-auto d-block"/>
 
<br />
 
<br />
 
<p class="legend"><center><strong>Figure 7:</strong> Sarcosine Oxidase expression was induced by adding 40 µl of 100 mM IPTG. Lane 1: 6 µl ladder, Lane 2: 10 µl sfGFP, Lane 3: BL21-DE3, Lane 4: 10µl SOX 1, Lane 5: 10 µl SOX 2, Lane 6: 10 µl SOX 3, Lane 7: 10 µl SOX 4, Lane 8: 10 µl SOX 5, Lane 9: 10 µl SOX 6, Lane 10: 6 µl ladder. Circled bands show sarcosine oxidase at ~42 kDa, the expected molecular weight.</p></center>
 
<p class="legend"><center><strong>Figure 7:</strong> Sarcosine Oxidase expression was induced by adding 40 µl of 100 mM IPTG. Lane 1: 6 µl ladder, Lane 2: 10 µl sfGFP, Lane 3: BL21-DE3, Lane 4: 10µl SOX 1, Lane 5: 10 µl SOX 2, Lane 6: 10 µl SOX 3, Lane 7: 10 µl SOX 4, Lane 8: 10 µl SOX 5, Lane 9: 10 µl SOX 6, Lane 10: 6 µl ladder. Circled bands show sarcosine oxidase at ~42 kDa, the expected molecular weight.</p></center>
Line 484: Line 500:
 
</br></br>
 
</br></br>
 
<p>This shows SOX works as expected, however there is leaky expression as formaldehyde is produced when no IPTG is added.</p>
 
<p>This shows SOX works as expected, however there is leaky expression as formaldehyde is produced when no IPTG is added.</p>
</p>        
+
</p>
 
</br></br>
 
</br></br>
  
Line 536: Line 552:
 
         <center><b>Figure 2:</b> Graph Indicating the Most Frequent Spacer Between -35 and -10 Regions Found in <i>E. coli</i> Promoters. This image was taken from Harley and Reynolds (1987).</center>
 
         <center><b>Figure 2:</b> Graph Indicating the Most Frequent Spacer Between -35 and -10 Regions Found in <i>E. coli</i> Promoters. This image was taken from Harley and Reynolds (1987).</center>
 
</p>
 
</p>
           </br>      
+
           </br>
 
   <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Design Stage </h2>
 
   <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Design Stage </h2>
 
</br>
 
</br>
Line 582: Line 598:
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Conclusions and Future Work </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Conclusions and Future Work </h2>
 
</br>
 
</br>
           <p>Though we have generated a sizable library of promoters of varying strengths and functions, we lacked the time to complete its characterization by the screening against targeted molecules.  
+
           <p>Though we have generated a sizable library of promoters of varying strengths and functions, we lacked the time to complete its characterization by the screening against targeted molecules.
 
         <br/><br/>
 
         <br/><br/>
 
Due to time constraints, we also lacked the time to characterise these parts into the Sensynova platform within the lab.
 
Due to time constraints, we also lacked the time to characterise these parts into the Sensynova platform within the lab.
Line 788: Line 804:
 
<h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Characterisation</h2>
 
<h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Characterisation</h2>
 
</br>
 
</br>
  <p> A preliminary qualitative assay was carried out as an initial test for this construct. Co-cultures of Psicose detector, processor unit and sfGFP reporter (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2205015">BBa_K2205015</a>) were inoculated and grown overnight in LB+chloramphenicol (12.5 ng/ul).  
+
  <p> A preliminary qualitative assay was carried out as an initial test for this construct. Co-cultures of Psicose detector, processor unit and sfGFP reporter (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2205015">BBa_K2205015</a>) were inoculated and grown overnight in LB+chloramphenicol (12.5 ng/ul).
 
           </br></br>
 
           </br></br>
 
The day after the cultures were diluted at OD600 0.1 and mixed together to obtain co-cultures with ratio 1:1:13 (detector:processor:reporter). The samples were supplemented with 33.22 mM Psicose to induce the expression of quorum sensing molecules and eventually achieve the reporter visualisation (Figures 8). </p>
 
The day after the cultures were diluted at OD600 0.1 and mixed together to obtain co-cultures with ratio 1:1:13 (detector:processor:reporter). The samples were supplemented with 33.22 mM Psicose to induce the expression of quorum sensing molecules and eventually achieve the reporter visualisation (Figures 8). </p>
Line 812: Line 828:
  
 
         <hr>
 
         <hr>
       
+
 
 
         <h1 style="font-family: Rubik"> Formaldehyde <button class="btn btn-primary collapsed" type="button" data-toggle="collapse" data-target="#formaldehyde" aria-expanded="false" aria-controls="formaldehyde" style="margin-left: 1%"></button></h1>
 
         <h1 style="font-family: Rubik"> Formaldehyde <button class="btn btn-primary collapsed" type="button" data-toggle="collapse" data-target="#formaldehyde" aria-expanded="false" aria-controls="formaldehyde" style="margin-left: 1%"></button></h1>
 
         <div id="formaldehyde" class="collapse">
 
         <div id="formaldehyde" class="collapse">
Line 818: Line 834:
 
<h2  style="font-size: 1em"> BioBricks used: <a href="http://parts.igem.org/Part:BBa_K2205029">BBa_K2205029 (New)</a>, <a href="http://parts.igem.org/Part:BBa_K2205030">BBa_K2205030 (New)</a>, <a href="http://parts.igem.org/Part:BBa_K749021">BBa_K749021(TMU-Tokyo 2012 )</a> </h2>
 
<h2  style="font-size: 1em"> BioBricks used: <a href="http://parts.igem.org/Part:BBa_K2205029">BBa_K2205029 (New)</a>, <a href="http://parts.igem.org/Part:BBa_K2205030">BBa_K2205030 (New)</a>, <a href="http://parts.igem.org/Part:BBa_K749021">BBa_K749021(TMU-Tokyo 2012 )</a> </h2>
 
</br>
 
</br>
       
+
 
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Rationale and Aim </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Rationale and Aim </h2>
 
</br>
 
</br>
Line 829: Line 845:
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Background Information </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Background Information </h2>
 
</br>
 
</br>
           <p>The formaldehyde biosensor, part BBa_K749021, was selected was originally made and submitted to the iGEM registry by the TMU-Tokyo 2012 team.  
+
           <p>The formaldehyde biosensor, part BBa_K749021, was selected was originally made and submitted to the iGEM registry by the TMU-Tokyo 2012 team.
 
           </br></br>
 
           </br></br>
This part was chosen as a variant to the detector module present in the Sensynova platform due to the fact that our adaptor module present in the framework, Sarcosine Oxidase, was made in order to convert glyphosate into formaldehyde, in order to overcome the limitation in the detection of glyphosate due to its little-known knowledge.  
+
This part was chosen as a variant to the detector module present in the Sensynova platform due to the fact that our adaptor module present in the framework, Sarcosine Oxidase, was made in order to convert glyphosate into formaldehyde, in order to overcome the limitation in the detection of glyphosate due to its little-known knowledge.
 
           </br>
 
           </br>
 
           <center><img src="https://static.igem.org/mediawiki/2017/1/1f/T--Newcastle--Lais--FO--Ruler.png" class="img-fluid border border-dark rounded" style="margin: 2%"></center>
 
           <center><img src="https://static.igem.org/mediawiki/2017/1/1f/T--Newcastle--Lais--FO--Ruler.png" class="img-fluid border border-dark rounded" style="margin: 2%"></center>
Line 850: Line 866:
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Design Stage </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Design Stage </h2>
 
</br>
 
</br>
           <p>In order to implement the Formaldehyde biosensor variant to the Sensynova platform, a design was created by replacing the IPTG sensing system in the original detector module with the construct detailed above, creating part <a href="http://parts.igem.org/Part:BBa_K2205030">BBa_K2205030 </a>.
+
           <p>In order to implement the Formaldehyde biosensor variant to the Sensynova platform, a design was created by replacing the IPTG sensing system in the original detector module with the construct detailed above, creating part <a href="http://parts.igem.org/Part:BBa_K2205030">BBa_K2205030 </a>.
 
           </br></br>
 
           </br></br>
 
We chose to redesign the Formaldehyde biosensor detailed above to mirror the design used when producing the Psicose detector variant. The system detailed in the image below is made up of the constitutive promoter present within the platform triggering transcription of the FrmR repressing the PfrmR and subsequently the connector 1 of the Sensynova platform. We have also replaced the colour output present in the TMU-Tokyo design, we have added our part <a href="http://parts.igem.org/Part:BBa_K2205008">BBa_K2205008</a>, which produces our first connector in order to trigger a response from following modules of the Sensynova platform in the presence of Formaldehyde.</p>
 
We chose to redesign the Formaldehyde biosensor detailed above to mirror the design used when producing the Psicose detector variant. The system detailed in the image below is made up of the constitutive promoter present within the platform triggering transcription of the FrmR repressing the PfrmR and subsequently the connector 1 of the Sensynova platform. We have also replaced the colour output present in the TMU-Tokyo design, we have added our part <a href="http://parts.igem.org/Part:BBa_K2205008">BBa_K2205008</a>, which produces our first connector in order to trigger a response from following modules of the Sensynova platform in the presence of Formaldehyde.</p>
Line 880: Line 896:
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%">Conclusions and Future Work </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%">Conclusions and Future Work </h2>
 
</br>
 
</br>
           <p>Due to time constraints, we lacked the time to synthesise, implement and characterise this part into the Sensynova platform within the lab. Future work on this part would include characterisation <i>in vivo</i> guided by the modelling of the framework when customised as a formaldehyde biosensor and testing against the Sarcosine Oxidase adaptor module currently present in the framework.  
+
           <p>Due to time constraints, we lacked the time to synthesise, implement and characterise this part into the Sensynova platform within the lab. Future work on this part would include characterisation <i>in vivo</i> guided by the modelling of the framework when customised as a formaldehyde biosensor and testing against the Sarcosine Oxidase adaptor module currently present in the framework.
 
           </p>
 
           </p>
 
</br>
 
</br>
Line 891: Line 907:
 
         </div>
 
         </div>
 
       </div>
 
       </div>
     
+
 
 
       <div class="tab-pane fade" id="nav-processor" role="tabpanel" aria-labelledby="nav-processor-tab">
 
       <div class="tab-pane fade" id="nav-processor" role="tabpanel" aria-labelledby="nav-processor-tab">
 
</br>
 
</br>

Revision as of 19:36, 1 November 2017

spacefill

Our Experimental Results

Key Achievements

A condensed list of our most notable results


  • Designed a novel framework for biosensor development
  • Proved that multicellular biosensors are able to co-ordinate responses to input molecules through a proof-of-concept IPTG responsive biosensor
  • Successful characterisation of a transpose-based “stand-by switch” capable of producing eforRed in the “OFF” state, and C4 AHL in the “ON” state
  • Used a Design of Experiments approach to successfully optimise a cell-free system
  • Improved the BLANK plasmid for promoter screening
  • Expressed and characterised Sarcosine Oxidase, showing successful degradation of sarcosine to formaldehyde
  • Designed, and began to construct, a variety of framework compatible systems, including a synthetic promoter library

Below is a diagram of our Sensynova Framework. Clicking on each part of the framework (e.g. detector modules) links to the relevant results.

Alternatively, at the bottom of this page are tabs which will show you results for every part of the project



Framework

Framework Chassis

Biochemical Adaptor

Target

Detector Modules

Multicellular Framework Testing

C12 HSL: Connector 1

Processor Modules

Framework in Cell Free Protein Synthesis Systems

C4 HSL: Connector 2

Reporter Modules



Looking for Interlab Study
related results? Click below!