Difference between revisions of "Team:Peking"

Line 228: Line 228:
 
             functions. Computers have thus become "alive". A unicellular organism itself cannot pack much computational
 
             functions. Computers have thus become "alive". A unicellular organism itself cannot pack much computational
 
             power, but considered as a modular building block, its potential is impressive.</p>
 
             power, but considered as a modular building block, its potential is impressive.</p>
 +
        </div>
 +
    </div>
 +
 +
    <div class="demo-card-wide mdl-card mdl-shadow--2dp" style="margin-bottom: 30px">
 +
        <div class="mdl-card__title"
 +
            style="background: url('https://static.igem.org/mediawiki/2017/c/cd/Peking_figure1.png') center / cover; height : 450px">
 +
 
         </div>
 
         </div>
 
     </div>
 
     </div>
Line 243: Line 250:
 
                 <div class="mdl-card__supporting-text"
 
                 <div class="mdl-card__supporting-text"
 
                     style="line-height: 2em;text-align: justify; color: #3A3A3A; padding-left: 30px; padding-right: 10px; padding-top: 30px; padding-bottom:30px">
 
                     style="line-height: 2em;text-align: justify; color: #3A3A3A; padding-left: 30px; padding-right: 10px; padding-top: 30px; padding-bottom:30px">
                     Peking iGEM 2017 would like to share with you document of the work done every week for our project.
+
                     An oscillator utilized like a metronome to trigger actions of sequential logic circuits
                    We spent the summer and the autumn in the laboratory together.<br><br>
+
 
 
                     <a class="mdl-button mdl-js-button mdl-button--raised mdl-button--accent mdl-js-ripple-effect"
 
                     <a class="mdl-button mdl-js-button mdl-button--raised mdl-button--accent mdl-js-ripple-effect"
 
                       href="https://2017.igem.org/Team:Peking/Project#Clock" target="_blank"
 
                       href="https://2017.igem.org/Team:Peking/Project#Clock" target="_blank"
Line 266: Line 273:
 
                     style="line-height: 2em;text-align: justify; color: #3A3A3A; padding-left: 30px; padding-right: 40px; padding-top: 30px; padding-bottom:30px">
 
                     style="line-height: 2em;text-align: justify; color: #3A3A3A; padding-left: 30px; padding-right: 40px; padding-top: 30px; padding-bottom:30px">
  
                     Here you can find the exact methods we use to generate our data and results. We hope they are
+
                     A memory device that can remember states
                    organized and presented in a way of reproducibility.
+
  
 
                     <br><br>
 
                     <br><br>
Line 293: Line 299:
 
                 <div class="mdl-card__supporting-text"
 
                 <div class="mdl-card__supporting-text"
 
                     style="line-height: 2em;text-align: justify; color: #3A3A3A; padding-left: 30px; padding-right: 10px; padding-top: 30px; padding-bottom:30px">
 
                     style="line-height: 2em;text-align: justify; color: #3A3A3A; padding-left: 30px; padding-right: 10px; padding-top: 30px; padding-bottom:30px">
                     Peking iGEM 2017 would like to share with you document of the work done every week for our project.
+
                     A functional part converting a signal from flip-flop into complex functions
                     We spent the summer and the autumn in the laboratory together.<br><br>
+
                     <br><br>
 
                     <a class="mdl-button mdl-js-button mdl-button--raised mdl-button--accent mdl-js-ripple-effect"
 
                     <a class="mdl-button mdl-js-button mdl-button--raised mdl-button--accent mdl-js-ripple-effect"
 
                       href="https://2017.igem.org/Team:Peking/Project#Controller" target="_blank"
 
                       href="https://2017.igem.org/Team:Peking/Project#Controller" target="_blank"
Line 316: Line 322:
 
                     style="line-height: 2em;text-align: justify; color: #3A3A3A; padding-left: 30px; padding-right: 40px; padding-top: 30px; padding-bottom:30px">
 
                     style="line-height: 2em;text-align: justify; color: #3A3A3A; padding-left: 30px; padding-right: 40px; padding-top: 30px; padding-bottom:30px">
  
                     Here you can find the exact methods we use to generate our data and results. We hope they are
+
                     An encyclopedia of synthetic biology
                    organized and presented in a way of reproducibility.
+
  
 
                     <br><br>
 
                     <br><br>
Line 333: Line 338:
  
  
    <div class="demo-card-wide mdl-card mdl-shadow--2dp" style="margin-top: 20px">
 
  
        <div class="mdl-card__supporting-text"
 
            style="line-height: 2em;text-align: justify; color: #3A3A3A; padding-left: 50px; padding-top: 50px; padding-bottom:50px">
 
            <h1>Framework </h1>
 
            <section class="section section--intro">
 
 
                <link href="https://fonts.googleapis.com/css?family=Roboto:400,700|Nunito:400,700"
 
                      rel="stylesheet">
 
 
                <link rel="stylesheet" type="text/css"
 
                      href="https://2017.igem.org/Template:Peking/hov/demo?action=raw&ctype=text/css"/>
 
 
                <link rel="stylesheet" type="text/css"
 
                      href="https://2017.igem.org/Template:Peking/hov/adsila?action=raw&ctype=text/css"/>
 
                <link rel="stylesheet" type="text/css"
 
                      href="https://2017.igem.org/Template:Peking/hov/pater?action=raw&ctype=text/css"/>
 
                <script type="text/javascript"
 
                        src="https://2017.igem.org/Template:Peking/hov/demojs?action=raw&ctype=text/javascript"></script>
 
 
 
                <script>document.documentElement.className = "js";
 
                var supportsCssVars = function () {
 
                    var e, t = document.createElement("style");
 
                    return t.innerHTML = "root: { --tmp-var: bold; }", document.head.appendChild(t), e = !!(window.CSS && window.CSS.supports && window.CSS.supports("font-weight", "var(--tmp-var)")), t.parentNode.removeChild(t), e
 
                };
 
                supportsCssVars() || alert("Please view this demo in a modern browser that supports CSS Variables.");</script>
 
 
                <section class="content" style="background-color: #fff">
 
                    <nav class="menu menu--adsila">
 
                        <a class="menu__item" href="https://2017.igem.org/Team:Peking/Project#Introduction">
 
                            <span class="menu__item-name">"Clock"</span>
 
                            <span class="menu__item-label">To record time, we will first need an intercellular clock signal, </span>
 
                        </a>
 
                        <a class="menu__item" href="https://2017.igem.org/Team:Peking/Model#Overview">
 
                            <span class="menu__item-name">"Flip-flop"</span>
 
                            <span class="menu__item-label">Then we proposed and demonstrated a state transition unit. </span>
 
                        </a>
 
                        <a class="menu__item" href="https://2017.igem.org/Team:Peking/Software">
 
                            <span class="menu__item-name">"Controller"</span>
 
                            <span class="menu__item-label">From states into functions, we designed controller.</span>
 
                        </a>
 
                        <a class="menu__item" href="https://2017.igem.org/Team:Peking/Hardware">
 
                            <span class="menu__item-name">"Carpoid"</span>
 
                            <span class="menu__item-label"></span>
 
                        </a>
 
 
                    </nav>
 
                </section>
 
 
            </section>
 
        </div>
 
    </div>
 
  
  

Revision as of 03:15, 2 November 2017

Peking iGEM 2017

Why sequential logic?

Cells are responsive to a myriad signals under most conditions and adjust their own internal mechanisms order to survive. This adjustment depends not only on processing a combination of current environmental signal inputs , but also on determining the cell’s current state, which is a result of a series of past inputs. In digital circuit theory, this operating mode is known as sequential logic. Nowadays, a wide variety of tasks can be performed by synthetically engineered genetic circuits, mostly constructed using combinational logic. Contrast to sequential logic, it's output is a function of the present input only. It is difficult to perform functions in a specific order, which has limited the widespread implementation of such systems. The ability of sequential logic circuits to store modest amounts of information within living systems and to act upon them would enable new approaches to the study and control of biological processes . A cell can be designed to do work that is more complex if it has more states. In other words, we can reach a new dimensionality in designing synthetic life – time.

What did we do?

This year, the Peking iGEM team is attempting to develop a frame of biological sequential circuits that are programmable. The envisioned circuit is capable of both storing states in DNA and automatically running a series of instructions in a specific order. More specifically, the sequential logic that consists of a clock , flip flop and control unit in bacteria. The clock is an oscillator with a repeated signal cycle that is utilized like a metronome to trigger actions of sequential logic circuits. Flip-flop is a memory device that can remember states. Paired with a clock signal, it can realize state transition. The control unit is a functional part which can convert a signal from flip-flop into complex functions. With such a design, historical events are recorded and influence current cell behavior. This work tries to point the way toward building large computational sys-tems from modular biological parts—basic sequential computing devices in living cells—and ultimately,programming complex biological functions. Computers have thus become "alive". A unicellular organism itself cannot pack much computational power, but considered as a modular building block, its potential is impressive.

Clock

An oscillator utilized like a metronome to trigger actions of sequential logic circuits Read More

Flip-flop

A memory device that can remember states

Read More

Controller

A functional part converting a signal from flip-flop into complex functions

Read More

SynBioWiki

An encyclopedia of synthetic biology

Read More