Difference between revisions of "Team:TAS Taipei"

 
(17 intermediate revisions by 2 users not shown)
Line 19: Line 19:
 
         }
 
         }
 
     </style>
 
     </style>
 +
    <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.1.1/jquery.min.js"></script>
 +
    <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"></script>
 
</head>
 
</head>
  
Line 169: Line 171:
 
     </div>
 
     </div>
 
     <main>
 
     <main>
         <h1>NANO TRAP</h1>
+
         <h1>NANOTRAP</h1>
 
         <h6 id="abstract1">Nanoparticle Removal from Wastewater Systems</h6>
 
         <h6 id="abstract1">Nanoparticle Removal from Wastewater Systems</h6>
         <h6 id="this_title">TAS_TAIPEI 2017</h6>
+
         <h6 id="this_title">TAS_TAIPEI</h6>
 +
        <h6 id="this_title_2">2017 High School Grand Prize Winner</h6>
 
         <a href="#cv"><img src="https://static.igem.org/mediawiki/2017/4/4a/T--TAS_Taipei--Chevron_500px_200ppi.png" alt="test" id="chevron" class="chevron"></a>
 
         <a href="#cv"><img src="https://static.igem.org/mediawiki/2017/4/4a/T--TAS_Taipei--Chevron_500px_200ppi.png" alt="test" id="chevron" class="chevron"></a>
 
     </main>
 
     </main>
Line 185: Line 188:
 
                 <h4 class="para col-lg-12">
 
                 <h4 class="para col-lg-12">
 
                   The small size of nanoparticles is both an advantage and a problem. Their high surface-area-to-volume ratio enables novel medical, industrial, and commercial applications. However, their small size also allows them to evade conventional filtration during water treatment, posing health risks to humans, plants, and aquatic life. Our project aims to remove nanoparticles using two approaches: 1) bind citrate-capped nanoparticles with the membrane protein proteorhodopsin and 2) trap nanoparticles using E. coli biofilm produced by overexpressing two regulators -- OmpR234 and CsgD. We envision integrating our trapping system in both rural and urban wastewater treatment plants to efficiently capture all nanoparticles before treated water is released into the environment.<br><br>
 
                   The small size of nanoparticles is both an advantage and a problem. Their high surface-area-to-volume ratio enables novel medical, industrial, and commercial applications. However, their small size also allows them to evade conventional filtration during water treatment, posing health risks to humans, plants, and aquatic life. Our project aims to remove nanoparticles using two approaches: 1) bind citrate-capped nanoparticles with the membrane protein proteorhodopsin and 2) trap nanoparticles using E. coli biofilm produced by overexpressing two regulators -- OmpR234 and CsgD. We envision integrating our trapping system in both rural and urban wastewater treatment plants to efficiently capture all nanoparticles before treated water is released into the environment.<br><br>
                    <a href="https://2017.igem.org/Team:TAS_Taipei/Wiki_Standard_Pages">Standard Pages</a>
 
 
                 </h4>
 
                 </h4>
 +
                <br><br>
 
         </div>
 
         </div>
 
     </div>
 
     </div>
Line 192: Line 195:
 
     <script>
 
     <script>
 
         $(function() {
 
         $(function() {
            var x = 1
+
        $("a").on('click', function(event) {
            $('html').mouseenter(function() {
+
            if (this.hash !== "") {
                if (x == 1){
+
                event.preventDefault();
                    $('.yellow').addClass('marginFix');
+
                var hash = this.hash;
                     $('main').addClass('active');
+
                $('html, body').animate({
                     x = 2;
+
                     scrollTop: $(hash).offset().top
                 }
+
                }, 300, function() {
             });
+
                     // Add hash (#) to URL when done scrolling (default click behavior)
 
+
                    window.location.hash = hash;
 +
                 });
 +
             }
 +
        });
 
             $('.yellow').removeClass('active');
 
             $('.yellow').removeClass('active');
 
             $('.yellow').mouseenter(function() {
 
             $('.yellow').mouseenter(function() {
Line 207: Line 213:
 
                     //if the window is greater than 1020px wide then hover
 
                     //if the window is greater than 1020px wide then hover
 
                     $('.yellow').addClass('active');
 
                     $('.yellow').addClass('active');
 +
                    $('.chevron').addClass('active');
 
                     $('.cv').addClass('active');
 
                     $('.cv').addClass('active');
 +
                    $('.banner').addClass('marginFix');
 
                 }
 
                 }
 
                 $('.button-holder').addClass('hover');
 
                 $('.button-holder').addClass('hover');
Line 218: Line 226:
 
                     //if the window is greater than 1020px wide then hover
 
                     //if the window is greater than 1020px wide then hover
 
                     $('.yellow').removeClass('active');
 
                     $('.yellow').removeClass('active');
 +
                    $('.chevron').removeClass('active');
 
                     $('.cv').removeClass('active');
 
                     $('.cv').removeClass('active');
 +
                    $('.banner').removeClass('marginFix');
 
                 }
 
                 }
 
                 $('.button-holder').removeClass('hover');
 
                 $('.button-holder').removeClass('hover');
Line 466: Line 476:
  
  
            $('.slider-holder').mouseenter(function() {
 
                $('.project').removeClass('active');
 
                $('.experiment').removeClass('active');
 
                $('.modeling').removeClass('active');
 
                $('.prototype').removeClass('active');
 
                $('.biosafety').removeClass('active');
 
                $('.about').removeClass('active');
 
                $('.policy').removeClass('active');
 
                $('.acknowledgments').removeClass('active');
 
                $('.button-holder').removeClass('hover');
 
            });
 
 
         });
 
         });
  

Latest revision as of 07:11, 30 November 2017

X

Project

Experiment

Modeling

Prototype

Human Practice

Safety

About Us

Attributions

NANOTRAP

Nanoparticle Removal from Wastewater Systems
TAS_TAIPEI
2017 High School Grand Prize Winner
test

ABSTRACT

The small size of nanoparticles is both an advantage and a problem. Their high surface-area-to-volume ratio enables novel medical, industrial, and commercial applications. However, their small size also allows them to evade conventional filtration during water treatment, posing health risks to humans, plants, and aquatic life. Our project aims to remove nanoparticles using two approaches: 1) bind citrate-capped nanoparticles with the membrane protein proteorhodopsin and 2) trap nanoparticles using E. coli biofilm produced by overexpressing two regulators -- OmpR234 and CsgD. We envision integrating our trapping system in both rural and urban wastewater treatment plants to efficiently capture all nanoparticles before treated water is released into the environment.