Difference between revisions of "Team:Tianjin/Demonstrate"

Line 360: Line 360:
  
 
<div class="reference">
 
<div class="reference">
           <h4>References</h4>
+
           <h4>Reference</h4>
 
               <hr>
 
               <hr>
 
             <p>[1] Sara J. Hanson, and Kenneth H. Wolfe.  An Evolutionary Perspective on Yeast Mating-Type Switching.</p>
 
             <p>[1] Sara J. Hanson, and Kenneth H. Wolfe.  An Evolutionary Perspective on Yeast Mating-Type Switching.</p>
Line 571: Line 571:
 
<hr>
 
<hr>
  
<p>[1]Altamura E, Borgatti M, Finotti A, Gasparello J, Gambari R, Spinelli M, et al. (2016) Chemical-Induced Read-Through at Premature Termination Codons Determined by a Rapid Dual-Fluorescence System Based on S. cerevisiae. PLoS ONE11(4): e0154260. https://doi.org/10.1371/journal.pone.0154260</p>
+
<p>[1]Altamura E, Borgatti M, Finotti A, Gasparello J, Gambari R, Spinelli M, et al. (2016) Chemical-Induced Read-Through at Premature Termination Codons Determined by a Rapid Dual-Fluorescence System Based on S. cerevisiae. PLoS ONE11(4)</p>
<p>[2]Leslie A. Mitchell, James Chuang, Neta Agmon, Chachrit Khunsriraksakul, Nick A. Phillips, Yizhi Cai, David M. Truong, Ashan Veerakumar, Yuxuan Wang, María Mayorga, Paul Blomquist, Praneeth Sadda, Joshua Trueheart, Jef D. Boeke; Versatile genetic assembly system (VEGAS) to assemble pathways for expression in <i>S. cerevisiae</i>, Nucleic Acids Research, Volume 43, Issue 13, 27 July 2015, Pages 6620–6630.https://doi.org/10.1093/nar/gkv466</p>
+
<p>[2]Leslie A. Mitchell, James Chuang, Neta Agmon, Chachrit Khunsriraksakul, Nick A. Phillips, Yizhi Cai, David M. Truong, Ashan Veerakumar, Yuxuan Wang, María Mayorga, Paul Blomquist, Praneeth Sadda, Joshua Trueheart, Jef D. Boeke; Versatile genetic assembly system (VEGAS) to assemble pathways for expression in <i>S. cerevisiae</i>,<i> Nucleic Acids Research</i>, Volume 43, Issue 13, 27 July 2015, Pages 6620–6630
 
</div>
 
</div>
  
Line 709: Line 709:
  
 
<div class="reference">
 
<div class="reference">
         <h4>REFERENCES</h4>   
+
         <h4>REFERENCE</h4>   
 
<p>[1]Shen, Y., Stracquadanio, G., Wang, Y., Yang, K., Mitchell, L. A., & Xue, Y., et al. (2016). Scramble generates designed combinatorial stochastic diversity in synthetic chromosomes. <i>Genome Research</i>, 26(1), 36.<br>   
 
<p>[1]Shen, Y., Stracquadanio, G., Wang, Y., Yang, K., Mitchell, L. A., & Xue, Y., et al. (2016). Scramble generates designed combinatorial stochastic diversity in synthetic chromosomes. <i>Genome Research</i>, 26(1), 36.<br>   
 
[2]Lindstrom, D. L., & Gottschling, D. E. (2009). The mother enrichment program: a genetic system for facile replicative life span analysis in Saccharomyces cerevisiae.<i>Genetics</i> , 183(2):413.</p>
 
[2]Lindstrom, D. L., & Gottschling, D. E. (2009). The mother enrichment program: a genetic system for facile replicative life span analysis in Saccharomyces cerevisiae.<i>Genetics</i> , 183(2):413.</p>
Line 1,030: Line 1,030:
 
<hr>
 
<hr>
  
<p>Badi, L., & Barberis, A. (2002). The CUP1 upstream repeated element renders CUP1 promoter activation insensitive to mutations in the RNA polymerase II transcription complex. <i>Nucleic acids research</i>, 30(6), 1306-1315.</p>
+
<p>[1]Badi, L., & Barberis, A. (2002). The CUP1 upstream repeated element renders CUP1 promoter activation insensitive to mutations in the RNA polymerase II transcription complex. <i>Nucleic acids research</i>, 30(6), 1306-1315.</p>
<p>Koller, A., Valesco, J., & Subramani, S. (2000). The CUP1 promoter of Saccharomyces cerevisiae is inducible by copper in Pichia pastoris. <i>Yeast</i>, 16(7), 651-656.</p>
+
<p>[2]Koller, A., Valesco, J., & Subramani, S. (2000). The CUP1 promoter of Saccharomyces cerevisiae is inducible by copper in Pichia pastoris. <i>Yeast</i>, 16(7), 651-656.</p>
<p>Labbé, S., & Thiele, D. J. (1999). [8] Copper ion inducible and repressible promoter systems in yeast. <i>Methods in enzymology</i>, 306, 145-153.</p>
+
<p>[3]Labbé, S., & Thiele, D. J. (1999). [8] Copper ion inducible and repressible promoter systems in yeast. <i>Methods in enzymology</i>, 306, 145-153.</p>
<p>Leblanc, B. P., Benham, C. J., & Clark, D. J. (2000). An initiation element in the yeast CUP1 promoter is recognized by RNA polymerase II in the absence of TATA box-binding protein if the DNA is negatively supercoiled. <i>Proceedings of the National Academy of Sciences</i>, 97(20), 10745-10750.</p>
+
<p>[4]Leblanc, B. P., Benham, C. J., & Clark, D. J. (2000). An initiation element in the yeast CUP1 promoter is recognized by RNA polymerase II in the absence of TATA box-binding protein if the DNA is negatively supercoiled. <i>Proceedings of the National Academy of Sciences</i>, 97(20), 10745-10750.</p>
<p>Shen, C. H., Leblanc, B. P., Neal, C., Akhavan, R., & Clark, D. J. (2002). Targeted histone acetylation at the yeast CUP1 promoter requires the transcriptional activator, the TATA boxes, and the putative histone acetylase encoded by SPT10. <i>Molecular and cellular biology</i>, 22(18), 6406-6416.</p>
+
<p>[5]Shen, C. H., Leblanc, B. P., Neal, C., Akhavan, R., & Clark, D. J. (2002). Targeted histone acetylation at the yeast CUP1 promoter requires the transcriptional activator, the TATA boxes, and the putative histone acetylase encoded by SPT10. <i>Molecular and cellular biology</i>, 22(18), 6406-6416.</p>
 
</div>
 
</div>
  
Line 1,122: Line 1,122:
 
<hr>
 
<hr>
  
<p>Wang J, Chen C. Biosorption of heavy metals by Saccharomyces cerevisiae: A review[J]. Biotechnology Advances, 2006, 24(5):427.</p>
+
<p>[1]Wang J, Chen C. Biosorption of heavy metals by Saccharomyces cerevisiae: A review[J]. Biotechnology Advances, 2006, 24(5):427.</p>
<p>C. Baumann, A. Beil, S. Jurt, M. Niederwanger, O. Palacios, M. Capdevila, S. Atrian, R. Dallinger, O. Zerbe, Angew. Chem. Int. Ed. 2017, 56, 4617.</p>
+
<p>[2]C. Baumann, A. Beil, S. Jurt, M. Niederwanger, O. Palacios, M. Capdevila, S. Atrian, R. Dallinger, O. Zerbe, Angew. Chem. Int. Ed. 2017, 56, 4617.</p>
<p>Dönmez G, Aksu Z. The effect of copper(II) ions on the growth and bioaccumulation properties of some yeasts[J]. Process Biochemistry, 1999, 35(1–2):135-142.</p>
+
<p>[3]Dönmez G, Aksu Z. The effect of copper(II) ions on the growth and bioaccumulation properties of some yeasts[J]. Process Biochemistry, 1999, 35(1–2):135-142.</p>
  
  

Revision as of 12:12, 1 November 2017

/* OVERRIDE IGEM SETTINGS */

Demonstrate