Difference between revisions of "Team:Tianjin/Demonstrate"

 
(45 intermediate revisions by 10 users not shown)
Line 4: Line 4:
 
<head>
 
<head>
  
<link rel="stylesheet" type="text/css" href="https://2017.igem.org/Team:Tianjin/Resources/CSS:photo?action=raw&ctype=text/css" />
+
<link rel="stylesheet" type="text/css" href="https://2017.igem.org/Team:Tianjin/Resources/CSS:photodemon?action=raw&ctype=text/css" />
 
<link href="https://2017.igem.org/Team:Tianjin/Resources/CSS:maincss?action=raw&ctype=text/css
 
<link href="https://2017.igem.org/Team:Tianjin/Resources/CSS:maincss?action=raw&ctype=text/css
 
" rel="stylesheet">
 
" rel="stylesheet">
Line 28: Line 28:
 
         $('div.small_pic_long a').fancyZoom({scaleImg: true, closeOnClick: true});
 
         $('div.small_pic_long a').fancyZoom({scaleImg: true, closeOnClick: true});
 
$('div.small_pic_mid a').fancyZoom({scaleImg: true, closeOnClick: true});
 
$('div.small_pic_mid a').fancyZoom({scaleImg: true, closeOnClick: true});
 +
        $('div.small_pic_demo_angry a').fancyZoom({scaleImg: true, closeOnClick: true});
 +
        $('div.small_pic_demo_island a').fancyZoom({scaleImg: true, closeOnClick: true});
 
$('#zoom_word_2').fancyZoom();
 
$('#zoom_word_2').fancyZoom();
 
$('#zoom_flash').fancyZoom();
 
$('#zoom_flash').fancyZoom();
 
});
 
});
 
</script>
 
</script>
 
  
  
Line 253: Line 254:
 
<div id="title">
 
<div id="title">
 
<h1>Demonstrate</h1>
 
<h1>Demonstrate</h1>
<hr>
+
<a title="huge suprise" href="https://2017.igem.org/Team:Tianjin/surprise23333" target="_blank"><hr></a>
 
</div>
 
</div>
  
Line 271: Line 272:
 
   <h4>Obtaining the chassis </h4>
 
   <h4>Obtaining the chassis </h4>
 
<hr>
 
<hr>
   <p>Aiming to achieve MTS for environmental use, it is essential to make sure that when the <i>MAT</i> locus has DSB (double strands break) cleaved by <i>HO</i>, our type-a (<i>MATa</i>) yeast can only become type-α (<i>MATα</i>). Therefore, we used a <i>Ura-tag</i> to replace the<i> HMRa</i> domain in <i>chromosome Ⅲ</i>. In this way the <i>HMRa</i> will no longer be the donor for the homologous recombination in the repairing process for MAT cleavage. Since the change of mating type may appear successively, there is a great possibility that the same type haploid mate with each other. After selection, by homologous recombination, we deleted the <i>Ura-tag</i> for further usage. We selected the target colonies (<b><i>SynⅩ-dUra</i></b>) via <i>5-FOA</i> plates. </p>
+
   <p>Aiming to achieve MTS for environmental use, it is essential to make sure that when the <i>MAT</i> locus has DSB (double strands break) cleaved by <i>HO</i>, our type-a (<i>MATa</i>) yeast can only become type-α (<i>MATα</i>). Therefore, we used a <i>Ura-tag</i> to replace the<i> HMRa</i> domain in <i>chromosome Ⅲ</i>. In this way the <i>HMRa</i> will no longer be the donor for the homologous recombination in the repairing process for MAT cleavage. After selection, by homologous recombination, we deleted the <i>Ura-tag</i> for further usage. We selected the target colonies (<b><i>SynⅩ-dUra</i></b>) via <i>5-FOA</i> plates. </p>
 
  <div class="zxx_zoom_demo">
 
  <div class="zxx_zoom_demo">
 
                     <div class="small_pic_demo" style="float:left;">
 
                     <div class="small_pic_demo" style="float:left;">
Line 281: Line 282:
 
                         <a href="#pic_eleven" >
 
                         <a href="#pic_eleven" >
 
                           <img src="https://static.igem.org/mediawiki/2017/0/03/Tianjin-ho-result-9.jpeg"/>
 
                           <img src="https://static.igem.org/mediawiki/2017/0/03/Tianjin-ho-result-9.jpeg"/>
                         </a> <p style="font-size:15px;text-align:center"><br/>Fig. 1-2. As we can see in the gel photo above, the <b>UP</b> and <b>DOWN</b>  segments hasn’t been amplified in our <i><b>SynⅩ-dUra</b></i> comparing to the BY4741 as control. Which indicated that the HMRa gene has been successfully eliminated.  
+
                         </a> <p style="font-size:15px;text-align:center"><br/>Fig. 1-2. As we can see in the gel photo above, the <b>UP</b> and <b>DOWN</b>  segments hasn’t been amplified in our <i><b>SynⅩ-dUra</b></i> comparing to the BY4741 as control, which indicated that the HMRa gene has been successfully eliminated.  
 
</p>
 
</p>
 
                     </div>
 
                     </div>
Line 288: Line 289:
 
                   <div id="pic_ten" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/1/1b/Tianjin-ho-result-10.jpeg"/><p style="font-size:15px;text-align:center"><br/> Fig. 1-1. The PCR strategy for testing whether we deleted the HMRa in <b><i>SynⅩ-dUra</i></b>.       
 
                   <div id="pic_ten" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/1/1b/Tianjin-ho-result-10.jpeg"/><p style="font-size:15px;text-align:center"><br/> Fig. 1-1. The PCR strategy for testing whether we deleted the HMRa in <b><i>SynⅩ-dUra</i></b>.       
 
</p></div>
 
</p></div>
                   <div id="pic_eleven" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/0/03/Tianjin-ho-result-9.jpeg"/><p style="font-size:15px;text-align:center"><br/>Fig. 1-2. As we can see in the gel photo above, the <b>UP</b> and <b>DOWN</b>  segments hasn’t been amplified in our <i><b>SynⅩ-dUra</b></i> comparing to the BY4741 as control. Which indicated that the HMRa gene has been successfully eliminated.  
+
                   <div id="pic_eleven" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/0/03/Tianjin-ho-result-9.jpeg"/><p style="font-size:15px;text-align:center"><br/>Fig. 1-2. As we can see in the gel photo above, the <b>UP</b> and <b>DOWN</b>  segments hasn’t been amplified in our <i><b>SynⅩ-dUra</b></i> comparing to the BY4741 as control, which indicated that the HMRa gene has been successfully eliminated.  
 
</p></div>   
 
</p></div>   
 
   <h4> The result for constructing the <i>Gal</i> systems</h4>
 
   <h4> The result for constructing the <i>Gal</i> systems</h4>
Line 327: Line 328:
 
     <p> Cultivate two groups of yeasts together. (one is <b><i>SynⅩ-dUra-416</i></b>, the other is normal <i>BY4741 MATa</i>) If the <b>MTS</b> has been accomplished (<b><i>SynⅩ-dUra-416</i></b> can become <i>MATα</i>), the two groups of haploids can mate with each other and become diploids. </p>
 
     <p> Cultivate two groups of yeasts together. (one is <b><i>SynⅩ-dUra-416</i></b>, the other is normal <i>BY4741 MATa</i>) If the <b>MTS</b> has been accomplished (<b><i>SynⅩ-dUra-416</i></b> can become <i>MATα</i>), the two groups of haploids can mate with each other and become diploids. </p>
 
<h5>3) Step three</h5>
 
<h5>3) Step three</h5>
       <p>Test the results of mating by PCR method. We designed the primers for both <i>MATa</i> locus and <i>MATα</i> locus. The amplification of both <i>MATa</i> locus and <i>MATα</i> locus indicates that the yeasts has turned into diploids, the <b>MTS</b> has been achieved in other words. </p>
+
       <p>Test the results of mating by PCR method. We designed the primers for both <i>MATa</i> and <i>MATα</i> loci. The amplification of both <i>MATa</i> locus and <i>MATα</i> locus indicates that the yeasts has turned into diploids, the <b>MTS</b> has been achieved in other words. </p>
 
<hr>
 
<hr>
  
Line 360: Line 361:
  
 
<div class="reference">
 
<div class="reference">
           <h4>References</h4>
+
           <h4>Reference</h4>
 
               <hr>
 
               <hr>
 
             <p>[1] Sara J. Hanson, and Kenneth H. Wolfe.  An Evolutionary Perspective on Yeast Mating-Type Switching.</p>
 
             <p>[1] Sara J. Hanson, and Kenneth H. Wolfe.  An Evolutionary Perspective on Yeast Mating-Type Switching.</p>
Line 392: Line 393:
 
<h4>OVERVIEW</h4>
 
<h4>OVERVIEW</h4>
 
<hr>
 
<hr>
   <p>After realizing that we need more intuitive characterization of Mating Switcher, we thought of two kinds of gene expression products in different colors, <i>red fluorescent protein</i> and <i>β-carotene</i>. We carried out a reasonable experimental design, and decided to realize functional conversion from <i>red fluorescent protein</i> to <i>β-carotene</i> by Mating Switcher.</p>
+
   <p>After realizing that we need more intuitive characterization of Mating Switcher, we thought of two kinds of gene expression products in different colors, <i>red fluorescent protein</i> and <i>β-carotene</i>. We carried out a reasonable experimental design, and decided to realize functional conversion from <i>yEmRFP</i> to <i>β-carotene</i> by Mating Switcher.</p>
  
 
   <p>At first, we built expression vector with <i>TEF</i> promoter, which was a strong promoter in <i>Saccharomyces cerevisiae</i>. Although we obtained results as we expected, it is not so perfect that we decided to change a stronger promoter. Then, we constructed another expression vector with <i>TDH3</i> promoter. We redid the same qualitative and quantitative experiments to characterize our results.
 
   <p>At first, we built expression vector with <i>TEF</i> promoter, which was a strong promoter in <i>Saccharomyces cerevisiae</i>. Although we obtained results as we expected, it is not so perfect that we decided to change a stronger promoter. Then, we constructed another expression vector with <i>TDH3</i> promoter. We redid the same qualitative and quantitative experiments to characterize our results.
Line 398: Line 399:
 
<h4>CONSTRUCTION</h4>
 
<h4>CONSTRUCTION</h4>
 
<hr>
 
<hr>
   <p>In the early stage of the project, we constructed two composite parts with <i>TEF</i> promoter: BBa_K2407306, BBa_K2407307. At the end of our project, we also constructed one composite part with <i>TDH3</i> promoter:BBa_K2407314. Among them, <i>yEmRFP</i> is modified from a mCherry mRFP to adapt to the transcription environment in yeast. We did overlap PCR to combine them together. After that, we sequenced these parts, and sequencing result showed that this construction was successful.</p>
+
   <p>In the early stage of the project, we constructed two device parts with <i>TEF</i> promoter: BBa_K2407306, BBa_K2407307. At the end of our project, we also constructed one device part with <i>TDH3</i> promoter:BBa_K2407314. Among them, <i>yEmRFP</i> is modified from a mCherry mRFP to adapt to the transcription environment in yeast. We did overlap PCR to construct them together. After that, we sequenced these parts, and sequencing results showed that these construction were successful.</p>
 
  <div class="zxx_zoom_demo" align="center">
 
  <div class="zxx_zoom_demo" align="center">
 
<script  type="text/javascript" src="https://2017.igem.org/Team:Tianjin/Resources/JS:zoom?action=raw&ctype=text/javascript"></script>
 
<script  type="text/javascript" src="https://2017.igem.org/Team:Tianjin/Resources/JS:zoom?action=raw&ctype=text/javascript"></script>
Line 404: Line 405:
 
                         <a href="#pic_fortyone">
 
                         <a href="#pic_fortyone">
 
                           <img src="https://static.igem.org/mediawiki/2017/7/71/Tianjin-1-Red_fluorescent_protein_expression_vector_construction_flow_chart.png"></a>
 
                           <img src="https://static.igem.org/mediawiki/2017/7/71/Tianjin-1-Red_fluorescent_protein_expression_vector_construction_flow_chart.png"></a>
<p style="font-size:15px;text-align:center"><br/>Fig 2-1. Red fluorescent protein expression vector construction flow chart.</p>
+
<p style="font-size:15px;text-align:center"><br/>Fig.2-1. Red fluorescent protein expression vector construction flow chart.</p>
 
                     </div>
 
                     </div>
 
                    
 
                    
 
                     </div>
 
                     </div>
 
                    
 
                    
                   <div id="pic_fortyone" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/b/b9/Tianjin-1-Red_fluorescent_protein_expression_vector_construction_flow_chart_yuan..jpg"><p style="font-size:15px;text-align:center"><br/>Fig 2-1. Red fluorescent protein expression vector construction flow chart.</p></div>  
+
                   <div id="pic_fortyone" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/b/b9/Tianjin-1-Red_fluorescent_protein_expression_vector_construction_flow_chart_yuan..jpg"><p style="font-size:15px;text-align:center"><br/>Fig.2-1. Red fluorescent protein expression vector construction flow chart.</p></div>  
  
   <p>Then we first inserted BBa_K2407306 to the <i>Synthetic chromosome Ⅴ</i> of <i>Saccharomyces cerevisiae</i> . Through the screening of <i>SC-Ura</i>  solid medium and PCR experiments, we obtained the required strains called <b><i>PVUVC</i></b>. Second, we integrated the second composite part into this chromosome through homologous recombination, allowing the <i>RFP</i> gene to replace the <i>Ura3</i> gene. The <i>5-FOA</i> solid medium and PCR experiments were used to screen correct colony <b><i>PVRVC</i></b>. The conversion of the last fragment refers to the previous method. This process is graphically displayed on the above figure.</p>
+
   <p>Then we first inserted BBa_K2407306 to the <i>SynⅤ</i> of <i>Saccharomyces cerevisiae</i> . Through the screening of <i>SC-Ura</i>  solid medium and PCR experiments, we obtained the required strains called <b><i>PVUVC</i></b>. Second, we integrated the second device part into this chromosome through homologous recombination, allowing the <i>yEmRFP</i> gene to replace the <i>Ura3</i> gene. The <i>5-FOA</i> solid medium and PCR experiments were used to screen correct colony <b><i>PVRVC</i></b>. The insertion of the last part referred to the previous method. This process is graphically displayed on the above figure.</p>
   <p>To achieve mating, another mating type of wild type haploid yeast <i>Saccharomyces cerevisiae BY4742</i> was used for modification. By digestion and ligation, we construct vika gene on plasmid <i>pRS416</i> which contains a selective marker <i>Ura3</i>, and plasmid <i>pRS413</i> which contains a selective marker <i>His</i>. Then we introduced those two different plasmids into <I>BY4742</I> respectively.</p>
+
   <p>To achieve mating, another mating type of wild haploid yeast <i>Saccharomyces cerevisiae BY4742</i> was used for modification. By digestion and ligation, we constructed vika gene on plasmid <i>pRS416</i> which contains a selective marker <i>Ura3</i>, and plasmid <i>pRS413</i> which contains a selective marker <i>His</i>. Then we introduced those two different plasmids into <I>BY4742</I> respectively.</p>
 
   <h4>Results of Characterization of Mating Switcher</h4>
 
   <h4>Results of Characterization of Mating Switcher</h4>
 
<hr>
 
<hr>
<h5>1) Proof of Existence of Composite Parts</h5>
+
<h5>1) Proof of Existence of Device Parts</h5>
   <p>We built three composite parts in total. They are integrated into the chromosomes of <i>Saccharomyces cerevisiae</i> by transformation. We use colony PCR to proof the existence of these three parts in our strain. The result is showed as below.</p>
+
   <p>We built three device parts in total. They were integrated into the chromosomes of <i>Saccharomyces cerevisiae</i> by transformation. We used colony PCR to prove the existence of these three parts in our strain. The result was showed as below.</p>
  
  
Line 430: Line 431:
 
      
 
      
 
</div>
 
</div>
  <p style="text-align:center;font-size:1em;">Fig 2-2. Microscope image of yeast
+
  <p style="text-align:center;font-size:1em;">Fig.2-2. The results of PCR of <b><i>PVUVC</i></b>, <b><i>TVUVC</i></b>, <b><i>PVUVC</i></b> colonies. (length of 7607bp, 7865bp, 8131bp) As we can see, three parts and all fragments had been amplified, which indicated that we succeeded in constructing them.</p>
cultured with <i>SC-Leu</i> with no <i>yEmRFP</i> gene transformed.</p>
+
 
    
 
    
  
 
   <p>The PCR’s results confirmed that the target genes were ligated into chromosome correctly.</p>
 
   <p>The PCR’s results confirmed that the target genes were ligated into chromosome correctly.</p>
   <h5>2) Verification of RFP in the TVRVC</h5>
+
   <h5>2) Verification of yEmRFP in the colonies</h5>
 
<hr>
 
<hr>
   <p>The main characterization method of verification of <i>RFP</i> in the <b><i>TVRVC</i></b> applied by us is observing the expression of <i>red fluorescent protein</i> under the fluorescence microscope. By this way, it will be much more intuitive so that we can directly get the results. We took pictures under different visions and the results are as follows.All the experiment including <b><i>PVRVC</i></b> regulation system use this assay method.</p>
+
   <p>The main characterization method of verification of <i>yEmRFP</i> in the <b><i>TVRVC</i></b> applied by us was observing the expression of <i>red fluorescent protein</i> under the fluorescence microscope. By this way, it will be much more intuitive so that we can directly get the results. We took pictures under different visions and the results are as follows.The experiments of <b><i>PVRVC</i></b> regulation system used this assay method as well.</p>
  
 
   <div id="threepic1">
 
   <div id="threepic1">
Line 450: Line 450:
 
</div>
 
</div>
  
<p style="text-align:center;font-size:1em;">Fig 2-3. Microscope image of yeast
+
<p style="text-align:center;font-size:1em;">Fig.2-3. Microscope image of yeast
 
cultured with <i>SC-Leu</i> with <i>yEmRFP</i> gene transformed.</p>
 
cultured with <i>SC-Leu</i> with <i>yEmRFP</i> gene transformed.</p>
 
<div id="threepic2">
 
<div id="threepic2">
Line 460: Line 460:
 
   </div>
 
   </div>
 
  </div>       
 
  </div>       
<p style="text-align:center;font-size:1em;">Fig 2-3. Microscope image of yeast
+
<p style="text-align:center;font-size:1em;">Fig.2-3. Microscope image of yeast
 
cultured with <i>SC-Leu</i> with <i>yEmRFP</i> gene transformed.</p>
 
cultured with <i>SC-Leu</i> with <i>yEmRFP</i> gene transformed.</p>
 
              
 
              
Line 468: Line 468:
 
   <h5>3) Result of Mating</h5>
 
   <h5>3) Result of Mating</h5>
 
<hr>
 
<hr>
   <p>After we got the strain that introduced the <i>red fluorescent protein</i> gene, we let it mate with another mating type haploid yeast, which had plasmid with <i>vika</i> gene. The result is showed as follows:</p>
+
   <p>After we got the strain that introduced the <i>yEmRFP</i> gene, we let it mate with another mating type haploid yeast, which had plasmid with <i>vika</i> gene. The result was showed as follows:</p>
  <div class="zxx_zoom_demo_qqqq" align="center">
+
  <div class="zxx_zoom_demo_island" align="center">
 
<script  type="text/javascript" src="https://2017.igem.org/Team:Tianjin/Resources/JS:zoom?action=raw&ctype=text/javascript"></script>
 
<script  type="text/javascript" src="https://2017.igem.org/Team:Tianjin/Resources/JS:zoom?action=raw&ctype=text/javascript"></script>
                     <div class="small_pic_demo_qqqq" align="center">
+
                     <div class="small_pic_demo_island" align="center">
 
                         <a href="#pic_fortythree">
 
                         <a href="#pic_fortythree">
 
                           <img src="https://static.igem.org/mediawiki/2017/4/4c/Tianjin-2-Three_modified_colonies_and_one_resulting_colony.jpg"></a>
 
                           <img src="https://static.igem.org/mediawiki/2017/4/4c/Tianjin-2-Three_modified_colonies_and_one_resulting_colony.jpg"></a>
<p style="font-size:15px;text-align:center"><br/>Fig 2-4. Three modified colonies and one resulting colony.</p>
+
 
 
                     </div>
 
                     </div>
                 
+
       
 
                     </div>
 
                     </div>
                 
+
                   <p style="font-size:15px;text-align:center;margin:0 6em"><br/>Fig.2-4. Three modified colonies and one resulting colony.
                   <div id="pic_fortythree" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/0/0a/Chenxiyuyuantu2.jpg"><p style="font-size:15px;text-align:center"><br/>Fig 2-4. Three modified colonies and one resulting colony.
+
The upper left corner of the microorganism is synthetic <i>Saccharomyces cerevisiae</i>, we integrated modified fragment into its <i>synthetic chromosome V</i>. (<b><i>PVUVC</i></b>) The upper right corner is also synthetic <i>Saccharomyces cerevisiae</i>. (<b><i>PVRVC</i></b>) It is imported <i>red fluorescent protein</i> gene based on the upper left corner of the yeast. Both of them are single-celled organism called a. The lower right corner of the yeast is another mating type of haploid yeast called α. It has plasmid <i>pRS416</i> with <i>vika</i> gene. The yeast in the lower left corner is diploid <i>Saccharomyces cerevisiae</i>, which is obtained by mating the two yeasts on the right side of the figure.</p>        
The upper left corner of the bacteria is synthetic <i>Saccharomyces cerevisiae</i>, we integrated modified fragment into its <i>synthetic chromosome V</i>. (PVUVC) The upper right corner is also synthetic <i>Saccharomyces cerevisiae</i>. (PVRVC) It is imported <i>red fluorescent protein</i> gene based on the upper left corner of the yeast. Both of them are single-celled organism called a. The lower right corner of the yeast is another mating type of haploid yeast called α. It has plasmid <i>pRS416</i> with <i>vika</i> gene. The yeast in the lower left corner are diploid <i>Saccharomyces cerevisiae</i>, which is obtained by mating the two yeasts on the right side of the figure.</p></div>  
+
                  <div id="pic_fortythree" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/0/0a/Chenxiyuyuantu2.jpg"><p style="font-size:15px;text-align:center"><br/>Fig.2-4. Three modified colonies and one resulting colony.
 
+
<br>The upper left corner of the microorganism is synthetic <i>Saccharomyces cerevisiae</i>, we integrated modified fragment into its <i>synthetic chromosome V</i>. (<b><i>PVUVC</i></b>) The upper right corner is also synthetic <i>Saccharomyces cerevisiae</i>. (<b><i>PVRVC</i></b>) It is imported <i>red fluorescent protein</i> gene based on the upper left corner of the yeast. Both of them are single-celled organism called a. The lower right corner of the yeast is another mating type of haploid yeast called α. It has plasmid <i>pRS416</i> with <i>vika</i> gene. The yeast in the lower left corner is diploid <i>Saccharomyces cerevisiae</i>, which is obtained by mating the two yeasts on the right side of the figure.</br></p></div>  
  <p>The upper left corner of the bacteria is synthetic <i>Saccharomyces cerevisiae</i>, we integrated modified fragment into its <i>synthetic chromosome V</i>. (PVUVC) The upper right corner is also synthetic <i>Saccharomyces cerevisiae</i>. (PVRVC) It is imported <i>red fluorescent protein</i> gene based on the upper left corner of the yeast. Both of them are single-celled organism called a. The lower right corner of the yeast is another mating type of haploid yeast called α. It has plasmid <i>pRS416</i> with <i>vika</i> gene. The yeast in the lower left corner are diploid <i>Saccharomyces cerevisiae</i>, which is obtained by mating the two yeasts on the right side of the figure.</p>
+
  
   <p>The yellow colony in the figure is mating successfully. After the induction of <i>galactose</i>, <i>vika recombinase</i> was expressed, and <i>red fluorescent protein</i> gene and terminator was deleted so that <i>β-carotene</i> expresses. The color of colony was changed from white to yellow. In addition to it, we also tried other methods to turn on the switch.</p>
+
   <p>The yellow colony in the figure was mating successfully. After the induction of <i>galactose</i>, <i>vika recombinase</i> was expressed, and <i>yEmRFP</i> gene and terminator was deleted so that <i>β-carotene</i> expresses. The color of colony was changed from white to yellow. In addition to it, we also tried other methods to turn on the switch.</p>
  
     <div class="zxx_zoom_demo" align="center">
+
     <div class="zxx_zoom_demo_angry" align="center">
 
<script  type="text/javascript" src="https://2017.igem.org/Team:Tianjin/Resources/JS:zoom?action=raw&ctype=text/javascript"></script>
 
<script  type="text/javascript" src="https://2017.igem.org/Team:Tianjin/Resources/JS:zoom?action=raw&ctype=text/javascript"></script>
                     <div class="small_pic_demo" align="center">
+
                     <div class="small_pic_demo_angry" align="center">
 
                         <a href="#pic_fortyfour">
 
                         <a href="#pic_fortyfour">
 
                           <img src="https://static.igem.org/mediawiki/2017/9/98/Yasuo3333.png"></a>
 
                           <img src="https://static.igem.org/mediawiki/2017/9/98/Yasuo3333.png"></a>
<p style="font-size:15px;text-align:center"><br/>Fig 2-5. Bacteria after mating cultivated on the Sc-His plate.</p>
+
<p style="font-size:15px;text-align:center"><br/>Fig.2-5. Yeast after mating cultivated on the Sc-His plate.<br>There are 377 yellow colonies and 365 white colonies in the field of view.</br></p>
 
                     </div>
 
                     </div>
 
                    
 
                    
 
                     </div>
 
                     </div>
 
                    
 
                    
                   <div id="pic_fortyfour" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/7/77/Tianjin-3-Bacteria_after_mating_cultivated_on_the_Sc-His_plate_yuantu.png"><br/>Fig 2-5. Bacteria after mating cultivated on the Sc-His plate.</p></div>
+
                   <div id="pic_fortyfour" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/7/77/Tianjin-3-Bacteria_after_mating_cultivated_on_the_Sc-His_plate_yuantu.png"><br/>Fig.2-5. Yeast after mating cultivated on the Sc-His plate.
<p>There are 377 yellow colonies and 365 white colonies in the field of view.</p>
+
<br>There are 377 yellow colonies and 365 white colonies in the field of view.</br></p></div>  
  <p>We used another α-type yeast named <i>BY4742</i>, which has a plasmid called <i>pRS413</i> with selective marker <i>His</i>. It could express <i>vika recombinase</i> before mating. It mated with a-type <i>Saccharomyces cerevisiae</i> PVRVC, and then yeast cultured on Sc-His plate. As can be seen from the figure above, the reorganization efficiency is high, which reaches 50.8 percent. This proves that our Mating switcher is fast and efficient.</p>
+
  
     <div class="zxx_zoom_demo" align="center">
+
  <p>We used another α-type yeast named <i>BY4742</i>, which has a plasmid <i>pRS413</i> with selective marker <i>His</i>. It could express <i>vika recombinase</i> before mating. It mated with a-type <i>Saccharomyces cerevisiae</i> <b><i>PVRVC</i></b>, and then yeast cultured on Sc-His plate. As can be seen from the figure above, the reorganization efficiency is high, which reaches 50.8 percent. This proves that our Mating switcher is fast and efficient.</p>
 +
 
 +
     <div class="zxx_zoom_demo_angry" align="center">
 
<script  type="text/javascript" src="https://2017.igem.org/Team:Tianjin/Resources/JS:zoom?action=raw&ctype=text/javascript"></script>
 
<script  type="text/javascript" src="https://2017.igem.org/Team:Tianjin/Resources/JS:zoom?action=raw&ctype=text/javascript"></script>
                     <div class="small_pic_demo" align="center">
+
                     <div class="small_pic_demo_angry" align="center">
 
                         <a href="#pic_fortyfive">
 
                         <a href="#pic_fortyfive">
 
                           <img src="https://static.igem.org/mediawiki/2017/8/81/Tianjin-4-Bacteria_after_mating_cultivated_on_the_Sc-Ura_plate.png"></a>
 
                           <img src="https://static.igem.org/mediawiki/2017/8/81/Tianjin-4-Bacteria_after_mating_cultivated_on_the_Sc-Ura_plate.png"></a>
<p style="font-size:15px;text-align:center"><br/>Fig 2-6. Bacteria after mating cultivated on the Sc-Ura plate.</p>
+
<p style="font-size:15px;text-align:center"><br/>Fig.2-6. Yeast after induction cultivated on the Sc-Ura plate.
 +
<br>There are 325 yellow colonies and 31 white colonies in the field of view.</br></p>
 
                     </div>
 
                     </div>
 
                    
 
                    
 
                     </div>
 
                     </div>
 
                    
 
                    
                   <div id="pic_fortyfive" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/6/6d/Tianjin-4-Bacteria_after_mating_cultivated_on_the_Sc-Ura_plate_yuantu.png"><br/>Fig 2-6. Bacteria after mating cultivated on the Sc-Ura plate.</p></div>
+
                   <div id="pic_fortyfive" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/6/6d/Tianjin-4-Bacteria_after_mating_cultivated_on_the_Sc-Ura_plate_yuantu.png"><br/>Fig.2-6. Yeast after induction cultivated on the Sc-Ura plate.
<p>There are 325 yellow colonies and 31 white colonies in the field of view.</p>
+
<br>There are 325 yellow colonies and 31 white colonies in the field of view.</br></p></div>
   <p>Apart from mating, we also transformed plasmid <i>pRS416</i> with <i>vika</i> gene into the PVRVC. The efficiency is up to 91.3 percent in this figure.</p>
+
 
   <p>Compare above two methods, mating and transformation of plasmid, we find that mating is not as efficient as the transformation of the plasmid. After analysis, we came to the conclusions as follows. For the mating method, <i>vika recombinase</i> has stop expressing when <i>BY4742</i> mated with PVRVC in YPD medium. The previously expressed Vika recombinase may be degraded during the growth. In contrast to this, with another method that the plasmid was transformed into PVRVC directly, <i>vika recombinase</i> is continuously expressed during cell growth. So the efficiency of the second method is higher than the first method.</p>
+
   <p>Apart from mating, we also transformed plasmid <i>pRS416</i> with <i>vika</i> gene into the <b><i>PVRVC</i></b>. The efficiency is up to 91.3 percent in this figure.</p>
 +
   <p>Compare above two methods, we found that mating was not as efficient as the transformation of the plasmid. After analysis, we came to the conclusions as follows. For the mating method, <i>vika recombinase</i> has stopped expressing when <i>BY4742</i> mated with <i><b>PVRVC</b></i> in YPD medium. The previously expressed <i>vika recombinase</i> may be degraded during the growth. In contrast to this, with another method that the plasmid was transformed into <i><b>PVRVC</b></i> directly, <i>vika recombinase</i> was continuously expressing during growth. So the efficiency of the second method is higher than the first method.</p>
  
 
     <div class="zxx_zoom_demo_qqqqq" align="center">
 
     <div class="zxx_zoom_demo_qqqqq" align="center">
Line 520: Line 522:
 
                         <a href="#pic_fortysix">
 
                         <a href="#pic_fortysix">
 
                           <img src="https://static.igem.org/mediawiki/2017/a/a9/Tianjin-5-Four_modified_colonies_inserted_with_promotor-vox-RFP-terminators-vox-crt_structure.jpg"></a>
 
                           <img src="https://static.igem.org/mediawiki/2017/a/a9/Tianjin-5-Four_modified_colonies_inserted_with_promotor-vox-RFP-terminators-vox-crt_structure.jpg"></a>
<p style="font-size:15px;text-align:center"><br/>Fig 2-7. Four modified coloniesinserted with promotor-vox-RFP-terminators-vox-crt structure</p>
+
<p style="font-size:15px;text-align:center"><br/>Fig.2-7. Four modified coloniesinserted with promotor-vox-RFP-terminators-vox-crt structure</p>
 
                     </div>
 
                     </div>
 
                    
 
                    
 
                     </div>
 
                     </div>
 
                    
 
                    
                   <div id="pic_fortysix" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/1/1d/Chenxinyuyuantu5.jpg"><br/>Fig 2-7. Four modified coloniesinserted with promotor-vox-RFP-terminators-vox-crt structure</p></div>  
+
                   <div id="pic_fortysix" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/1/1d/Chenxinyuyuantu5.jpg"><br/>Fig.2-7. Four modified coloniesinserted with promotor-vox-RFP-terminators-vox-crt structure</p></div>  
   <p>We also used other a type <i>Saccharomyces cerevisiae</i> to achieve mating switcher. After changing <i>TEF</i> promotor to <i>TDH3</i> promotor, we repeated the test according to the above two methods. The four strains are all a-type haploid synthetic <i>Saccharomyces cerevisiae</i> named TVRVC NO.2 (upper left), NO.4 (upper right), NO.11 (lower left) and NO.19 (lower right) respectively. The color appears to be white because <i>β-carotene</i> is not expressed.</p>
+
   <p>We also used other <i>Saccharomyces cerevisiae</i> with mating type of a to achieve mating switcher. After changing <i>TEF</i> promotor to <i>TDH3</i> promotor, we repeated the test according to the above two methods. The four strains are all haploid synthetic <i>Saccharomyces cerevisiae</i> with mating type of a named <i><b>TVRVC</b></i> NO.2 (upper left), NO.4 (upper right), NO.11 (lower left) and NO.19 (lower right) respectively. The color appeared to be white because <i>β-carotene</i> did not express.</p>
  
 
   <div class="zxx_zoom_demo_qqqqq" align="center">
 
   <div class="zxx_zoom_demo_qqqqq" align="center">
Line 533: Line 535:
 
                         <a href="#pic_fortyseven">
 
                         <a href="#pic_fortyseven">
 
                           <img src="https://static.igem.org/mediawiki/2017/e/e1/Tianjin-6-Four_successful_mating_colonies.jpg"></a>
 
                           <img src="https://static.igem.org/mediawiki/2017/e/e1/Tianjin-6-Four_successful_mating_colonies.jpg"></a>
<p style="font-size:15px;text-align:center"><br/>Fig 2-8. Mating successfullycolonies</p>
+
<p style="font-size:15px;text-align:center"><br/>Fig.2-8. Successful mating colonies</p>
 
                     </div>
 
                     </div>
 
                    
 
                    
 
                     </div>
 
                     </div>
 
                    
 
                    
                   <div id="pic_fortyseven" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/1/17/Chenxinyuyuantu6.jpg"><br/>Fig 2-8. Mating successfullycolonies</p></div>  
+
                   <div id="pic_fortyseven" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/1/17/Chenxinyuyuantu6.jpg"><br/>Fig.2-8. Successful mating colonies</p></div>  
  
   <p>These are parts of a successful result of mating mentioned above. Two figures one by one correspondence.</p>
+
   <p>These are parts of successful results of mating mentioned above.</p>
  
   <p>To sum up, the mating switcher can be presented in kinds of yeast with different forms. This proves that our Mating switcher is fast, flexible and efficient.</p>   
+
   <p>To sum up, the mating switcher can be presented in kinds of yeast with different forms. This proved that our Mating switcher was fast, flexible and efficient.</p>   
   <p>Meantime, we cultured the transformed yeast in several 5mL liquid <i>SC-Leu</i> at 30℃ and 220 rpm for 12 hours ( Take three samples at a time). We used one sample for centrifugation to precipitate the bacterial and the remaining two remained unchanged. The difference is the fluorescence value we need, then we calculated the value of average them. The excitation wavelength is set at 540nm and the emission wavelength is set at 635nm. Hereafters, we measured the yeast concentration at OD<sub>600</sub>. At last, we divided the fluorescence value by OD<sub>600</sub> to normalize the value and the result data is as follows.
+
   <p>Meantime, we cultured the transformed yeast in 5mL liquid <i>SC-Leu</i> at 30℃ and 220 rpm for 12 hours ( Take three samples at a time). We used one sample for centrifugation to precipitate the yeast and the remaining two remained unchanged. The difference was the fluorescence value we need, then we calculated the average value of them. The excitation wavelength was set at 540nm and the emission wavelength was set at 635nm. Hereafter, we measured the yeast concentration at OD<sub>600</sub>. At last, we divided the fluorescence value by OD<sub>600</sub> to normalize the value and the result data was as follows.
 
</p>
 
</p>
 
     <div class="zxx_zoom_demo_qqqqq" align="center">
 
     <div class="zxx_zoom_demo_qqqqq" align="center">
Line 550: Line 552:
 
                         <a href="#pic_fiftythree">
 
                         <a href="#pic_fiftythree">
 
                           <img src="https://static.igem.org/mediawiki/2017/c/ce/Tianjinzhangshiyu_yasuotu.png"></a>
 
                           <img src="https://static.igem.org/mediawiki/2017/c/ce/Tianjinzhangshiyu_yasuotu.png"></a>
<p style="font-size:15px;text-align:center"><br/>Fig 2-9. Normalized fluorescence value was calculated by dividing fluorescent value by cell concentration(OD<sub>600</sub>)</p>
+
<p style="font-size:15px;text-align:center"><br/>Fig.2-9. Normalized fluorescence value was calculated by dividing fluorescent value by cell concentration(OD<sub>600</sub>)</p>
 
                     </div>
 
                     </div>
 
                    
 
                    
Line 557: Line 559:
 
                   <div id="pic_fiftythree" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/3/3e/Tianjinzhangshiyu_yuantu.png"><p style="font-size:15px;text-align:center"><br/>Fig.2-9
 
                   <div id="pic_fiftythree" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/3/3e/Tianjinzhangshiyu_yuantu.png"><p style="font-size:15px;text-align:center"><br/>Fig.2-9
 
Normalized fluorescence value was calculated by dividing fluorescent value by cell concentration(OD<sub>600</sub>)</p></div>  
 
Normalized fluorescence value was calculated by dividing fluorescent value by cell concentration(OD<sub>600</sub>)</p></div>  
  <p>From the data we can find that the successful transformation of the yeasts' fluorescence intensity is more than twice that of the wild type, there was low red fluorescence was detected after mating, which was considered the influence of <i>β-carotene</i>.</p>
+
  <p>From the data we can found that the fluorescence intensity of the modified yeast was more than twice that of the wild type. Low red fluorescence was detected after yeast mating, which can be attributed to the influence of <i>β-carotene</i>.</p>
 
    
 
    
 
<h4>DISCUSSION & FUTURE WORK</h4>
 
<h4>DISCUSSION & FUTURE WORK</h4>
 
<hr>
 
<hr>
  
<p>Our mating switch plays an important role in many respects, such as including heavy metal treatment and cell signal switching. And we created a novel method to prove the effectiveness of the switch in an intuitive and effective way. The terminator of the first part (PVUVC) terminates the expression of the downstream gene, proving the validity of the switcher, and the second part (PVRVC) creates an evident method of color conversion to determine the state of the switcher.</p>
+
<p>Our mating switch plays an important role in many respects, such as including heavy metal treatment and cell signal switching. And we created a novel method to prove the effectiveness of the switch in an intuitive and effective way. The terminator of the first part (<b><i>PVUVC</i></b>) terminates the expression of the downstream gene, proving the validity of the switcher, and the second part (<b><i>PVRVC</i></b>) creates an evident method of color conversion to determine the state of the switcher.</p>
  
<p>Aiming to increase the Vika-vox system efficiency, we let Vika enzyme saturate expression, but the efficiency was still relatively low. We hypothesized that this phenomenon was caused by degradation of the Vika enzyme in the YPD culture medium. We’d better change the composition or proportion of YPD ingredients to find out the best culture conditions. We are looking forward to more research in this field so that we can make this system work better and even perfectly.</p>
+
<p>Aiming to increase the <i>Vika-vox</i> system efficiency, we let <i>Vika</i> enzyme saturate expression, but the efficiency was still relatively low. We hypothesized that this phenomenon was caused by degradation of the <i>Vika</i> enzyme in the YPD culture medium. We’d better change the composition or proportion of YPD ingredients to find out the best culture conditions. We are looking forward to more research in this field so that we can make this system work better and even perfectly.</p>
  
 
<p>We use the <i>RFP</i> as the reporting protein. But there exists a drawback that it’s detected with an expensive device. A more intuitive reporting strategy need to be developed, maybe it can be seen by bare eyes like <i>E.coli</i> in the near future.</p>
 
<p>We use the <i>RFP</i> as the reporting protein. But there exists a drawback that it’s detected with an expensive device. A more intuitive reporting strategy need to be developed, maybe it can be seen by bare eyes like <i>E.coli</i> in the near future.</p>
Line 572: Line 574:
 
<hr>
 
<hr>
  
<p>[1]Altamura E, Borgatti M, Finotti A, Gasparello J, Gambari R, Spinelli M, et al. (2016) Chemical-Induced Read-Through at Premature Termination Codons Determined by a Rapid Dual-Fluorescence System Based on S. cerevisiae. PLoS ONE11(4): e0154260. https://doi.org/10.1371/journal.pone.0154260</p>
+
<p>[1]Altamura E, Borgatti M, Finotti A, Gasparello J, Gambari R, Spinelli M, et al. (2016) Chemical-Induced Read-Through at Premature Termination Codons Determined by a Rapid Dual-Fluorescence System Based on S. cerevisiae. PLoS ONE11(4)</p>
<p>[2]Leslie A. Mitchell, James Chuang, Neta Agmon, Chachrit Khunsriraksakul, Nick A. Phillips, Yizhi Cai, David M. Truong, Ashan Veerakumar, Yuxuan Wang, María Mayorga, Paul Blomquist, Praneeth Sadda, Joshua Trueheart, Jef D. Boeke; Versatile genetic assembly system (VEGAS) to assemble pathways for expression in <i>S. cerevisiae</i>, Nucleic Acids Research, Volume 43, Issue 13, 27 July 2015, Pages 6620–6630.https://doi.org/10.1093/nar/gkv466</p>
+
<p>[2]Leslie A. Mitchell, James Chuang, Neta Agmon, Chachrit Khunsriraksakul, Nick A. Phillips, Yizhi Cai, David M. Truong, Ashan Veerakumar, Yuxuan Wang, María Mayorga, Paul Blomquist, Praneeth Sadda, Joshua Trueheart, Jef D. Boeke; Versatile genetic assembly system (VEGAS) to assemble pathways for expression in <i>S. cerevisiae</i>,<i> Nucleic Acids Research</i>, Volume 43, Issue 13, 27 July 2015, Pages 6620–6630
 
</div>
 
</div>
  
Line 597: Line 599:
 
                  
 
                  
 
                 <h4>OVERVIEW</h4>
 
                 <h4>OVERVIEW</h4>
 +
<hr>
 
         <p>After doing relevant literature reading, we found that yeast’s tolerance level of ambient copper and cadmium ions has a threshold concentration, approximately 3mM and 0.5mM in SC culture media respectively.</p>
 
         <p>After doing relevant literature reading, we found that yeast’s tolerance level of ambient copper and cadmium ions has a threshold concentration, approximately 3mM and 0.5mM in SC culture media respectively.</p>
         <p> In order to increase yeast strains’ inherent tolerance of copper or/and cadmium ions in their growing environment, we used this cutting-edge biological technology—SCRaMbLE, which stands for Synthetic Chromosome Rearrangement and Modification by <i>Loxpsym</i>-mediated Evolution, to obtain yeast strain with better tolerance to heavy metal ions .<sup>[1]</sup>. </p>
+
         <p> In order to increase yeast strains’ inherent tolerance of copper or/and cadmium ions in their growing environment, we used this cutting-edge biological technology—SCRaMbLE, which stands for Synthetic Chromosome Rearrangement and Modification by <i>Loxpsym</i>-mediated Evolution, to obtain yeast strain with better tolerance to heavy metal ions<sup>[1]</sup>. </p>
 
         <p>We constructed three yeast strains namely 079, 160, and 085. They all have a plasmid containing the CRE-EBD sequence and different nutritional labels<sup>[2]</sup>. 079 and 160 strains have a URA3 label, 085 strain has a HIS label. After proper induction and screening, we successfully obtained mutated 079, 085 and 160 strains that have a manifest growing advantage over control groups when cultured in SC solid media which contain 0.14 mM cadmium ions or 4.8 mM copper ions. We named those mutated strains with increased tolerance capacity of cadmium ions S1, S2, S3, and S4, and as for copper, S5, S6, S7, and S8.</p>
 
         <p>We constructed three yeast strains namely 079, 160, and 085. They all have a plasmid containing the CRE-EBD sequence and different nutritional labels<sup>[2]</sup>. 079 and 160 strains have a URA3 label, 085 strain has a HIS label. After proper induction and screening, we successfully obtained mutated 079, 085 and 160 strains that have a manifest growing advantage over control groups when cultured in SC solid media which contain 0.14 mM cadmium ions or 4.8 mM copper ions. We named those mutated strains with increased tolerance capacity of cadmium ions S1, S2, S3, and S4, and as for copper, S5, S6, S7, and S8.</p>
 
         <p>In order to characterize their increased tolerance of copper or/and cadmium ions, we designed and conducted two different sets of experiments, in both visible and quantitative manner, to test their ability to cope with adverse environmental conditions.</p>
 
         <p>In order to characterize their increased tolerance of copper or/and cadmium ions, we designed and conducted two different sets of experiments, in both visible and quantitative manner, to test their ability to cope with adverse environmental conditions.</p>
 
                 <h4>CONSTRUCTION</h4>
 
                 <h4>CONSTRUCTION</h4>
 +
<hr>
 
         <p>This vector consists of three parts, an estrogen-inducible PCLB2 promoter <a href="http://parts.igem.org/Part:BBa_K2407002">(BBa_K2407002)</a>, the Cre-EBD sequence <a href="http://parts.igem.org/Part:BBa_K2407005">(BBa_K2407005)</a> and a CYC1 terminator<a href="http://parts.igem.org/Part:BBa_K2407003">(BBa_K2407003)</a>. We used overlap PCR to ligate these three parts and then the plasmids with URA3 and HIS nutritional label respectively through enzymatic digestion and ligation. Then this composite part <a href="http://parts.igem.org/Part:BBa_K2407011">(BBa_K2407011)</a>,was sequenced and proved to be accurate by using the promoter's forward primer and the terminator's reverse primer. The electrophoresis results below also showcased that the sequence length (about 2800bp) was correct.</p>
 
         <p>This vector consists of three parts, an estrogen-inducible PCLB2 promoter <a href="http://parts.igem.org/Part:BBa_K2407002">(BBa_K2407002)</a>, the Cre-EBD sequence <a href="http://parts.igem.org/Part:BBa_K2407005">(BBa_K2407005)</a> and a CYC1 terminator<a href="http://parts.igem.org/Part:BBa_K2407003">(BBa_K2407003)</a>. We used overlap PCR to ligate these three parts and then the plasmids with URA3 and HIS nutritional label respectively through enzymatic digestion and ligation. Then this composite part <a href="http://parts.igem.org/Part:BBa_K2407011">(BBa_K2407011)</a>,was sequenced and proved to be accurate by using the promoter's forward primer and the terminator's reverse primer. The electrophoresis results below also showcased that the sequence length (about 2800bp) was correct.</p>
 
            
 
            
Line 618: Line 622:
 
                    
 
                    
 
                 <h4>CHARACTERIZATION</h4>
 
                 <h4>CHARACTERIZATION</h4>
 +
<hr>
 
         <h5>Dilution Assay </h5>
 
         <h5>Dilution Assay </h5>
 
         <p>We conducted dilution assay on SC solid media containing 0.14 mM cadmium ions. Experimental groups are S1, S2, S3, and S4; control groups are <i>synX</i> (the yeast strain containing a synthetic chromosome X), <i>BY4741</i> (wild-type haploid yeast), and <i>BY4743</i> (wild-type diploid yeast). Results are shown in the picture below.</p>
 
         <p>We conducted dilution assay on SC solid media containing 0.14 mM cadmium ions. Experimental groups are S1, S2, S3, and S4; control groups are <i>synX</i> (the yeast strain containing a synthetic chromosome X), <i>BY4741</i> (wild-type haploid yeast), and <i>BY4743</i> (wild-type diploid yeast). Results are shown in the picture below.</p>
Line 706: Line 711:
 
         <p>The Fig.3-6 and Fig.3-7 showcase that the survival rate of S5 is higher than that of <i>synX</i> after yeast cells are immersed in copper ions solutions of identical concentration for the same amount of time. The quantitative results are that compared with the control strain, the experimental strain S5's ability to tolerate copper ions has increased by 74% (1 hour), 72% (2 hours), and 698% (3 hours). It also can be extrapolated that the gap of survival rates between the mutated strain and <i>synX</i> strain will continue to widen as the immersion time increases. The results are consistent with the dilution assay too. </p>
 
         <p>The Fig.3-6 and Fig.3-7 showcase that the survival rate of S5 is higher than that of <i>synX</i> after yeast cells are immersed in copper ions solutions of identical concentration for the same amount of time. The quantitative results are that compared with the control strain, the experimental strain S5's ability to tolerate copper ions has increased by 74% (1 hour), 72% (2 hours), and 698% (3 hours). It also can be extrapolated that the gap of survival rates between the mutated strain and <i>synX</i> strain will continue to widen as the immersion time increases. The results are consistent with the dilution assay too. </p>
 
         <h4>EXPECTATIONS</h4>   
 
         <h4>EXPECTATIONS</h4>   
 +
<hr>
 
<p>We are exhilarated to see that SCRaMbLE is really a feasible technology to enhance the yeast's ability to cope with adverse environmental conditions. Not just heavy metal ions, we are looking forward to seeing its future applications, be they, for example, alcohol tolerance or heat tolerance. </p>
 
<p>We are exhilarated to see that SCRaMbLE is really a feasible technology to enhance the yeast's ability to cope with adverse environmental conditions. Not just heavy metal ions, we are looking forward to seeing its future applications, be they, for example, alcohol tolerance or heat tolerance. </p>
  
  
 
<div class="reference">
 
<div class="reference">
         <h4>REFERENCES</h4>   
+
         <h4>REFERENCE</h4>   
 
<p>[1]Shen, Y., Stracquadanio, G., Wang, Y., Yang, K., Mitchell, L. A., & Xue, Y., et al. (2016). Scramble generates designed combinatorial stochastic diversity in synthetic chromosomes. <i>Genome Research</i>, 26(1), 36.<br>   
 
<p>[1]Shen, Y., Stracquadanio, G., Wang, Y., Yang, K., Mitchell, L. A., & Xue, Y., et al. (2016). Scramble generates designed combinatorial stochastic diversity in synthetic chromosomes. <i>Genome Research</i>, 26(1), 36.<br>   
[2]Lindstrom, D. L., & Gottschling, D. E. (2009). The mother enrichment program: a genetic system for facile replicative life span analysis in Saccharomyces cerevisiae.<i>Genetics</i> , 183(2):413.</p>
+
[2]Lindstrom, D. L., & Gottschling, D. E. (2009). The mother enrichment program: a genetic system for facile replicative life span analysis in <i>Saccharomyces cerevisiae</i>.<i>Genetics</i>, 183(2):413.</p>
  
 
</div>
 
</div>
Line 877: Line 883:
 
                     </div>
 
                     </div>
 
                    
 
                    
                   <div id="pic_eighty_one" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/a/a0/Tianjin-Demonstrate-3-3-structure_of_redesigned_CUP1_promoter_used_in_our_project%2C_based_on_BBa_K2165004.png"><p style="font-size:15px;text-align:center"><br/>Fig. 4-4. structure of redesigned CUP1 promoter used in our project, based on BBa_K2165004 </p></div>  
+
                   <div id="pic_eighty_one" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/e/e7/Tianjin-Demonstrate-Han-4-4-da.png"><p style="font-size:15px;text-align:center"><br/>Fig. 4-4. structure of redesigned CUP1 promoter used in our project, based on BBa_K2165004 </p></div>  
  
  
Line 1,031: Line 1,037:
 
<hr>
 
<hr>
  
<p>Badi, L., & Barberis, A. (2002). The CUP1 upstream repeated element renders CUP1 promoter activation insensitive to mutations in the RNA polymerase II transcription complex. <i>Nucleic acids research</i>, 30(6), 1306-1315.</p>
+
<p>[1]Badi, L., & Barberis, A. (2002). The CUP1 upstream repeated element renders CUP1 promoter activation insensitive to mutations in the RNA polymerase II transcription complex. <i>Nucleic acids research</i>, 30(6), 1306-1315.</p>
<p>Koller, A., Valesco, J., & Subramani, S. (2000). The CUP1 promoter of Saccharomyces cerevisiae is inducible by copper in Pichia pastoris. <i>Yeast</i>, 16(7), 651-656.</p>
+
<p>[2]Koller, A., Valesco, J., & Subramani, S. (2000). The CUP1 promoter of Saccharomyces cerevisiae is inducible by copper in Pichia pastoris. <i>Yeast</i>, 16(7), 651-656.</p>
<p>Labbé, S., & Thiele, D. J. (1999). [8] Copper ion inducible and repressible promoter systems in yeast. <i>Methods in enzymology</i>, 306, 145-153.</p>
+
<p>[3]Labbé, S., & Thiele, D. J. (1999). [8] Copper ion inducible and repressible promoter systems in yeast. <i>Methods in enzymology</i>, 306, 145-153.</p>
<p>Leblanc, B. P., Benham, C. J., & Clark, D. J. (2000). An initiation element in the yeast CUP1 promoter is recognized by RNA polymerase II in the absence of TATA box-binding protein if the DNA is negatively supercoiled. <i>Proceedings of the National Academy of Sciences</i>, 97(20), 10745-10750.</p>
+
<p>[4]Leblanc, B. P., Benham, C. J., & Clark, D. J. (2000). An initiation element in the yeast CUP1 promoter is recognized by RNA polymerase II in the absence of TATA box-binding protein if the DNA is negatively supercoiled. <i>Proceedings of the National Academy of Sciences</i>, 97(20), 10745-10750.</p>
<p>Shen, C. H., Leblanc, B. P., Neal, C., Akhavan, R., & Clark, D. J. (2002). Targeted histone acetylation at the yeast CUP1 promoter requires the transcriptional activator, the TATA boxes, and the putative histone acetylase encoded by SPT10. <i>Molecular and cellular biology</i>, 22(18), 6406-6416.</p>
+
<p>[5]Shen, C. H., Leblanc, B. P., Neal, C., Akhavan, R., & Clark, D. J. (2002). Targeted histone acetylation at the yeast CUP1 promoter requires the transcriptional activator, the TATA boxes, and the putative histone acetylase encoded by SPT10. <i>Molecular and cellular biology</i>, 22(18), 6406-6416.</p>
 
</div>
 
</div>
  
Line 1,059: Line 1,065:
 
<h4>overview</h4>
 
<h4>overview</h4>
 
<hr>
 
<hr>
<p>Our HPers have conducteded research in Shanxi Province. They found some factories directly choose to only deal with one main kind of the heavy metals, then abandon others. The convenient treatment obviously can't satisfy the environmental requirements. Hence, we demand a type of bacterium to handle two types of heavy metal ions together.</p>
+
<p>Our HPers have conducteded research in Shanxi Province. They found factories directly choose to deal with only one main kind of the heavy metals, then abandon others. The convenient treatment obviously can't satisfy the environmental requirements. Thus, we demand a type of bacterium to handle two types of heavy metal ions together.</p>
<p>The genetic circuit based on the Vika-Vox system enables stepwise treatment, owing to a switch from the expression of <i>Cup1</i> (copper accumulation) to <i>LIMT</i> (cadmium accumulation). We grow our yeasts and measure the concentration of heavy metal ions in the supernatant at equal intervals to test the efficiency of our system. </p>
+
<p>The genetic circuit based on the <i>Vika-Vox</i> system enables stepwise treatment, owing to a switch from the expression of <i>Cup1</i> (copper accumulation) to <i>LIMT</i> (cadmium accumulation). We grow our yeasts and measure the concentration of heavy metal ions in the supernatant at equal intervals to test the efficiency of our system. </p>
 
<h4>Construction</h4>
 
<h4>Construction</h4>
 
<hr>
 
<hr>
<p>The <i>TEF</i> promoter, the <i>Cup1</i> gene, and the <i>Ura3</i> terminator are ligated together, integrated into vox-ura3-vox system by homologous recombination. <i>5-FOA</i> plate helps us to screen the correct cell. Similarly, the <i>LIMT</i> gene and the <i>Ura3</i> nutritional label are integrated into the synthetic chromosome <i>V</i>, too.</p>
+
<p>The <i>TEF</i> promoter, the <i>Cup1</i> gene, and the <i>Ura3</i> terminator are ligated together, integrated into <i>vox-ura3-vox</i> system by homologous recombination. <i>5-FOA</i> plate helps us to screen the correct cell. Similarly, the <i>LIMT</i> gene and the <i>Ura3</i> nutritional label are integrated into the synthetic chromosome <i>V</i>, too.</p>
 
<p>PCR is used to check if we successfully completed the molecular biology construction.</p>
 
<p>PCR is used to check if we successfully completed the molecular biology construction.</p>
 
<div class="zxx_zoom_demo_qqqqqqq" align="center">
 
<div class="zxx_zoom_demo_qqqqqqq" align="center">
Line 1,070: Line 1,076:
 
                         <a href="#pic_seventy-five">
 
                         <a href="#pic_seventy-five">
 
                           <img src="https://static.igem.org/mediawiki/2017/b/b7/Heavy-metal-jiaotu.jpg"></a>
 
                           <img src="https://static.igem.org/mediawiki/2017/b/b7/Heavy-metal-jiaotu.jpg"></a>
<p style="font-size:15px;text-align:center"><br/>Figure 5-1. The results of PCR of our S.C-Cu. LIMT gene (length of 319bp) 、Cup1(length of 186bp) and complete sequence(length of 3114bp)have been amplified. which indicated that we succeeded in the construction of genetic circuit.</p>
+
<p style="font-size:15px;text-align:center"><br/>Fig.5-1 The results of PCR of our <i>S.C-Cu</i>. <i>LIMT</i> gene (length of 319bp) 、<i>Cup1</i>(length of 186bp) and complete sequence(length of 3114bp)have been amplified. which indicated that we succeeded in the construction of genetic circuit.</p>
 
                     </div>
 
                     </div>
 
                    
 
                    
 
                     </div>
 
                     </div>
 
                    
 
                    
                   <div id="pic_seventy-five" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/b/b7/Heavy-metal-jiaotu.jpg"><p style="font-size:15px;text-align:center"><br/>Figure 5-1. The results of PCR of our S.C-Cu. LIMT gene (length of 319bp) 、Cup1(length of 186bp) and complete sequence(length of 3114bp)have been amplified. which indicated that we succeeded in the construction of genetic circuit.</p></div>  
+
                   <div id="pic_seventy-five" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/b/b7/Heavy-metal-jiaotu.jpg"><p style="font-size:15px;text-align:center"><br/>Fig.5-1 The results of PCR of our <i>S.C-Cu</i>. <i>LIMT</i> gene (length of 319bp) 、<i>Cup1</i>(length of 186bp) and complete sequence(length of 3114bp)have been amplified. which indicated that we succeeded in the construction of genetic circuit.</p></div>  
  
<p>Fig.5-1 the results of PCR. We use <i>2k plus Ⅱ</i> as the marker. On four parallel lanes of the gel (number 1,2,3,4), run were four set of DNA molecules of known size ( 319bp for number 1, the <i>LIMT</i>; 186bp for number 2 and 3, the <i>Cup1</i>; 3114bp for number 4,the whole sequence contained <i>Cup1</i>). From the DNA band of number 1, we could analyze that <i>vika</i> has been expressed to delete the <i>Cup1</i> and its terminor, so we can get the <i>LIMT</i>. From the DNA band of number 2, 3 and 4, we could delightedly prove that the fragments (<i>TEF</i> promoter, <i>Cup1</i> and <i>ura3</i> terminator) have successfully transformed to synthetic chromosome <i>V</i>. </p>
+
<p>Fig.5-1 the results of PCR. We use <i>2k plus Ⅱ</i> as the marker. On four parallel lanes of the gel (number 1,2,3,4), run were four set of DNA molecules of known size (319bp for number 1, the <i>LIMT</i>; 186bp for number 2 and 3, the <i>Cup1</i>; 3114bp for number 4,the whole sequence contained <i>Cup1</i>). From the DNA band of number 1, we could analyze that <i>vika</i> has been expressed to delete the <i>Cup1</i> and its terminor, so we can get the <i>LIMT</i>. From the DNA band of number 2, 3 and 4, we could delightedly prove that the fragments (<i>TEF</i> promoter, <i>Cup1</i> and <i>ura3</i> terminator) have successfully transformed to synthetic chromosome <i>V</i>. </p>
  
 
<h4>Accumulation</h4>
 
<h4>Accumulation</h4>
 +
<hr>
 
<p>Firstly, <i>S.C-Cu</i>, <i>S8</i> (screened by SCRaMbLE) and <i>BY4741</i> are cultured in YPD liquid media for 24 hours. Then add the 430 mg/L copper ions solution. Cells are cultured for another 45 hours (30℃). Atomic absorption spectroscopy is used to measure the concentration of copper ions in the supernatant every 5 hours. We depict the adsorption curve of copper ions.</p>
 
<p>Firstly, <i>S.C-Cu</i>, <i>S8</i> (screened by SCRaMbLE) and <i>BY4741</i> are cultured in YPD liquid media for 24 hours. Then add the 430 mg/L copper ions solution. Cells are cultured for another 45 hours (30℃). Atomic absorption spectroscopy is used to measure the concentration of copper ions in the supernatant every 5 hours. We depict the adsorption curve of copper ions.</p>
<p>In the same way, we culture Cd Yeast, <i>S1</i> (screened by SCRaMbLE) and <i>BY4741</i> in YPD liquid medium for 24 hours and then add xx mg/L cadmium ions solution to the media for another xx hours (30℃). the concentration of cadmium ions in the supernatant is measured every x hours.
+
<p>In the same way, we culture Cd Yeast, <i>S1</i> (screened by SCRaMbLE) and <i>BY4741</i> in YPD liquid medium for 24 hours and then add 16 mg/L cadmium ions solution to the media for another 40 hours (30℃). the concentration of cadmium ions in the supernatant is measured every 5 hours.
 
<p>In terms of the respective ability to adsorb copper and cadmium, we compare genetically-engineered yeast, SCRaMbLE yeast and original one.
 
<p>In terms of the respective ability to adsorb copper and cadmium, we compare genetically-engineered yeast, SCRaMbLE yeast and original one.
  
<p>As is illustrated in Fig.5-1 and Fig.5-2, engineered yeast significantly absorbs more ion than the control group without any improvement. Furthermore, SCRaMbLE yeast also shows excellent adsorption capacity, comparable to genetically-engineered one. Fig.X1 reveals the adsorption of copper ion, which relatively faster than cadmium, showed in Fig.X2.</p>
+
<p>As is illustrated in Fig.5-1 and Fig.5-2, engineered yeast significantly absorbs more ion than the control group without any improvement. Furthermore, SCRaMbLE yeast also shows excellent adsorption capacity, comparable to genetically-engineered one. Fig.5-1 reveals the adsorption of copper ion, which relatively faster than cadmium, showed in Fig.5-2.</p>
 
<div class="zxx_zoom_demo_qqqqqqq">
 
<div class="zxx_zoom_demo_qqqqqqq">
 
                     <div class="small_pic_demo_qqqqqqq" style="float:left;">
 
                     <div class="small_pic_demo_qqqqqqq" style="float:left;">
 
                         <a href="#pic_Seventy-six">
 
                         <a href="#pic_Seventy-six">
                             <img src="https://static.igem.org/mediawiki/parts/1/17/Demonstrate.Cu.png"></a><p style="font-size:15px;text-align:center"><br/>Figure 5-2.The variations of copper(II) consumption with time for S.C-Cu、S8 and BY4741 at 430 mg/L copper(II) concentrations.
+
                             <img src="https://static.igem.org/mediawiki/parts/1/17/Demonstrate.Cu.png"></a><p style="font-size:15px;text-align:center"><br/>Fig.5-2 The variations of copper(II) consumption with time for <i>S.C-Cu</i>、<i>S8</i> and <i>BY4741</i> at 430 mg/L copper(II) concentrations.
 
</p>
 
</p>
 
                     </div>
 
                     </div>
Line 1,094: Line 1,101:
 
                         <a href="#pic_Seventy-seven" >
 
                         <a href="#pic_Seventy-seven" >
 
                           <img src="https://static.igem.org/mediawiki/parts/5/5f/Demonstrate.Cd.png"/>
 
                           <img src="https://static.igem.org/mediawiki/parts/5/5f/Demonstrate.Cd.png"/>
                         </a> <p style="font-size:15px;text-align:center"><br/>Figure 5-3.The variations of cadmium(II) consumption with time for S.C-Cd、S1 and BY4741 at 16 mg/L cadmium(II) concentrations</p>
+
                         </a> <p style="font-size:15px;text-align:center"><br/>Fig.5-3 The variations of cadmium(II) consumption with time for <i>S.C-Cd</i>、<i>S1</i> and <i>BY4741</i> at 16 mg/L cadmium(II) concentrations</p>
 
                     </div>
 
                     </div>
 
                      
 
                      
 
                     </div>
 
                     </div>
                   <div id="pic_Seventy-six" style="display:none;"><img src="https://static.igem.org/mediawiki/parts/1/17/Demonstrate.Cu.png"/><p style="font-size:15px;text-align:center"><br/>The variations of copper(II) consumption with time for S.C-Cu、S8 and BY4741 at 430 mg/L copper(II) concentrations.
+
                   <div id="pic_Seventy-six" style="display:none;"><img src="https://static.igem.org/mediawiki/parts/1/17/Demonstrate.Cu.png"/><p style="font-size:15px;text-align:center"><br/>Fig.5-2 The variations of copper(II) consumption with time for <i>S.C-Cu</i>、<i>S8</i> and <i>BY4741</i> at 430 mg/L copper(II) concentrations.
 
</p></div>
 
</p></div>
                   <div id="pic_Seventy-seven" style="display:none;"><img src="https://static.igem.org/mediawiki/parts/5/5f/Demonstrate.Cd.png"/><p style="font-size:15px;text-align:center"><br/>Figure 5-3.The variations of cadmium(II) consumption with time for S.C-Cd、S1 and BY4741 at 16 mg/L cadmium(II) concentrations </p></div>  
+
                   <div id="pic_Seventy-seven" style="display:none;"><img src="https://static.igem.org/mediawiki/parts/5/5f/Demonstrate.Cd.png"/><p style="font-size:15px;text-align:center"><br/>Fig.5-3 The variations of cadmium(II) consumption with time for <i>S.C-Cd</i>、<i>S1</i> and <i>BY4741</i> at 16 mg/L cadmium(II) concentrations </p></div>  
 
<p>Afterwards, we check if the <i>vika</i> enzyme could work well. The Cu yeast with a plasmid expressing <i>vika</i> enzyme is grew in the medium with <i> raffinose</i>, then transferred to heavy metal solution.
 
<p>Afterwards, we check if the <i>vika</i> enzyme could work well. The Cu yeast with a plasmid expressing <i>vika</i> enzyme is grew in the medium with <i> raffinose</i>, then transferred to heavy metal solution.
 
  <div class="zxx_zoom_demo_qqqqqqq" align="center">
 
  <div class="zxx_zoom_demo_qqqqqqq" align="center">
Line 1,107: Line 1,114:
 
                         <a href="#pic_eighty">
 
                         <a href="#pic_eighty">
 
                           <img src="https://static.igem.org/mediawiki/2017/6/6b/Design.cu-cd.curve.png"></a>
 
                           <img src="https://static.igem.org/mediawiki/2017/6/6b/Design.cu-cd.curve.png"></a>
<p style="font-size:15px;text-align:center"><br/>Figure 5-4. S.C-Cu is cultivated in medium with <i> raffinose </ i> including 320mg/L copper ions and 6mg/L Cadmium.<i>galactose</i> is added at 12 hours to turn on "switch".</p>
+
<p style="font-size:15px;text-align:center"><br/>Fig.5-4 <i>S.C-Cu</i> is cultivated in medium with <i> raffinose </i> including 320mg/L copper ions and 6mg/L Cadmium.<i>galactose</i> is added at 12 hours to turn on "switch".</p>
 
                     </div>
 
                     </div>
 
                    
 
                    
 
                     </div>
 
                     </div>
 
                    
 
                    
                   <div id="pic_eighty" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/6/6b/Design.cu-cd.curve.png"><p style="font-size:15px;text-align:center"><br/>Figure 5-4. S.C-Cu is cultivated in medium with <i> raffinose </i> including 320mg/L copper ions and 6mg/L Cadmium.<i>galactose</i> is added at 12 hours to turn on "switch".</p></div>
+
                   <div id="pic_eighty" style="display:none;"><img src="https://static.igem.org/mediawiki/2017/6/6b/Design.cu-cd.curve.png"><p style="font-size:15px;text-align:center"><br/>Fig.5-4 <i>S.C-Cu</i> is cultivated in medium with <i> raffinose </i> including 320mg/L copper ions and 6mg/L Cadmium.<i>galactose</i> is added at 12 hours to turn on "switch".</p></div>
 
   
 
   
<p>Fig.5-4 clearly shows the change of the concentration of heavy metal ions in the supernatant. Firstly, the Cu yeast works smoothly. The concentration of copper ions declines over time while that of cadmium ions barely changes. 12 hours later, we add <i>galactose</i> to the solution. Situation changes. <i>Galactose</i> induces the enzyme, changing Cu yeast to Cd yeast. It leads to faster adsorption of cadmium but slower for copper..</p>
+
<p>Fig.5-4 clearly shows the change of the concentration of heavy metal ions in the supernatant. Firstly, the Cu yeast works smoothly. The concentration of copper ions declines over time while that of cadmium ions barely changes. 12 hours later, we add <i>galactose</i> to the solution. Situation changes. <i>Galactose</i> induces the enzyme, changing Cu yeast to Cd yeast. It leads to faster adsorption of cadmium but slower for copper.</p>
 
<h4> DISCUSSION & FUTURE WORK</h4>
 
<h4> DISCUSSION & FUTURE WORK</h4>
 
<hr>
 
<hr>
Line 1,120: Line 1,127:
 
<p>Moreover, it’s a pity that we have no time to combine our genetic circuit and SCRaMbLE yeast. In subsequent experiments, it deserves a try to transform fragments into SCRaMbLE yeast, checking if it will double the absorption capacity or even better.</p>
 
<p>Moreover, it’s a pity that we have no time to combine our genetic circuit and SCRaMbLE yeast. In subsequent experiments, it deserves a try to transform fragments into SCRaMbLE yeast, checking if it will double the absorption capacity or even better.</p>
 
<p>In the nutshell, we will be dedicated to improve the absorption efficiency and better our genetic circuit.</p>
 
<p>In the nutshell, we will be dedicated to improve the absorption efficiency and better our genetic circuit.</p>
 +
<div class="reference">
 
<h4>Reference</h4>
 
<h4>Reference</h4>
 
<hr>
 
<hr>
  
<p>Wang J, Chen C. Biosorption of heavy metals by Saccharomyces cerevisiae: A review[J]. Biotechnology Advances, 2006, 24(5):427.</p>
+
<p>[1]Wang J, Chen C. Biosorption of heavy metals by Saccharomyces cerevisiae: A review[J]. Biotechnology Advances, 2006, 24(5):427.</p>
<p>C. Baumann, A. Beil, S. Jurt, M. Niederwanger, O. Palacios, M. Capdevila, S. Atrian, R. Dallinger, O. Zerbe, Angew. Chem. Int. Ed. 2017, 56, 4617.</p>
+
<p>[2]C. Baumann, A. Beil, S. Jurt, M. Niederwanger, O. Palacios, M. Capdevila, S. Atrian, R. Dallinger, O. Zerbe, Angew. Chem. Int. Ed. 2017, 56, 4617.</p>
<p>Dönmez G, Aksu Z. The effect of copper(II) ions on the growth and bioaccumulation properties of some yeasts[J]. Process Biochemistry, 1999, 35(1–2):135-142.</p>
+
<p>[3]Dönmez G, Aksu Z. The effect of copper(II) ions on the growth and bioaccumulation properties of some yeasts[J]. Process Biochemistry, 1999, 35(1–2):135-142.</p>
 
+
</div>
  
 
<div class="collapse-card__close_handler mt1 align-right mouse-pointer">
 
<div class="collapse-card__close_handler mt1 align-right mouse-pointer">
Show less <i class="fa fa-chevron-up"></i>
+
go bottom and find a surprise <i class="fa fa-chevron-up"></i>
 
</div>
 
</div>
 
</div>
 
</div>

Latest revision as of 03:27, 2 November 2017

/* OVERRIDE IGEM SETTINGS */

Demonstrate