Difference between revisions of "Team:Vilnius-Lithuania/Design"

Line 315: Line 315:
 
  </p>
 
  </p>
 
<p>We have discovered the sequence of wild type RNA I promoter by using PromoterHunter. and ordered a wild type RNA I gene from IDT without the promoter’s sequence. We have first cloned series of anderson promoters next to the RNA I gene and then placed this construct next to RNA II (RNA II-Anderson-RNA I).</p>
 
<p>We have discovered the sequence of wild type RNA I promoter by using PromoterHunter. and ordered a wild type RNA I gene from IDT without the promoter’s sequence. We have first cloned series of anderson promoters next to the RNA I gene and then placed this construct next to RNA II (RNA II-Anderson-RNA I).</p>
<p>GRAFIKAS. Figure 2. RNA I and RNA II constructs, with RNA I constructs under different-strength Anderson (See anderson collection here http://parts.igem.org/Promoters/Catalog/Anderson ) promoters.</p>
+
 
 +
        <div class="plotly">
 +
            <script>
 +
trace1 = {
 +
  x: ['RNA II with ColE1 RNAI', '0.15 Anderson', '0.36 Anderson', '0.86 Anderson', '1.0 Anderson'],
 +
  y: ['48.54', '296.28', '126.28', '41.48', '21'],
 +
  error_y: {
 +
    array: ['20.9', '44', '17', '9.11', '6.84'],
 +
    arraysrc: 'laurynas.karpus:2:e7cb99'
 +
  },
 +
  marker: {color: 'rgb(69, 194, 189)'},
 +
  name: 'B',
 +
  type: 'bar',
 +
  uid: '6a45cd',
 +
  xsrc: 'laurynas.karpus:2:2c46ab',
 +
  ysrc: 'laurynas.karpus:2:92440e'
 +
};
 +
data = [trace1];
 +
layout = {
 +
  autosize: true,
 +
  bargap: 0.26,
 +
  bargroupgap: 0.21,
 +
  dragmode: 'select',
 +
  font: {
 +
    color: 'rgb(0, 0, 0)',
 +
    size: 17
 +
  },
 +
  hovermode: 'closest',
 +
  legend: {
 +
    orientation: 'v',
 +
    traceorder: 'normal'
 +
  },
 +
  paper_bgcolor: 'rgb(255, 255, 255)',
 +
  plot_bgcolor: 'rgba(255, 255, 255, 0)',
 +
  showlegend: false,
 +
  title: 'SynORI constitutive copy number device with different anderson promoter strengths',
 +
  titlefont: {
 +
    color: 'rgb(0, 0, 0)',
 +
    family: '"Open Sans", verdana, arial, sans-serif',
 +
    size: 21
 +
  },
 +
  xaxis: {
 +
    autorange: true,
 +
    range: [-0.5, 4.5],
 +
    showspikes: true,
 +
    title: '',
 +
    titlefont: {color: 'rgb(0, 0, 0)'},
 +
    type: 'category'
 +
  },
 +
  yaxis: {
 +
    autorange: true,
 +
    range: [-3.95777777778, 358.397777778],
 +
    showspikes: true,
 +
    title: 'Plasmid copy number (PCN)',
 +
    type: 'linear'
 +
  }
 +
};
 +
window.onload = function(e){
 +
laurynaskarpus = document.getElementById('laurynaskarpus');
 +
Plotly.plot(laurynaskarpus, {
 +
  data: data,
 +
  layout: layout
 +
});
 +
}
 +
</script>
 +
</div>
 +
            <div id="laurynaskarpus" style="width:100%;height:auto;"></div>
 +
 
 +
 
 +
<p>Figure 2. RNA I and RNA II constructs, with RNA I constructs under different-strength Anderson (See anderson collection here http://parts.igem.org/Promoters/Catalog/Anderson ) promoters.</p>
 
<p>In theory (see "Modelling" for more details), lower-strength Anderson promoters should yield lower concentrations of RNA I, hence higher copy numbers of plasmids per cell.  Our constitutive copy number device experiment results prove it to be true in practice as well. The stronger Anderson promoter is used, the less copy number per cell we get. With the strongest Anderson we get only 21+-6.84 plasmids per cell. </p><p>
 
<p>In theory (see "Modelling" for more details), lower-strength Anderson promoters should yield lower concentrations of RNA I, hence higher copy numbers of plasmids per cell.  Our constitutive copy number device experiment results prove it to be true in practice as well. The stronger Anderson promoter is used, the less copy number per cell we get. With the strongest Anderson we get only 21+-6.84 plasmids per cell. </p><p>
 
Worth to mention is that the closest to wild type ColE1 replicon is the 0.86 strength Anderson promoter, measured by copy number alone. (<a href="http://parts.igem.org/Part:BBa_J23102>Part:BBa_J23102</a>)</p><p>
 
Worth to mention is that the closest to wild type ColE1 replicon is the 0.86 strength Anderson promoter, measured by copy number alone. (<a href="http://parts.igem.org/Part:BBa_J23102>Part:BBa_J23102</a>)</p><p>
Line 321: Line 390:
 
Next, we wanted to move one step forward and try to build an inducible copy number system. We first had to make sure that at least part of our construct is well characterized and to so we chose the rhamnose promoter from the biobrick registry (<a href="http://parts.igem.org/Part:BBa_K914003">Part:BBa_K914003</a>).</p><p>
 
Next, we wanted to move one step forward and try to build an inducible copy number system. We first had to make sure that at least part of our construct is well characterized and to so we chose the rhamnose promoter from the biobrick registry (<a href="http://parts.igem.org/Part:BBa_K914003">Part:BBa_K914003</a>).</p><p>
 
For this experiment we have built a rhamnose and RNA I construct (<a href="http://parts.igem.org/Part:BBa_K2259065">Part:BBa_K2259065</a>) and then cloned this construct next to RNA II (<a href="http://parts.igem.org/Part:BBa_K2259091">Part:BBa_K2259091</a>). We have used different percent of rhamnose in our media in order to see if this approach was possible and if so, to figure out the dependency between the plasmid copy number and rhamnose concentration.</p>
 
For this experiment we have built a rhamnose and RNA I construct (<a href="http://parts.igem.org/Part:BBa_K2259065">Part:BBa_K2259065</a>) and then cloned this construct next to RNA II (<a href="http://parts.igem.org/Part:BBa_K2259091">Part:BBa_K2259091</a>). We have used different percent of rhamnose in our media in order to see if this approach was possible and if so, to figure out the dependency between the plasmid copy number and rhamnose concentration.</p>
<p>Grafikas. Figure 3. RNA I and RNA II constructs, with RNA I gene being under the rhamnose promoter. </p>
+
 
 +
        <div class="plotly">
 +
            <script>
 +
trace1 = {
 +
  x: ['0', '', '0.2', '0.4', '0.6', '0.8', '1'],
 +
  y: ['8.49', '', '3.7', '2.02', '2', '1', '1'],
 +
  error_y: {
 +
    array: ['1.347', '', '1.7', '1', '1', '0.7', '0.8'],
 +
    arraysrc: 'laurynas.karpus:8:e7cb99'
 +
  },
 +
  marker: {color: 'rgb(69, 194, 189)'},
 +
  name: 'B',
 +
  text: ['8.49', '', '3.7', '2.02', '2', '1', '1'],
 +
  textsrc: 'laurynas.karpus:8:92440e',
 +
  type: 'bar',
 +
  uid: '6a45cd',
 +
  xsrc: 'laurynas.karpus:8:2c46ab',
 +
  ysrc: 'laurynas.karpus:8:92440e'
 +
};
 +
data = [trace1];
 +
layout = {
 +
  autosize: true,
 +
  bargap: 0.26,
 +
  bargroupgap: 0.21,
 +
  dragmode: 'select',
 +
  font: {
 +
    color: 'rgb(0, 0, 0)',
 +
    size: 17
 +
  },
 +
  hovermode: 'closest',
 +
  legend: {
 +
    orientation: 'v',
 +
    traceorder: 'normal'
 +
  },
 +
  paper_bgcolor: 'rgb(255, 255, 255)',
 +
  plot_bgcolor: 'rgba(255, 255, 255, 0)',
 +
  showlegend: false,
 +
  title: 'SynORI inducible plasmid copy number device with different rhamnose concentrations',
 +
  titlefont: {
 +
    color: 'rgb(0, 0, 0)',
 +
    family: '"Open Sans", verdana, arial, sans-serif',
 +
    size: 21
 +
  },
 +
  xaxis: {
 +
    autorange: true,
 +
    range: [-0.1, 1.1],
 +
    showspikes: true,
 +
    title: 'Rhamnose, %',
 +
    titlefont: {color: 'rgb(0, 0, 0)'},
 +
    type: 'linear'
 +
  },
 +
  yaxis: {
 +
    autorange: true,
 +
    range: [-0.335388888889, 10.3723888889],
 +
    showspikes: true,
 +
    title: 'Plasmid copy number (PCN)',
 +
    type: 'linear'
 +
  }
 +
};
 +
window.onload = function(e){
 +
laurynaskarpus = document.getElementById('laurynaskarpus');
 +
Plotly.plot(laurynaskarpus, {
 +
  data: data,
 +
  layout: layout
 +
});
 +
}
 +
</script>
 +
</div>
 +
            <div id="laurynaskarpus" style="width:100%;height:auto;"></div>
 +
 
 +
 
 +
<p>Figure 3. RNA I and RNA II constructs, with RNA I gene being under the rhamnose promoter. </p>
 
<p>The first thing we noticed was that rhamnose promoter was very strong in terms of plasmid copy number reduction. It was also considerably leaky (promoter can be enabled even without any inducer). At zero induction there were approximately only 9 plasmids per cell and at 1 percent induction the number rose to approximately 1 plasmid per cell. </p><p>
 
<p>The first thing we noticed was that rhamnose promoter was very strong in terms of plasmid copy number reduction. It was also considerably leaky (promoter can be enabled even without any inducer). At zero induction there were approximately only 9 plasmids per cell and at 1 percent induction the number rose to approximately 1 plasmid per cell. </p><p>
 
RNA I rhamnose-induced promoter seemed to be working well, with higher concentrations of inductor giving lower plasmid copy number.</p><p>
 
RNA I rhamnose-induced promoter seemed to be working well, with higher concentrations of inductor giving lower plasmid copy number.</p><p>

Revision as of 02:48, 2 November 2017

use keyboard, swipe or scroll

Determining the plasmid copy number

Design and Results

Preparing for the framework: standard curve generation and plasmid copy number evaluation.

read more