Difference between revisions of "Team:Vilnius-Lithuania/Model"

(Prototype team page)
 
 
(9 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Vilnius-Lithuania}}
 
 
<html>
 
<html>
 +
<link href="https://2017.igem.org/Template:Vilnius-Lithuania/CSSvendor?action=raw&ctype=text/css" rel="stylesheet"/>
 +
<link href="https://2017.igem.org/Template:Vilnius-Lithuania/CSSprod?action=raw&ctype=text/css" rel="stylesheet"/>
  
 +
</html>
  
<div class="column full_size judges-will-not-evaluate">
+
{{Vilnius-Lithuania/navbar}}
<h3>★  ALERT! </h3>
+
<p>This page is used by the judges to evaluate your team for the <a href="https://2017.igem.org/Judging/Medals">medal criterion</a> or <a href="https://2017.igem.org/Judging/Awards"> award listed above</a>. </p>
+
<p> Delete this box in order to be evaluated for this medal criterion and/or award. See more information at <a href="https://2017.igem.org/Judging/Pages_for_Awards"> Instructions for Pages for awards</a>.</p>
+
</div>
+
<div class="clear"></div>
+
  
<div class="column full_size">
+
<html>
<h1> Modeling</h1>
+
  
<p>Mathematical models and computer simulations provide a great way to describe the function and operation of BioBrick Parts and Devices. Synthetic Biology is an engineering discipline, and part of engineering is simulation and modeling to determine the behavior of your design before you build it. Designing and simulating can be iterated many times in a computer before moving to the lab. This award is for teams who build a model of their system and use it to inform system design or simulate expected behavior in conjunction with experiments in the wetlab.</p>
+
<div class="wrapper slider-page">
  
</div>
+
    <div class="container">
<div class="clear"></div>
+
        <div class="slider-box">
 
+
            <div class="left-content">
<div class="column half_size">
+
                <div class="slide-left-content slide-left-content-1 is-current">
<h3> Gold Medal Criterion #3</h3>
+
                    <div class="owl-carousel">
<p>
+
                        <div class="slide slide-image" style="background-image: url('https://static.igem.org/mediawiki/2017/6/67/T--Vilnius-Lithuania--modeling.jpeg')"></div>
To complete for the gold medal criterion #3, please describe your work on this page and fill out the description on your <a href="https://2017.igem.org/Judging/Judging_Form">judging form</a>. To achieve this medal criterion, you must convince the judges that your team has gained insight into your project from modeling. You may not convince the judges if your model does not have an effect on your project design or implementation.  
+
                    </div>
 +
                </div>
 +
                <svg class="shape-overlays" viewBox="0 0 100 100" preserveAspectRatio="none">
 +
                    <path class="shape-overlays__path"></path>
 +
                    <path class="shape-overlays__path"></path>
 +
                    <path class="shape-overlays__path"></path>
 +
                </svg>
 +
            </div>
 +
            <div class="right-content">
 +
                <div class="slide-right-content slide-right-content-1 is-current">
 +
                    <h1>Modelling</h1>
 +
                    <p>The main objective of our model was to investigate how different RNA I concentrations affect plasmid copy number. We had to make sure that our theorized copy number control mechanism using RNA I expression modulation is viable to affirm the approach for reaching our framework goals.
 
</p>
 
</p>
 +
                    <div class="readmore" data-modal="1">read more</div>
 +
                </div>
 +
            </div>
 +
        </div>
 +
        <ul class="navigation">
 +
            <li><a href="/Team:Vilnius-Lithuania/Description">Description</a></li>
 +
            <li>
 +
                <a href="/Team:Vilnius-Lithuania/Design">Design and Results</a>
  
<p>
+
            </li>
Please see the <a href="https://2017.igem.org/Judging/Medals"> 2017 Medals Page</a> for more information.
+
            <li><a href="/Team:Vilnius-Lithuania/Model" class="active">Modelling</a></li>
</p>
+
            <li><a href="/Team:Vilnius-Lithuania/Demonstrate">Proof of concept</a></li>
 +
            <li><a href="/Team:Vilnius-Lithuania/InterLab">Interlab</a></li>
 +
            <li><a href="/Team:Vilnius-Lithuania/Safety">Safety</a></li>
 +
        </ul>
 +
    </div>
 
</div>
 
</div>
  
<div class="column half_size">
 
<h3>Best Model Special Prize</h3>
 
  
<p>
 
To compete for the <a href="https://2017.igem.org/Judging/Awards">Best Model prize</a>, please describe your work on this page  and also fill out the description on the <a href="https://2017.igem.org/Judging/Judging_Form">judging form</a>. Please note you can compete for both the gold medal criterion #3 and the best model prize with this page.
 
<br><br>
 
You must also delete the message box on the top of this page to be eligible for the Best Model Prize.
 
</p>
 
  
</div>
 
<div class="clear"></div>
 
  
<div class="column full_size">
+
<div class="modal modal-1">
<h5> Inspiration </h5>
+
    <div class="modal-close"></div>
<p>
+
    <div class="modal-content">
Here are a few examples from previous teams:
+
<h1>Modelling</h1>
</p>
+
<ul>
+
<p>Before starting the work in the wet lab, we wanted to make sure that our theorized copy number control mechanism using the modulation of RNA I expression is viable. It was crucial for us, because if the model results were any different, we might have selected another approach to reach our framework goals.</p>
<li><a href="https://2016.igem.org/Team:Manchester/Model">Manchester 2016</a></li>
+
<li><a href="https://2016.igem.org/Team:TU_Delft/Model">TU Delft 2016  </li>
+
<p>In order to know if this approach was applicable in the wet lab, our main objective was to investigate, how different concentrations of RNA I affect the plasmid copy number. We have mostly relied on Brendel et al. (1992), Tomizawa (1981), Brendel and Perelson (1993) as our literature sources. The modelling was performed using Matlab software suite.</p>
<li><a href="https://2014.igem.org/Team:ETH_Zurich/modeling/overview">ETH Zurich 2014</a></li>
+
<li><a href="https://2014.igem.org/Team:Waterloo/Math_Book">Waterloo 2014</a></li>
+
<h2>Overview and scheme of the model</h2>
</ul>
+
 +
<img src="https://static.igem.org/mediawiki/2017/c/cc/Schema.png" alt="temp"></img>
 +
 +
<p>RNA II in the ColE1 system initiates plasmid replication by forming an RNA-DNA primer on the plasmid. RNA I is a counter transcript of the RNA II and can inhibit the primer formation by forming a secondary three-stem-loop structure, which pairs these two molecules together</p>
 +
 +
<p>First, RNA II forms an early complex with a plasmid. Early complex means that the RNA II transcript is not longer than 360 nucleotides and until it reaches that length it can be inhibited by RNA I. After reaching the critical length, pDNA-RNA II merges into a stable complex and then can proceed to forming a primer for the initiation of replication. If early RNA I bounds RNA II molecule in the initial transcript stage, it can inhibit the replication by forming a duplex with RNA II. At first, early and unstable RNA I-RNA II complex is formed. After some time it becomes stable and RNA I-RNA II complex detaches from the plasmid, leaving that replication cycle inhibited.</p>
 +
 +
<h2>Species and initial concentrations</h2>
 +
 +
<table style="width:100%">
 +
<thead>
 +
<td align='center'>Species sign in ODE system</td>
 +
<td align='center'>Species</td>
 +
<td align='center'>Initial concentration (M)</td>
 +
</thead>
 +
<tbody>
 +
<tr>
 +
<td align='center'>A</td>
 +
<td align='center'>pDNA+RNA I+RNAII early</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>B</td>
 +
<td align='center'>pDNA+RNA II short</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>RNAI</td>
 +
<td align='center'>RNA I</td>
 +
<td align='center'>1E-6</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>D</td>
 +
<td align='center'>pDNA+RNA II long</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>E</td>
 +
<td align='center'>pDNA+RNAII primer</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>F</td>
 +
<td align='center'>RNA II long</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>G</td>
 +
<td align='center'>pDNA</td>
 +
<td align='center'>4E-8*</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>H</td>
 +
<td align='center'>pDNA+RNA II+RNA I late</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>RNA II</td>
 +
<td align='center'>RNA II</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>J</td>
 +
<td align='center'>RNAI+RNAII</td>
 +
<td align='center'>0</td>
 +
</tr>
 +
</tbody>
 +
</table>
 +
<h6>*We have assumed that our simulation begins with half of the maximum expected wild type ColE1 plasmid concentration, because when parent cell divides, plasmid concentration reduces by 2 times.</h6>
 +
 +
<h2>ODE system</h2>
  
 +
<p>
 +
$$A/dt = -k1*A + k3*B*RNAI - k4*A - k10*A +k11*H - µ*A\quad (1)$$
 +
$$B/dt = -k3*B*RNAI + k4*A - k5*B + k9*G - k15*B - µ*B\quad (2)$$
 +
$$RNAI/dt = -k3*B*RNAI + k4*A + k14*G - k16*RNAI  - µ*RNAI\quad (3)$$
 +
$$D/dt = k5*B - k6*D - k8*D - µ*D\quad (4)$$
 +
$$E/dt = k6*D - k7*E - µ*E\quad (5)$$
 +
$$F/dt = k7*E + k8*D - µ*F\quad (6)$$
 +
$$G/dt = 2*k7*E + k8*D - k9*G + k12*H - k17*G - µ*G\quad (7)$$
 +
$$H/dt = k10*A - k11*H - k12*H - µ*H\quad (8)$$
 +
$$RNAII/dt = -k9*G - k14*RNAII + k15*G - k17*RNAII - k18*RNAI*RNAII - µ*RNAII\quad (9)$$
 +
$$J/dt = k18*RNAI*RNAII - µ*J\quad (10)$$
 +
</p>
 +
<br>
 +
 +
<table style="width:100%">
 +
<thead>
 +
<td align='center'>Constant</td>
 +
<td align='center'>Value</td>
 +
<td align='center'>Source</td>
 +
</thead>
 +
<tbody>
 +
<tr>
 +
<td align='center'>$$K1 (M^{-1} * min^{-1})$$</td>
 +
<td align='center'>$$1.7*10^8$$</td>
 +
<td align='center'>Tomizawa and Som (1991)</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K2 (min^{-1})$$</td>
 +
<td align='center'>$$0.17$$</td>
 +
<td align='center'>Brenner and Tomizawa (1991)</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K3 (M^{-1} * min^{-1})$$</td>
 +
<td align='center'>$$1.02*10^8$$</td>
 +
<td align='center'>Tomizawa (1981)</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K4 (min^{-1})$$</td>
 +
<td align='center'>$$48$$</td>
 +
<td align='center'>Tomizawa and Som (1991)</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K5 (min^{-1})$$</td>
 +
<td align='center'>$$12$$</td>
 +
<td align='center'>Since RNA II transcripts can be inhibited by RNA I when they are between 110 and 360 nucleotides length, and RNA polymerase rate is 50 bp/s, the RNA should be reactive for about 5 seconds.</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K6 (min^{-1})$$</td>
 +
<td align='center'>$$4.3$$</td>
 +
<td align='center'>Tomizawa (1981)</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K7 (min^{-1})$$</td>
 +
<td align='center'>$$3.8$$</td>
 +
<td align='center'>Calculated assuming the DNA polymerase elongation rate of 42 bp/s</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K8 (min^{-1})$$</td>
 +
<td align='center'>$$4.3$$</td>
 +
<td align='center'>Itoh and Tomizawa (1980)</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$ K9 (M^{-1} * min^{-1})$$</td>
 +
<td align='center'>$$0.25$$</td>
 +
<td align='center'>Brendel and Perelson (1993)</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K10 (min^{-1})$$</td>
 +
<td align='center'>$$44$$</td>
 +
<td align='center'>Segel and Perelson (1993)</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K11 (min^{-1})$$</td>
 +
<td align='center'>$$0.085$$</td>
 +
<td align='center'>Brendel and Perelson (1993)</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K12 (min^{-1})$$</td>
 +
<td align='center'>$$17$$</td>
 +
<td align='center'>Tomizawa (1981)</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K13 (min^{-1})$$</td>
 +
<td align='center'>$$34$$</td>
 +
<td align='center'>Brendel and Perelson parameter swipe (1993)</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K14 (min^{-1})$$</td>
 +
<td align='center'>$$6$$</td>
 +
<td align='center'>Brendel and Perelson (1993)</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K15 (min^{-1})$$</td>
 +
<td align='center'>$$19$$</td>
 +
<td align='center'>Brendel and Perelson (1993)</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K16 (min^{-1})$$</td>
 +
<td align='center'>$$0.35$$</td>
 +
<td align='center'>Calculated knowing the RNA II half-life of 2 min (Ataai, 1986)</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K17 (M*min^{-1})$$</td>
 +
<td align='center'>$$0.35$$</td>
 +
<td align='center'>Calculated knowing the RNA I half-life of 2 min (Ataai, 1986)</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$K18 (M^{-1}*min^{-1})$$</td>
 +
<td align='center'>$$1.02*10^8$$</td>
 +
<td align='center'>Itoh and Tomizawa (1980)</td>
 +
</tr>
 +
<tr>
 +
<td align='center'>$$µ (min^{-1})$$</td>
 +
<td align='center'>$$0.0231$$</td>
 +
<td align='center'>Growth rate - determined experimentally.</td>
 +
</tr>
 +
</tbody>
 +
</table>
 +
 +
<h2>Results</h2>
 +
 +
<p>After writing the model for ColE1 system, we first tested if using it results in a precise copy number for wild type ColE1. Model simulation lasts 30 minutes, which is equal to the lifespan of a generation of our DH5a cells.</p>
 +
<div class="img-cont">
 +
            <img src="https://static.igem.org/mediawiki/parts/9/91/Anderson_model_igem_vilnius2.png" alt="img">
 +
        </div>
  
 +
<p>Simulation results in Figure 1. show that we indeed get the required copy number (49.18) when using our model. For copy number calculations we have assumed the cell volume of 6.25E-16.</p>
 +
 +
<p>Now when we know that our model simulates the correct ColE1 copy number, we can use it to test how different Anderson promoter strengths would change the plasmid copy number and while doing so, to also reassure that our model is working correctly when comparing it to the experimental results. </p>
 +
 +
<p>From our preliminary results we have seen that 0.86 strength Anderson with RNA I yields almost exactly the same copy number as wild type ColE1. Using this knowledge we changed the RNA synthesis rate accordingly to Anderson strength series. We have set our RNA I synthesis rate as 0.86 and recalculated series of RNA I synthesis from 0 to 1.</p>
 +
 +
<p>We first simulated the copy number dependence on different Anderson promoters and then experimentally validated our results. The experimental data fits well with our simulation, proving that the model could be used for prediction of copy number.</p>
 +
 +
<h2>Copy number dependence on growth rate prediction</h2>
 +
 +
<p>SynORI framework offers many options to reach a required copy number while keeping the cell stable. Yet one thing is still missing - growth rate dependence. It has been shown that growth rate has influence on plasmid copy number (Brenner et al., 1991). Having that in mind we decided to predict the effect of different growth rates on plasmid copy number while using the whole range of Anderson promoters (0 to 1 relative strength).</p>
 +
 +
<div class="img-cont">
 +
            <img src="https://static.igem.org/mediawiki/parts/7/7d/Growth_rate_BEST.png" alt="img">
 +
        </div>
 +
 +
<p>Our model predicts that with higher growth rates the plasmid copy number decreases. Similar results are reported in literature.</p>
 +
 +
<p>Since growth rates vary depending on plasmid content, our model helps to explain unexpected copy numbers that RNA I with different Anderson promoters can yield. This model can be crucial when growth rate of the system is known and a person requires to pick a particular Anderson promoter in order to get the precise copy number he requires.</p>
 +
 +
 
</div>
 
</div>
 +
 +
</html>
 +
 +
<html>
 +
<script type="text/javascript" src="https://2017.igem.org/Template:Vilnius-Lithuania/JSvendor?
 +
action=raw&ctype=text/javascript"></script>
 +
<script type="text/javascript" src="https://2017.igem.org/Template:Vilnius-Lithuania/JSvendor2?
 +
action=raw&ctype=text/javascript"></script>
 +
<script type="text/javascript" src="https://2017.igem.org/Template:Vilnius-Lithuania/JSprod?
 +
action=raw&ctype=text/javascript"></script>
 +
<script type="text/javascript" src="https://2017.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
  
 
</html>
 
</html>

Latest revision as of 14:23, 15 December 2017

use keyboard, swipe or scroll

Modelling

The main objective of our model was to investigate how different RNA I concentrations affect plasmid copy number. We had to make sure that our theorized copy number control mechanism using RNA I expression modulation is viable to affirm the approach for reaching our framework goals.

read more