LSTM code for iGEM Tsinghua Team
MIT LICENSE
Copyright <2017>
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
from __future__ import absolute_import, division, print_function
import re
import os
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.metrics import mean_squared_error
from sklearn.utils import shuffle
# import logging
# logging.getLogger("tensorflow").setLevel(logging.WARNING)
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
tf.logging.set_verbosity(tf.logging.ERROR)
from tensorflow.python.framework import dtypes
from tensorflow.contrib import learn as tflearn
from tensorflow.contrib import layers as tflayers
from tensorflow.contrib import learn
# %matplotlib inline
'''
*************Param set************
'''
LOG_DIR = './ops_logs/igem-8'
TIMESTEPS = 3
RNN_LAYERS = [{'num_units': 10}]
DENSE_LAYERS = [10, 10]
TRAINING_STEPS = 1000000
PRINT_STEPS = TRAINING_STEPS / 10
BATCH_SIZE = 10
CYCLE = 30
PREDICT_SPAN = 30
global FIGURE
FIGURE = 1
LEARNING_RATE = 5e-3
VAL_SIZE = 0.1
TEST_SIZE = 0.1
pattern = re.compile(r' ([A-Z])(\d{2})')
cond_AFT = [0.2, 0.1, 0.05, 0.025, 0]
cond_Yeast = [0.1, 0.01, 0.001, 0]
cond_set = np.zeros((len(cond_AFT), len(cond_Yeast), 4))
for i in range(len(cond_AFT)):
for j in range(len(cond_Yeast)):
cond_set[i,j] = np.array([1] + [cond_AFT[i]] + [cond_Yeast[j]] + [1])
aft_converter={
'01': 0.2,
'02': 0.1,
'03': 0.05,
'04': 0.025,
'05': 0,
'06': 0,
'07': 0.2,
'08': 0.1,
'09': 0.05,
'10': 0.025,
'11': 0,
'12': 0
};
yeast_converter ={
'A':0.1,
'B':0.01,
'C':0.001,
'D':0,
'E':0.1,
'F':0.01,
'G':0.001,
'H':0
};
def split_data(data, val_size=0.1, test_size=0.1):
"""
splits data to training, validation and testing parts
"""
print(type(data))
ntest = int(round(data.shape[0] * (1 - test_size)))
nval = int(round(data[:ntest].shape[0] * (1 - val_size)))
print(type(data[:nval]))
df_train, df_val, df_test = data[:nval], data[nval:ntest], data[ntest:]
return df_train, df_val, df_test
def lstm_model(num_units, rnn_layers, dense_layers=None, learning_rate=LEARNING_RATE, optimizer='Adagrad'):
"""
Creates a deep model based on:
* stacked lstm cells
* an optional dense layers
:param num_units: the size of the cells.
:param rnn_layers: list of int or dict
* list of int: the steps used to instantiate the `BasicLSTMCell` cell
* list of dict: [{steps: int, keep_prob: int}, ...]
:param dense_layers: list of nodes for each layer
:return: the model definition
"""
def lstm_cells(layers):
if isinstance(layers[0], dict):
return [tf.contrib.rnn.DropoutWrapper(
tf.contrib.rnn.BasicLSTMCell(
layer['num_units'], state_is_tuple=True
),
layer['keep_prob']
) if layer.get('keep_prob') else tf.contrib.rnn.BasicLSTMCell(
layer['num_units'],
state_is_tuple=True
) for layer in layers
]
return [tf.contrib.rnn.BasicLSTMCell(steps, state_is_tuple=True) for steps in layers]
def dnn_layers(input_layers, layers):
if layers and isinstance(layers, dict):
return tflayers.stack(input_layers, tflayers.fully_connected,
layers['layers'],
activation=layers.get('activation'),
dropout=layers.get('dropout'))
elif layers:
return tflayers.stack(input_layers, tflayers.fully_connected, layers)
else:
return input_layers
def _lstm_model(X, y):
stacked_lstm = tf.contrib.rnn.MultiRNNCell(lstm_cells(rnn_layers), state_is_tuple=True)
x_ = tf.unstack(X, axis=1, num=num_units)
output, layers = tf.contrib.rnn.static_rnn(stacked_lstm, x_, dtype=dtypes.float32)
output = dnn_layers(output[-1], dense_layers)
prediction, loss = tflearn.models.linear_regression(output, y)
train_op = tf.contrib.layers.optimize_loss(
loss, tf.contrib.framework.get_global_step(), optimizer=optimizer,
learning_rate=learning_rate)
return prediction, loss, train_op
return _lstm_model
def preprocess(data, lags = TIMESTEPS, cycle = 30):
length = data.shape[0]
width = data.shape[1]
new_cycle = cycle - lags
X = np.zeros((np.int(length * new_cycle/ cycle), lags , width))
y = np.zeros((np.int(length * new_cycle/ cycle), 1))
for i in range(X.shape[0]):
j_span = i2index(i, new_cycle, cycle)
for j in range(j_span, j_span + lags):
X[i,j%lags] = data[j]
# print('i: ', i,'j: ', j)
# print('X index',i,j%lags , 'y index',j_span + lags)
# print( data[j])
y[i] = data[j_span + lags, 3]
return X, y
def condition_converter(condition):
'''
convert a [1x4] condition array to [1x3x4] that can fit predict
'''
condition = condition.astype(np.float32)
con = np.zeros((condition.shape[0], TIMESTEPS, condition.shape[1]))
for i in range(condition.shape[0]):
for j in range(TIMESTEPS):
con[i][j] = condition[i].astype(np.float32)
return con
def predict(cond, predict_span = PREDICT_SPAN ):
"""
output predictions given a condition matrix with 2-d
"""
predict = np.zeros((predict_span,cond.shape[0]))
for i in range(PREDICT_SPAN):
predict[i] = np.array(regressor.predict(cond.astype(np.float32)))
for j in range(TIMESTEPS - 1):
for cond_num in range(cond.shape[0]):
cond[cond_num][j][3] = cond[cond_num][j + 1][3]
cond[cond_num][j][0] = cond[cond_num][j + 1][0]
for cond_num in range(cond.shape[0]):
cond[cond_num][TIMESTEPS - 1][3] = predict[i][cond_num]
cond[cond_num][TIMESTEPS - 1][0] += 1
# print('******',predict[i])
return predict
def plot_figure(init_condition):
'''
plot and save a group of conditions matrix [number x 4]
'''
cond2str = lambda cond_arr:'AFT '+str(cond_arr[1]) + ' Yeast '+str(cond_arr[2])
cond_num = init_condition.shape[0]
pred_points = predict(condition_converter(init_condition))
plt.figure(hash(str(cond2str(init_condition[0]))))
fig_list = []
for i in range(cond_num):
fig_list = fig_list + plt.plot(pred_points[:,i], label=cond2str(init_condition[i]))
plt.legend(handles=fig_list)
plt.savefig(LOG_DIR + '\\fig'+str(hash(str(cond2str(init_condition[0]))))+'.jpg')
'''
******************************** Data pre-process**********************************
'''
print('Existence of data file',os.path.isfile("D:\\igemweb\\data\\rawdata.txt"))
data = pd.read_csv('D:\\igemweb\\data\\rawdata.txt', header = 0, sep = '\t')
'''
Table of data
| time | aft | yeast(start) | yeast(current) |
|
Number x 4 matrix
'''
data_processed = np.zeros((data.shape[0], 4))
for i in range(len(data)):
data_processed[i] = [data.iloc[i,3],
aft_converter[re.match(pattern,data.iloc[i,1]).group(2)],
yeast_converter[re.match(pattern,data.iloc[i,1]).group(1)],
data.iloc[i,2] ];
i2index = lambda x, y, cycle:int((x - x % y) * cycle / y + x % y);
for i in range(data_processed.shape[0]):
if i % CYCLE == 0:
normalizer = data_processed[i][3]
data_processed[i][3] /= normalizer
print('First 60 data after normalized')
print(data_processed[0:60,3])
X, y = preprocess(data_processed)
X_train, X_val, X_test = split_data(X, val_size = VAL_SIZE, test_size = TEST_SIZE)
y_train, y_val, y_test = split_data(y, val_size = VAL_SIZE, test_size = TEST_SIZE)
X = dict(train = X_train.astype(np.float32), val = X_val.astype(np.float32), test = X_test.astype(np.float32))
y = dict(train = y_train.astype(np.float32), val = y_val.astype(np.float32), test = y_test.astype(np.float32))
'''
******************************** Model Initiation **********************************
'''
regressor = learn.SKCompat(learn.Estimator(
model_fn=lstm_model(
TIMESTEPS,
RNN_LAYERS,
DENSE_LAYERS
),
model_dir=LOG_DIR
))
validation_monitor = learn.monitors.ValidationMonitor(X['val'], y['val'],
every_n_steps=int(PRINT_STEPS),
early_stopping_rounds=1000)
print('Validation set shape',X['val'].shape, y['val'].shape)
'''
******************************** Training & Check **********************************
'''
regressor.fit(X['train'], y['train'],
monitors=[validation_monitor],
batch_size=BATCH_SIZE,
steps=TRAINING_STEPS)
predicted = regressor.predict(X['test'])
rmse = np.sqrt(((predicted - y['test']) ** 2).mean(axis=0))
score = mean_squared_error(predicted, y['test'])
print ("MSE: %f" % score)
plt.figure(1)
plot_predicted, = plt.plot(predicted, label='predicted')
plot_test, = plt.plot(y['test'], label='test')
plt.legend(handles=[plot_predicted, plot_test])
plt.savefig(LOG_DIR + '\\pred_test'+'_mse_'+str(score)+'.jpg')
# PLOT cond_set
for i in range(cond_set.shape[0]):
plot_figure(cond_set[i])