Part II- SKP integration into bacterial chromosome :

Introduction:

Our purpose was to produce antibodies through our transportable factory "The BioMaker Factory". As many eukaryotic proteins it depends a lot of various post-traductional modification and a precise tridimensional architecture. In this way, it's appears important for us to coexpress our recombinant protein with chaperones. However, WHO legislations demand a total safety of sanitary product exempt from any dangerous substance. So il was a necessity for us to avoid usage of antibiotics during cell growth. The direct insertion of chaperone gene within the bacterial genome appeared to be the best way to ensure a stable expression of additional chaperone proteins into the genome of our designed bacteria allowing a proper folding of eukaryotic therapeutical proteins.

Method:

To do so, we used pGRG25 integration vector obtained from Addgene in transformed DH5 α *E. coli*. This vector was designed by McKenzie et al to insert DNA sequence in bacterial chromosome without inducing drug resistance of the host. This system uses Tn7 to insert transgenes at a defined neutral site in the chromosome (*attTn7*). The site is highly conserved and is known to work as a Tn7 attachment site in *E. coli* and its relatives. The *attTn7* sequence is conserved in most (all) bacteria.

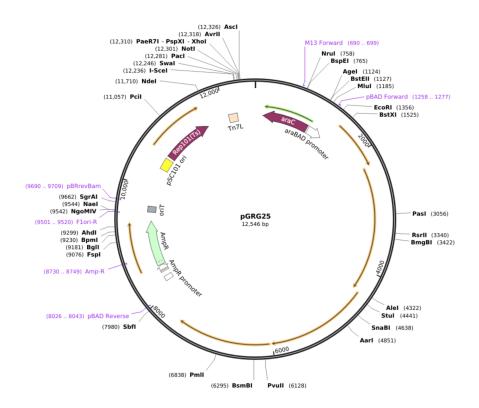


Figure 3: Schematic pGRG25 map

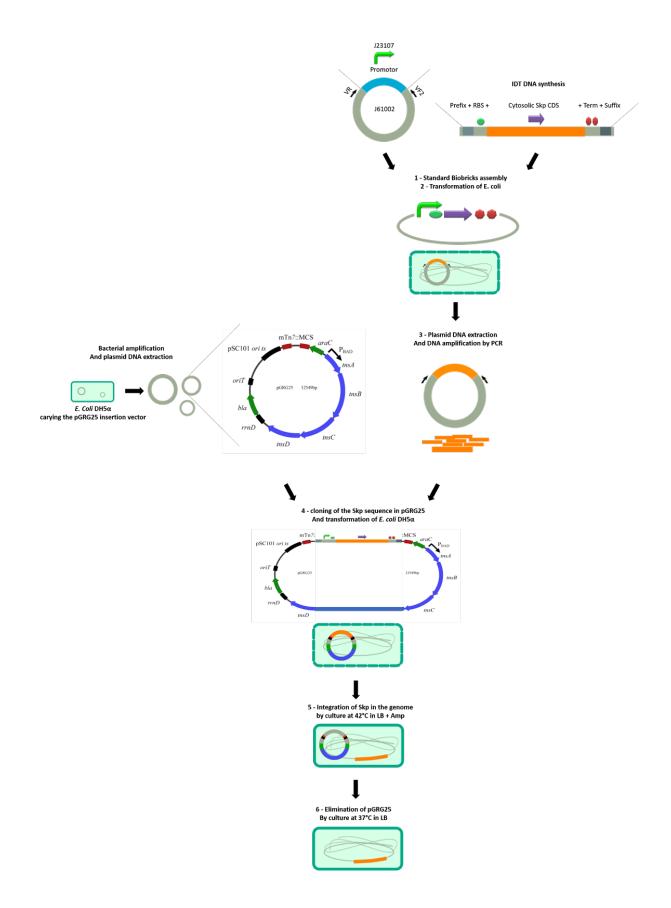


Figure 4 Schematic representation of our global strategy for the insertion of Skp within the bacterial genome of *E. coli* DH5α

Construction of cytosolic Skp gene

We had synthesized a cytosolic form of Skp under the control of T7 promoter and ended by a T7 terminator by IDT.

Nam	e - Sł	KP CH	APER	ONN	E C	ustor	ner N	ame -	iGE/	M UP	MC P	ARIS	2017	IGEM	١	gBl	ocks®	Gene	e Frag	gment	s 6	95 bc	ase pairs
5'-	GTT	TCT	TCG	AAT	TCG	CGG	CCG	CTT	CTA	GAG	TAA	TAC	GAC	TCA	CTA	TAG	GTC	ACA	CAG	AAA	TTC	ATT	AAA
GAG	GAG	AAA	GGT	ACC	CCA	TGG	CTG	ACA	AAA	TTG	CAA	TCG	TCA	ACA	TGG	GCA	GCC	TGT	TCC	AGC	AGG	TAG	CGC
AGA	AAA	CCG	GTG	TTT	CTA	ACA	CGC	TGG	AAA	ATG	AGT	TCA	AAG	GCC	GTG	CCA	GCG	AAC	TGC	AAC	GTA	TGG	AAA
CCG	ATC	TGC	AAG	CTA	AAA	TGA	AAA	AGC	TGC	AAT	CCA	TGA	AAG	CGG	GCA	GCG	ATC	GCA	CTA	AGC	TGG	AAA	AAG
ACG	TGA	TGG	CTC	AGC	GCC	AGA	CTT	TTG	CTC	AGA	AAG	CGC	AGG	CTT	TTG	AGC	AGG	ATC	GCG	CAC	GTC	GTT	CCA
ACG	AAG	AAC	GCG	GCA	AAC	TGG	TTA	CTC	GTA	TCC	AGA	CTG	CTG	TGA	AAT	CCG	TTG	CCA	ACA	GCC	AGG	ATA	TCG
ATC	TGG	TTG	TTG	ATG	CAA	ACG	CCG	TTG	CTT	ACA	ACA	GCA	GCG	ATG	TAA	AAG	ACA	TCA	CTG	CCG	ACG	TAC	TGA
AAC	AGG	TTA	AAT	AAG	CGC	TCC	GCG	CAG	CAT	TCC	GCC	GCC	CGG	TCC	CGG	TAT	ACC	GCG	ACC	GCT	ATC	CGG	GAC
CAG	GCA	TCA	AAT	AAA	ACG	AAA	GGC	TCA	GTC	GAA	AGA	CTG	GGC	CTT	TCG	TTT	TAT	CTG	TTG	TTT	GTC	GGT	GAA
CGC	TCT	CTA	CTA	GTA	GCG	GCC	GCT	GCA	GGA	AGA	ACC	CTA	GGC	TGC	TGC	CA -	-3'						

Figure 5 : Sequence synthesized by IDT. Elements from 5' to 3' : iGEM Prefix, T7 promotor, RBS, cytosolic Skp CDS, T7 terminator, iGEM Suffix.

We amplified by Polymerisation Chain Reaction the Skp CDS preceded by its RBS and ended by the T7 promoter with the following primers, introducing Xbal restriction site and Spel Notl restrictions sites.

Primer forward : 5'GCGGCCGCTACTAGTATTATTTAACCTG3' Primer Reverse : 5'CTTCTAGAGCCATGGCTGACAAAA3' TM :67,3°C

We used the Biobrick Assembly kit to place Skp under the control of the promoter from the iGEM distribution kit 2017 BBa_J2310 we used this new construct to transformed *E. coli* competent DH5 α .

Cloning of Skp in pGRG25 :

Culture of these strain was made at 30°C. Indeed, the plasmid backbone is the easily curable temperature sensitive mutant of pSC101, carrying the pSC101 temperature sensitive origin, which must be grown at 30-32°C to allow replication. So in order to extract plasmids, we inoculate these bacterial cells overnight in culture with ampicillin. We inserted the Skp sequence into the Notl restriction site located on the MCS of pGRG25 and then we transformed *E. coli* competent DH5 α with the cloned vector.

Integration of the cytoplasmic form of Skp in *E. coli* DH5a genome

Cultures of the transformed cloned cells was made overnight without antibiotics at 32°C (this step allows for some loss of plasmid) and then at 42°C to block replication of the plasmid. Colonies were streaked once on LB at 42°C to ensure the complete loss of the plasmid and DNA integration into the genome.

After this step of integration and before characterization of the effect of SKP in protein synthesis we made verifications:

A simple checking was to pick the next day 3 colonies to put them in culture in LB+/- ampicillin.

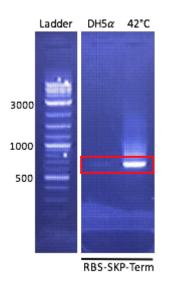
Verification of the genomic insertion of cytosolic Skp

We check out the proper insertion of our Skp by performing a PCR on colonies allowing the specific amplification of cytosolic Skp with the following primers:

Primer forward : 5'GCGGCCGCTACTAGTATTATTTAACCTG3' Primer Reverse : 5'CTTCTAGAGCCATGGCTGACAAAA3' TM :67,3°C

Transposition was verified by the absence by PCR amplifying sequences which flank the *attTn7* site with the following primers.

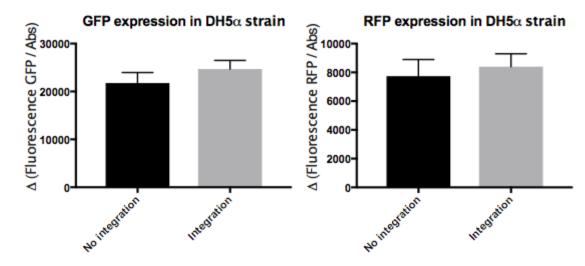
Primer Foward 5'GATGCTGGTGGCGAAGCTGT3' and 5'GATGACGGTTTGTCACATGGA3'


Then, we purified DNA from PCR and we visualized PCR product on an agarose gel electrophoresis (1.5%).

Characterization of Skp insertion

In order to assess the effect related to the SKP chromosomique intégration, we transformed our engineered *E. coli* with our composite part BBa_I13500-BBa_I13507 created for the promoter caracterisation under the BBa_J231107 promoter and then we quantified the production of GFP and RFP.

Results


Verification of the genomic insertion of cytosolic Skp

<u>Figure 6 Agarose gel electrophoresis (1.5%) after migration of PCR products for the verification of the insertion of cytosolic Skp in the genome of *E. coli* DH5 α </u>

After amplification by polymerisation chain reaction of RBS-SKP-Terminateur sequence, which represent a fragment of 622pB we realized a comparison between non integrated DH5 α cells and bacterial cells with DNA insertion (at 42°C). Here on these electrophoresis gel we can see that there is a band with a very high level of intensity and some SMIRS. We made a mistake

between preparation of PCR and used primers 10 times more concentrated but this observation confirm the fact that we can improve the level of SKP production directly into the genome.

Characterization of the SKP insertion:

Figure 7 Quantification of GFP fluorescence in the context of SKP integration into the genome, under the control of Anderson promoters BBa_J23107.

Promoter strength was assessed through the quantification of specific fluorescence from GFP (A) and RFP (B) normalized with OD600 to obtain relative fluorescent units (RFU).

After transformation we compared the level of GFP and RFP expression between DH5 α with and without SKP integration. Firstly, we can find with the same condition of transformation a same range of fluorescence for both reporters compared to the characterisation of Anderson's promoters. Here we can see that the level of GFP expression (around 20000U) is not significantly change when we introduce SKP into the genome, even if there is a very weak increase in the emission level of GFP and RFP. Our supposition is that GFP is a protein which is relatively simple, which don't need chaperon proteins or an high level of post traductional modifications, and we didn't had the time to realize other tests with more complex proteins