!!! RNase-free working environment is required for the whole procedure!!!

sgRNA preparation

. Amplify the template for *in vitro* sgRNA transcription

1) Oligos need to be ordered:

Template:TAATACGACTCACTATAGGGGGCCACTAGGGACAGGATGTTTTAGAGCTAGAAATAGCAAGTTAAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTFw:ggcactcTAATACGACTCACTATAGGRv:cggagcgAAAAAGCACCGACTC

2) PCR reaction mix:

!! 8-16 reactions will be pooled together.

Template (10ng/µL)		1µL
Fw (10µM)		1µL
Rv (10µM)		1µL
5x HF buffer		4µL
dNTP (10mM)	0.4µL	
DMSO		0.6µL
Phusion		0.2µL
H ₂ O		11.8µL

Total reaction volume $20\mu L$

3) PCR cycles:		
98°C	20s	
98°C	10s	
60°C	25s	x34
72°C	5s	
72°C	3m	
4°C	00	

4) PCR purification

! Use one column to bind DNA.

! Elute with 20µL Nuclease-free water.

!! The expected concentration should be more than $300 ng/\mu L$.

! Adjust the concentration to $250 ng/\mu L$ as the template of the sgRNA synthesis.

. In vitro sgRNA synthesis using MEGAshortscriptTM T7 Kit

Thaw the T7 10X Reaction Buffer at room temperature by vortexing.

CRITICAL!!! Make sure there is NO DTT crystal remaining in the T7 10X Reaction Buffer. When a new kit is opened, thaw the T7 nTP Solutions, transfer 50μ L of each T7 nTP

Solution into a new tube, well-mixed and labeled as 'T7 nTP Mix'

!! Assemble the reaction mix (in PCR tube) at room temperature, in the following order:

!! 3 reactions will be pooled together.

Nuclease-free water	7μL
T7 10X Reaction Buffer	2μL
T7 nTP Mix	8µL

Template DNA (250ng/µL)	1µL
T7 Enzyme Mix	$2\mu L$
Total reaction volume	20µL

Mix thoroughly by pipetting or flicking the tube, then centrifuge the tube briefly. Incubate in a thermocycler at 37°C for 4 hours.

. DNase treatment

. sgRNA purification using MEGAclear[™] Kit

Set the heating block to 95°C, pre-heat elution buffer in a 1.5mL eppendorf.

- Pool 3 DNase-treated samples together (in total 60μL), add 40μL of Elution Solution (4°C, NOT the pre-heated!!!). Vortex briefly to mix thoroughly. Briefly spin the tube.
- 2. Add 350µL of Binding Solution Concentration (4°C) to the sample. Mix gently by pipetting up and down immediately after adding.
- 3. Take 100% Ethanol from -20°C. Add 250μL of cold 100% ethanol to the sample. Invert the tube few times to mix thoroughly. Stand on ice for 1min, and invert again for few times.

NOTE: This is the critical step, directly affecting the final yield!!! 1). The cold ethanol is very important for this step, to precipitate the RNA!!! So, take your 100% ethanol from -20°C just before you start on this step 2)Because ethanol precipitates the RNA, after thoroughly mixing, the solution can become opaque suspension. DO NOT SPIN THE SAMPLES AFTER MIX!!!

- 4. Load the sample to a filter with a collection tube.
- 5. Centrifuge for 30s at 12000xg at r/t. Remove the flow-through.
- 6. Wash the filter 2 times with 500µL of Washing Solution (4°C). Centrifuge for 30s at 12000xg at r/t. Discard the flow-through.
- 7. Centrifuge again for 1min at 12000xg to completely remove the Washing Solution.
- 8. Remove the filter to a new collection tube.
- Apply 50µL of pre-heated Elution Solution to the center of the filter. Centrifuge for 1min at 12000xg at r/t.
 NOTE: pipetting the pre-heated elution buffer at the heating block, in stead of taking the pre-heated elution to the RNA hood.
- 10. Apply another 50µL of pre-heated Elution Solution to the same filter. Centrifuge for 1min at 12000xg at r/t.
- 11. Add 10μ L of 5M NH₄Ac to 100μ L of the eluted sample. Vortex to mix well and spin down briefly.
- 12. Add 275µL of cold 100% ethanol (from -20°C). Mix well by inverting the tube for few times.
- 13. Stand the tube at -20°C for at least 30min. (Normally I do it for 45 min)
- 14. Centrifuge at maximum speed for 15min at 4°C.
- 15. Carefully remove the supernatant by pipetting, without disturbing the pellet.
- 16. Add 500μL of cold 70% ethanol (from -20°C). Centrifuge at maximum speed for 5min at 4°C.

- 17. Remove most of the supernatant by pipetting. Centrifuge again, at maximum speed for 1min at 4°C. Carefully remove the rest of supernatant by pipetting.
- 18. Air-dry the pellet, 5-8 mins.!!! DO NOT over-dry the pellet!!! When the pellet is dried, the body of the pellet should remain white, whereas the edge of the pellet turns transparent.
- 19. Dissolve the pellet in 40μL (varies depending on the size of your pellet) Nuclease free water.
- 20. Store sgRNA samples at -80°C, after checking the concentration*.

*For checking the concentration with Nanodrop:		
sgRNA	2µL	
H ₂ O	38µL	
In total	40µL	
Mix thoroughly, and spin down briefly.		

Check the concentration with Nanodrop (RNA-40).

!!! From 3 reactions, the expected yield should be more than $150\mu g$, or with the minimum concentration above $3.5\mu g/\mu L$.

. Prepare sgRNA for the assay

Dilute the sgRNA to $1\mu M$ (1pmol/ μL , $31ng/\mu L$).

To cut 100fmol substrate with 1pmole CAS9, 3-4pmol of sgRNA is recommended. NOTE: repeatedly freeze and thaw the sgRNA samples can sharply decrease quality. We suggest to aliquot you sgRNA samples in working concentration and store at -80°C.