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1 Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory disease preferentially affecting the
joints and leading, if untreated, to progressive joint damage and disability. Cytokines, a
group of small inducible proteins, which act as intercellular messengers, are key regulators
of the inflammation that characterizes RA. They can be classified into pro-inflammatory
and anti-inflammatory groups. We use a two-variable model for the interactions between
pro-inflammatory and anti-inflammatory cytokines, and demonstrates that mathematical
modelling may be used to investigate the involvement of cytokines in the disease process.
We also use that model to demonstrate bistability and oscillations.

2 The basis for the Model

The synovium consists of a variety of cells including fibroblasts, macrophages and T cells,
and each individual cell has a different response pattern. We neglect this variability in cell
behaviour and the synovium is modelled as a spatially uniform collection of homogeneous,
generic cells. We focus on the cells production of pro-inflammatory and anti-inflammatory
cytokine molecules. The binding of pro-inflammatory cytokine molecules to membrane-
bound receptors induces the production of both pro-inflammatory and anti-inflammatory
cytokines while the binding of anti-inflammatory molecules causes a downregulation in
the production of pro-inflammatory molecules.
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Figure 1: Examples of qualitative forms for the production feedback functions ®(p), ©(p)
and W (P).



We denote the concentration of pro-inflammatory cytokine molecules by p and the
concentration of anti-inflammatory cytokine molecules by a. The degradation of a cy-
tokine concentration is assumed to be linear, with rates dp and da. The general form of
the equations for the cytokine dynamics is then

dp

L+ 2)0(0) ()
da
pri —d,a+ V(P) (2)

The product ®(p),0(p) models the combined effect of pro-inflammatory and anti-
inflammatory stimuli on pro-inflammatory cytokine production, based on the assumption
that anti-inflammatory molecules work by inhibiting the synthesis of pro-inflammatory
cytokine molecules. ®(p) and W(P) are increasing saturating functions of p, so that they
represent induced up-regulation with some maximum production rate. Similarly,©(p)
represents the down-regulation of p in response to an increase in a and with a decreasing
effect from some maximum at a = 0. Examples of functions that have these properties
are
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where cg, c1, 2, c3, c4, c5 and cg are non-negative constant parameters. Since pro-
inflammatory production is stimulated by an external stimulus, a background production
term ¢y has been included in ®(p), anti-inflammatory production is stimulated only by
pro-inflammatory cytokine molecules and so no background term is necessary. The coef-
ficients my,mo and mg will all be taken as 2 for the analysis of this system since values
greater than 2 show qualitatively similar behaviour and a value of 1 reduces the range
of behaviours. This is discussed further in Appendix A .Some sample forms for these
feedback functions are shown in Fig. 1. The model equations are non-dimensionalized
using

p:p*CQ,a:a*ca,t:t*d— (6)

With the asterisks dropped for notational simplicity and setting m; = mo = m3 = 2
, with the equations for ®, # and ¥, become
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Table 1: Summary of the dimensionless parameters in the cytokine dynamics model

Parameter Interpretation
q Background pro-inflammatory production rate
Q9 Magnitude of additional pro-inflammatory cytokine production

Pro-inflammatory cytokine concentration at which
anti-inflammatory production is half maximal
oy Magnitude of anti-inflammatory cytokine production
Relative rate of clearance of pro-inflammatory cytokine
to anti-inflammatory cytokine

Qs

v

CoCs3 c1C3 Co Cs d,
ap = y Qg = g = —, 0y = V= 5 (9)
CQda CQda C2 C4da da

The parameter oy is the background production rate for pro-inflammatory cytokine
so that when a = p = 0, pro-inflammatory production occurs at a rate of a;. The
parameter s corresponds to the maximum rate of pro-inflammatory cytokine production
over and above the basal rate. ajs is the concentration of pro-inflammatory cytokines at
which anti-inflammatory production is half maximal. a4 corresponds to the maximum
rate of production of anti-inflammatory cytokine. Here, v is the ratio of the rate of
pro-inflammatory and anti-inflammatory decay. The significance of these parameters is
summarized for reference in Table 1 and appropriate values for these parameters are
discussed in Appendix B.

In the following sections we will show how bistability and oscillatory behaviour can
arise from this model and consider possible interpretations of this behaviour in a biological
context.

3 Model analysis

3.1 Nullclines and steady states

To analyse the steady states of this system, we will consider the forms of the nullclines,
and consider only the positive quadrant. The nullclines of the system, respectively, are
as follows:
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Figure 2: Schematic showing the nullclines of the system (2.3), (2.4) and the different
ways they may intersect when ay > 8c;. The dashed line represents the a nullcline (da/dt
= 0) and the solid line represents the p nullcline (dp/dt = 0).

Figure 2 shows the ways that these nullclines may intersect and hence how the steady
states may arise. It is clear from this diagram that there is always at least one steady
state and for some parameter values three steady states exist.

Analysis of the turning points of the nullclines tells us that, when oy < 8 there can
only be one steady state, and when as > 8a; there is either one, two or three steady
states (see Fig. 2). The case of two state states only occurs when the nullclines touch
but do not cross and as such only exists for an extremely narrow set of parameters. For
this reason, throughout this paper, we will only consider the one and three steady state
cases. The steady states are denoted Sy, S and S;. Where they exist, Sy is stable, Sy is
unstable and Sy can be either stable or unstable(Appendix C).

3.2 One parameter bifurcation diagrams

Of the five free parameters, the cytokine production rates (s and ay) are rates that
change as part of the immune response and so are likely to change over time in response
to injury or therapeutic intervention. If we assume that the rate of clearance is determined
by the size and structure of the cytokine and by the chemical environment within the
host, it is reasonable to assume that the decay rate parameter v will remain constant
in an individual (or vary over a much longer timescale than that over which cytokine
interactions occur). Similarly, we assume that the background production rate and the
anti-inflammatory production threshold parameter, oy and ag, respectively, are fixed
within an individual. To demonstrate the types of behaviour that can arise from this
model, we consider bifurcation diagrams of variations in as for a range of different values
of the other parameters. The types of behaviour displayed are summarized in Table 2
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and discussed in detail below. All bifurcation plots and simulations in this paper were

produced in XPPAUT.

Table 2: Summary of the behaviour types in the cytokine dynamics model

Case Steady states Limit cycles

Ay So:stable —

Aii ngstable -

A Soistable; Sp:unstable;S;:unstable —

B Sy:unstable Lq:stable

C; Sp:stable; Si:unstable;Ss:stable —

Cii Sp:stable; Si:unstable;Ss:stable Ls:unstable

D;  Sp:stable; Si:unstable;Ss:unstable L;:stable

D;;  Sp:stable; Si:unstable;Ss:unstable Lq:stable;Lo:unstable

3.2.1 Monostable and bistable behavior
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Figure 3: Monostable and bistable behaviour in the model (2.32.4) for the interaction
between pro- and anti-inflammatory cytokines(c; = 0.025,a3 = 0.5, oy = 3.5 and v =
1.25). (a) The bifurcation plot of p against as. The solid lines represent stable branches
while the dashed lines represent unstable branches. The vertical dashed lines signify the
thresholds between different behaviour types. (b) The phase plane plot of Case A;, a
single healthy steady state (as = 5). (c¢) The phase plane plot of Case Cj, two stable
steady states (Sp and S3) and one unstable steady state (S7) (az = 8). (d) The phase
plane plot of Case A;;, a single unhealthy steady state with (ce = 17).



3.2.2 Monostable and bistable behavior with oscillations
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Figure 4: Monostable and bistable behaviour with oscillations in the model (2.32.4) for the
interaction between pro- and antiinflammatory cytokines (c; = 0.025, a3 = 0.5,a4 = 9
and v = 1.25). (a) The bifurcation plot of p against as. The solid lines represent stable
branches, whereas the dashed lines represent unstable branches. The vertical dashed
lines signify the thresholds between different behaviour types. (b) The phase plane plot
of Case D;, one stable steady state (Sp), two unstable steady states and a stable limit
cycle around Sy (e = 15). (c¢) The phase plane plot of Case B, one unstable steady
state (S3) surrounded by a globally stable limit cycle (ay = 30). Cases A;, C; and A;; are
shown in Fig. 3.
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Figure 5: Bifurcation plots for different values of a4 showing how cases Ci and Di are lost
compared with Fig. 4(a) (ay = 0.025,3 = 0.5 and v = 1.25) The solid lines represent
stable branches, whereas the dashed lines represent unstable branches. The vertical
dashed lines signify the thresholds between different behaviour types. (a) ay = 18, first
Hopf bifurcation moves to right of the second fold and case Di (b) ay = 30, folds coalesce
and all bistability is lost.



3.2.3 Monostable and bistable behavior with homoclinic bifurcations
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Figure 6: Monostable and bistable behaviour with homoclinic bifurcations in the model
(2.32.4) for the interaction between pro- and anti-inflammatory cytokines, showing the
new behaviours A;; and D;;. (a) The bifurcation plot of ay against p. The solid lines
represent stable branches, whereas the dashed lines represent unstable branches. The
vertical dashed lines signify the thresholds between different behaviour types. (b) The
phase plane plot of Case A;;, a stable steady state (Sp) and two unstable steady states
(ag = 15). (c) The phase plane plot of Case D;;, a stable steady state (Sp), two unstable
steady states, a stable limit cycle and an unstable limit cycle (ay = 18.73). Cases A;, C;
and D; are shown in Fig. 4. (ay = 0,a3 = 0.5,y = 7 and v = 1.25).
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Figure 7: Bistable behaviour with a homoclinic bifurcation in the model (2.32.4) for the
interaction between pro and antiinflammatory cytokines. (a) Bifurcation plot showing
as plotted against p. The inset shows how Case Cj; arises through a supercritical Hopf
bifurcation where the branch of limit cycles turns and becomes unstable almost immedi-
ately after bifurcation. The solid lines represent stable branches whilst the dashed lines
represent unstable branches. The vertical dashed lines signify the thresholds between
different behaviour types. (b) Phase plane plot showing case Cj;, two stable steady states
(So and Ss), an unstable state(S;) and an unstable limit cycle around Sy (ap = 7.75).
Cases A;, Ay, Ay and C; are shown in Figs 4 and 6. (o = 0.01,a3 = 1,4 = 10 and
v = 1.25).



3.2.4 Bistable behavior with a homoclinic bifurcation
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Figure 8: Parameter space plots in asay (a3 = 0.5 and v = 1.25) showing the fold (F1
and F2) and Hopf (H1 and H2) bifurcations and types of the phase space for decreasing
values ofa;.(a) Cases A;, Ay, B, Ci and D; are shown. (b) Cases A;, A;;, B, Ci and D;
are shown. The horizontal dashed line represents a slice through the parameter space at
ay = 9, consistent with the bifurcation plot in Fig. 4 (ay = 0.025). (c¢) Cases A;, Ay,
Aji, B, Ci, D; and D;; are shown., (d) Cases A;, Ay, Aii, Ci, D; and D;; are shown.
The horizontal dashed line represents a slice through the parameter space at ay = 7,
consistent with the bifurcation plot in Fig. 6 (o = 0).

So far we have considered only variations in the pro-inflammatory cytokine production
rate a. It is likely that the anti-inflammatory cytokine production rate a4 is also impor-
tant in determining disease activity since anti-inflammatory cytokines will mitigate the
pro-inflammatory cytokine response. Hence, in the next section we will look at the asay
parameter space for different values of the other three parameters.
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3.3 Two-parameter bifurcation diagrams
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Figure 9: Figure showing the dependence on threshold parameter ag of the location of
fold and Hopf bifurcations in the asay parameter space for parameter values (o = 0.025,
v = 1.25).
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Figure 10: The asay parameter space showing all cases. The horizontal dashed line
represents a slice through the parameter space at ay = 10, consistent with the bifurcation
plot in Fig. 7 (a1 = 0.01, 3 = 1 and v = 1.25)
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Figure 9 shows asay parameter space diagrams for a range of values of ag. As ag increases,
the cusp at which the fold bifurcations meet and are destroyed occurs for a higher value of
anti-inflammatory production parameter . The proinflammatory production parameter
ap at the cusp varies little with a3. One consequence of this effect is that if the threshold
ag is large, then the range of states which can exhibit health and disease is increased.
When a3 is small, most conditions lead to the case where there is a single state with
pro- and anti-inflammatory concentrations varying according to as. Figure 10 shows a
two-parameter bifurcation diagram for a large value of ag but a smaller value of o;. Here,
all the possible behaviours are observed through variations in as and ay.
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Figure 11: Diagrams showing the positions of the fold (F) and Hopf (H) bifurcations in
the apay parameter space for decreasing values of  and the parameters (o; = 0.025 and
g = 05)

Figure 11 shows asay parameter space diagrams for various values of v and demon-
strates that as v decreases, the fold and Hopf bifurcations move apart. This means
that the parameter region over which there is bistability decreases and the majority of
parameter space leads to a single generic stable steady state or a stable limit cycle.

4 Conclusions

The model developed here is a two-variable activatorinhibitor system that simulates the
dynamics of two classes of cytokines, pro-inflammatory and antiinflammatory. Five key
dimensionless parameters have been identified. We have shown that the model can have
either one steady state (S or Sg) or three steady states (Sp, S1 and Sz). This leads to a
range of a phase plane behaviours.

The model shows four types of monostable phase plane behaviour (A;, A;, A and
B). These behaviours may be interpreted as a healthy response (A; and A;;) due to a
low level of p, a disease response due to a high level of p (B) or an unclear response of
health/disease due to an intermediate range of p. In addition to monostable behaviour,
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the model also shows four types of bistable phase plane behaviour (C;, Cy;, D; and Dy;).
These have a stable healthy steady state and a stable disease state which is either a
fixed point or a limit cycle. One point to note is that if an individual has a high level of
pro-inflammatory production, so that a monostable disease state prevails, increasing the
magnitude of anti-inflammatory production, a4, does not return the system to distinct
health, but does reduce the level of p at the fixed point (see Fig. 8(b)). In clinical
practice, only cytokine concentrations are changed rather than production rates, and so
increasing the magnitude of anti-inflammatory cytokine production would relate only to
intrinsic changes in rates at present.

5 Outlook

This model has produced many of the features observed in real cytokine systems, but
if the characteristics of this model are to be interpreted in a clinical context, then it is
necessary to link the concentration of cytokines to a measurable disease indicator. Ideally,
we would like to link the model results to clinical data of cytokine levels over time in
individuals with early and late RA. Practical considerations, including the short half-life
of cytokines and the difficulty of extracting synovial fluid from the joint, indicate that
this type of data is difficult to obtain in humans. It may be possible to collect similar
data from animal models or, alternatively, we may be able to use other types of clinical
data. The inflammatory marker C-reactive protein (CRP) is routinely used by clinicians
as a measure of disease activity in RA. However, the variation between individuals is
large and the link between the cytokine level and CRP level or inflammation is as yet
unclear. That said, in the majority of cases we identify from our model, the interpretation
is very clear. We either have low levels of p indicating health or high levels of p indicating
disease. It is only when the levels are intermediate that we are unable to define a clear
threshold between health and disease. While there is no precise link between model
variables and specific disease markers, the interactions in the model are well established
and the predictions are robust to variations in parameter values and functional forms.
It would ultimately be desirable to have a model that includes a number of specific
cytokines and measurable disease markers to allow a clear link between model behaviour
and disease activity. This would give us a better idea of how cytokine levels influence
disease manifestations and would provide a clearer definition of health and disease.

Appendix A. Hill coeffients

So far we have taken all the Hill coefficients (m1, m2 and m3) to be 2. In this section, we
will justify this choice by examining some other possibilities and considering the effect
these would have on the model.

dp 1 p™
- _ 13
i ’Yp+1+am2( 1+0421+pm1) (13)
da pm3
= S 14
7 a+ Qay s + ps (14)

The Hill coefficients from the functions ®(p),¥(P) and ©(p) also appear in the non-
dimensionalized equations in the form of (A.1A.2). There are three main alternatives to
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the assumption we have made;firstly that all the coefficients are the same but are some
value greater than 2; secondly that all the coefficients are 1 or finally that we have some
combination of different coefficients for the different terms in the model.

A.1 Hill coefficients my, my, m3 > 2

For coefficients greater than 2 the qualitative shape of the Hill function does not change;
only its steepness does. This means that, for mq, ms, mg > 2, the nullclines of the system
will cross in a similar manner, and we expect qualitatively similar behaviour, with the
stability of the steady states and the types of bifurcations unchanged. The only change we
would expect is alterations in the values of parameters at which the various bifurcations
occur.

A.2 Hill coefficient m1 = m2 = m3 =1

Since the shape of the Hill function when the coefficient is 1 is different from when it is
greater than 1, the behaviour of the model is also likely to change. In this situation, the
model equations become

dp 1
o - 1
o 7p+1+a(061+0621+p) (15)
da
R 1
di a—l—a4a3+p ( 6)
which gives the nullclines
Qup
= N,(P) = 17
a=N(P)= a7)
a = NQ(p) _ p(al + 042) +aq 1 (18)

p(1 + p)

As in the original model, N1 is monotonically increasing. However, now N2 is mono-
tonically decreasing in p and hence there can be no more than a single steady state.

A.3 Mixed Hill coefficients

So far we have only considered situations where all three Hill coefficients are 2 or equal
to 1, but the coefficients are independent and could have different values. Since values
greater than 2 behave the same as a value of 2, we only need to consider combinations
of 1 and 2. Also, if we look at the nullcline N1, it is a monotonically increasing function
regardless of the value of m3, and so we need only look at two situations: m1 = 2, m2 =
m3 =1and ml =1, m2 =2 m3 = 1.

In the first case, when m1 = 2, m2 = m3 = 1, N2 becomes

2
a:N2<p):p(041+042)+041_1 (19)

p(1+p?)
This is the same as f (p) in Appendix C and has two real, positive turning points,
meaning that we can have either one or three steady states. This exhibits similar be-
haviour to the original model except that the steady states tend to occur at larger values

of both p and a.
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In the second case, when m1 = 1, m2 = 2 and m3 = 1, N2 becomes

a = Na(p) =/ f(p) (20)

where

plag + o) + g
p(1 + p)

Here f (p) is monotonically decreasing, so that N2 must also be monotonically decreas-
ing in the positive quadrant, and can cross N1 only once, giving exactly one steady state.
This situation is similar to the case when all the coefficients are 1 and exhibits similar
behaviour. Essentially, m1 must be greater than 1 to give bifurcations and bistability in
the model i.e. strong feedback in p is required.

flp) =

—1 (21)

Appendix B. Parameter values

Throughout this work we explore the behaviour of the system by looking at different pa-
rameter values and so it is useful to have some idea of the values that would be reasonable.
We can gain some insight into this by examining the definitions of the parameters.

We define by v = dp/da the relative rate of clearance and it is the ratio of the pro-
inflammatory to anti-inflammatory cytokine degradation rates. If we assume that these
degradation rates are likely to be similar, then we would expect v to be close to 1.

We denote by a3 the ratio of the EC50 of the anti-inflammatory production to the
EC50 of the pro-inflammatory production. Since we require anti-inflammatory molecules
to down-regulate the proinflammatory response, we would expect these to have reasonably
similar values, and hence we would expect as to be of order 1.

We denote by s the maximum pro-inflammatory cytokine production rate and we
would expect this to be of the same order as the maximum anti-inflammatory cytokine
production rate ay. Through numerical analysis and examination of the nullclines, we can
see that if ay and ay are of a greater order of magnitude than the other model parameters,
the model only has a single unstable steady state with a stable limit cycle, indicative of
disease. Since this is unlikely to be representative of either healthy individuals or RA
individuals, we will consider parameter values for ay and «y of order 1, similar to the
other parameters, which allows a greater range of behaviours.

We denote by «a; the background level of pro-inflammatory cytokine production. To
have an effective response to infection and injury, the background level of cytokines must
be much smaller than the event stimulated production, and hence «; needs to be small,
and should be much smaller than .

It has not been possible to obtain more accurate parameter values from the literature,
since we are not able to measure these rates in vivo and there is no appropriate in vitro
data for RA. However, this work in ongoing and we hope to be able to produce better
parameter estimates from experimental data in the future.

Appendix C. Number and stability of steady states

The nullclines of the system (2.4), (2.3), respectively, are as follows:
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oyp

a= N, (P) = P (22)
B _plantas)+an
a=Nalp) = (1 + p) (28)
Where:
() :P2(041+Oé2)+041 1 (24)

vp(1+p?)

We cannot find the steady states of this system analytically but, by looking at the
turning points of each nullcline, we can identify how many possible steady states there
may be. Here N1(p) is simply an increasing Hill function and hence has no turning points
and always goes through the point (p, a) =(0, 0). The number of turning points of N2(p)
cannot be found analytically but since we need only consider real positive values of p and
a, we can see that the number of turning points of N2(p) will be equal to the number of
turning points in f (p).

Differentiating f (p) shows that it has four possible turning points.

B \/5 \/(Oél + &2)((&2 — 2@1) + — Oé% — 80&2061)
N 7 o1 + Qo

p (25)

V2 \/(al + az)((ag — 2aq) + —y/a3 — 8as)
_7 a1 + Qg

. (26)

We see that p will always be either negative or complex in (C.2), leaving only two
possible turning points. If ay < 8y, then both these points will be complex. This means
that N2 will be a monotonically decreasing function and will cross N1 only once, giving
a single steady state. Otherwise, f (p) and consequently N2 will have two turning points
and so will cross N1 three times, giving a maximum of three steady states. It is not
possible to find the stability of the steady states analytically, but the Jacobian A, shown
below, does give us some information regarding the stability:

2a —2a 2
PO it v el A el G R ),
200z =

From this the trace and the determinant of the system are, respectively,

20 p
TraceA = —y -1 27
race 1+ a2 (1 T p2)2 Y ( )
DetA 20 P g+ P ) v ) (28)
(& = — (0% « (% —
L R S N I R N R OE

We can see that when p 1 and a 1, then Trace A = v1 and Det DetA = v , and so,
for a small p and a, Sy will be stable. At some point, for steady states at larger values
of p and a, the steady state loses stability. For very large values of p, Trace A =1 and
DetA =~ ~ ; so S5 is stable for large values of p. The exact thresholds for the loss of
stability depend on both the variable and parameter values and cannot be determined
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analytically; however, numerical simulation reveals that in the parameter ranges we are
interested in, Sy is always stable, S; is always unstable and S, can be either stable or
unstable.

As an exception, there is one case in which a steady state and stability can be de-

termined analytically: when ay is zero. We can see from the nullclines that if ay is zero

(i.e.

there is no background proinflammatory cytokine production), then there is a steady

state at (p, a) = (0, 0). Examining the trace and determinant in this case gives Trace
A = ~1, which will always be negative and DetA = ~ , which will always be positive,
meaning that the steady state must be stable.
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