Difference between revisions of "Team:Newcastle/HP/transformandtranslate"

Line 1: Line 1:
 
{{Newcastle5}}
 
{{Newcastle5}}
 
<html>
 
<html>
<script src="https://2017.igem.org/Team:Newcastle/Bradleytest/js/imagescalerjs?action=raw&amp;ctype=text/javascript"></script>
 
  
 
<body style="background-color:#efffff">
 
<body style="background-color:#efffff">

Revision as of 12:43, 31 August 2017

W3.CSS Template

Transform and Translate

A blog investigating science communication. Linking linguistics to Synthetic Biology

Having a blast at Big Bang!

August 24, 2017

Friday 14th July saw the North East Big Bang fair, a science fair hosted by Northumbria Uni, arrive in Newcastle. Thousands of local primary and secondary school pupils and teachers attended- it was a fantastic event to get children engaging with STEM outside of lessons, inspiring them about how the things they learn in the classroom work in the world, and how they can be involved in this.

Spreading Synthetic Biology
As Newcastle iGEM team, we attended Big Bang with a few aims. Primarily, we wanted to spread knowledge of synthetic biology and get younger students excited about the field! Alongside this, we saw the opportunity to discover how much is known about synthetic biology and the impact it can have on the world, from the perspective of the scientists of the future. This involved learning more about how the current curriculum tackles synthetic biology, how science is taught in schools, and discovering how students actively participate in science and the conversation surrounding it.

Build your own Biosensor
As an interactive activity for the students, we had a make your own biosensor station. By choosing any input, and any output they desired, we got younger children to engage with our project on a basic level, and found this to be an effective way of explaining what a biosensor was. Things that students chose to sense included food, happiness, and pain!

Picture this
We had loads of fun and interesting conversations, with both students and teachers. After we got some discussion and debates started, we got the students and teachers to write down their thoughts and draw some doodles… As is obvious, there was a huge range of different responses for each question. There were responses that were creative, cute and amusing– someone suggesting synthetic biology could be used to make smaller elephants a personal highlight! It was also so great to see students making use of the knowledge they already had to inform them to engage with a more alien area. One student was interested in artificial organs, and they talked about how synthetic biology could be applied to this! On the whole, it was quite disheartening to learn that barely anyone had even heard of synthetic biology, let alone thought they knew what it was. Mostly, once the prompt ‘well, have you heard of genetic engineering?’ was given, there was a light bulb moment and the comments would be more free flowing. We were glad to spread awareness of synthetic biology with the discussions we initiated!

Science isn’t just for the Classroom
While it may not be with synthetic biology specifically, it was clear that students actively engaged with science outside of the classroom, and enjoyed doing this. Seeing how the children were engaging with other areas of science gives some ideas of where synthetic biology coverage should target. The pupils said talked about reading news articles, watching TV programmes, taking an interest in adverts, attending after school clubs…the list goes on! It was great to see a few children had even investigated further on issues they had seen and taken an interest in- one girl told me about coming across a story about nuclear bombs, before finding out some more videos to watch on the subject herself because she was so interested!

Always listen to your Teachers
The teachers were all really happy to speak to us about how science is taught in schools, and gave lots of interesting comments. What came out most was that teaching can be too focused on reaching targets, or teaching set things to reach certain grades in exams. This leaves little time for independently led learning from the students, or developing their own ideas, or investigating further a topic they have been particularly interested in. We established some contacts that were really keen for us to go and visit them to get the pupils interested in science in a more applied context- they loved how we were focusing on a real world problem and wanted to share our work with all generations.


Is this the real life? Is this just fantasy?

August 19, 2017


Newcastle University has an excellent school of Language, Communication and Education Sciences, with loads of fantastic staff working in applied linguistics. I’ve been fortunate enough to speak with Dr Spencer Hazel, a Senior Lecturer in Applied Linguistics & Communication. Dr Hazel had loads of different advice about his experiences of science communication, and made me think about aspects that had never come to my mind!

Science and the Media
I was really eager to speak to Spencer about his British Science Association Media Fellowship. With the support of the British Science Association, Spencer spent a month in 2016 working as a science writer for the Times. By hearing about this first-hand experience of working in science journalism, I learnt about the process involved in publishing a story about science, which I was pretty ignorant to beforehand.
I was surprised to learn that the science department at the Times was made up of only two main people, neither of which has a background specifically in a science based subject. When writing, information is first received in the form of a press release– the key points condensed into a summary. The job of a science journalist is to then turn this into an interesting, engaging story that people want to read! Spencer talked about using a structure that people will follow being key to science communication- make sure your writing answers questions in a logical order… Who did it? What did they do? Why does it matter?

Multimedia Inspiration
Talking with Spencer was also really useful for making me aware off all the different methods we can, and should, use for engaging the public with science- not just written communication. Events such as the British Science Festival are great for more interactive engagement, were people can see how science is impacting their world in a more physical environment. As the Newcastle University iGEM team, made use of this interactive inspiration when we visited the Big Bang fair.
I also really enjoyed seeing a video of Dr Mark Lewney performing a version of Bohemian Rhapsody, with his own lyrics that taught the audience about physics. By communicating in a fun way, that lots of people can relate to, an audience which may before have been disengaged can be reached. Have a look at Dr Lewney in action via the video link
–> https://www.youtube.com/watch?v=rz1b6kmXifY

Engagement is the Key
One of the most important things I took away from speaking to Spencer was that it is not just communication between scientists and the public that influences engagement, but also a more deeply embedded relationship. Sometimes, an image of disparity can exist between new technologies and the public– the people these technologies will ultimately effect. It’s completely understandable to be disengaged with new technology, even distrustful of it, if you feel like it is being controlled in a way you do not understand, or developed in a process you have no involvement in. Thus, increasing and encouraging engagement with a project from the people it will affect, from its start to end stages, is vital for its success. This advice has influenced our iGEM project- we are having discussions with stakeholders and end users throughout the design and development process, and completing public engagement activities.

Thank you for the great conversation and the inspiration, Spencer!.


Dissecting the Dialogue

A barrier between Science and the public? August 11, 2017


After learning about the gap between biosensor production and actual biosensor use, my thoughts jumped to language. Could a deficiency in communication between developers and users of biosensors could be a contributing factor to the lack of commercial success? Also, on a more general level, how is science communicated with the public?
This summer, while most of the iGEM team members work on transformation with DNA in the lab, I’ll be in the library focusing on how science is transformed from the petri dish to paper. As the cells that are cultured are undergoing the process of translation to make their proteins, I’ll be investigating what it takes to translate a science project into a commercial success.
Science communication is a really broad and interesting field- over the next few weeks I’m going to use techniques such as discourse analysis and corpus linguistics to study it, and discuss the research here. By exploring the field of science communication, we hope to achieve a better understanding of how synthetic biology, and projects born from it, can impact the world!


Making Sense of Biosensors

The focus of team Newcastle in 2017, August 11, 2017


For this year’s iGEM competition, team Newcastle are focusing on biosensor development, by creating sensynova: a modular and multicellular biosensor toolkit. Biosensors are used as detection devices, reacting to certain environments and producing an output to indicate the presence of a substance. However, developing biosensors takes a lot of time and resources, and most do not make it to commercial use. By creating a toolkit, where devices can be combined and reused to make your own biosensor, Newcastle iGEM team aim to ameliorate these issues.


“The limits of my language means the limits of my world” -Ludwig Wittgenstein

Quote of the Day, August 10, 2017


Humans’ ability to use language to communicate is arguably one of our most important defining characteristics. As an English Language and Literature student, I love investigating how and why we adapt language to different situations. When offered the chance to join Newcastle University’s 2017 iGEM team, I saw the opportunity to explore language use in a context I had yet to properly consider- in the world of science.


I-What?

iGEM: International Genetically Engineered Machine, August 9, 2017


iGEM is a worldwide competition where teams from university, high school, and community labs use synthetic biology to address a real-world challenge (synthetic biology being an area of science where engineering principles are applied to biology, making new systems). Alongside lab work, where team members use genetic engineering techniques to create a biological system, it is also important to consider whether the project is ‘good for the world’, thinking of it in a social context. Ethics, safety, sustainability… in short, how does the project transfer from the lab to life? This area of iGEM is called Human Practises, also concerned with how the public engages with the project, and with synthetic biology as a field.
It’s easy to think of science and humanities as wholly disparate disciplines, but iGEM, and in particular the questions raised in Human Practises, provides the perfect opportunity to show how important it is for them to interact, and exhibit the benefits of a multidisciplinary approach. Our Newcastle iGEM team is made of students with really diverse backgrounds- biological sciences, computer science, agriculture… to name a few! As an English student, I can hopefully offer another new perspective.

Zoe Wilson

Second Year Undergraduate English Literature and Language student at Newcastle University, who has joined the iGEM team to investigate the linguistics used in science communication.