Difference between revisions of "Team:UESTC-China/result"

Line 304: Line 304:
 
<br /><p class="subHead"><span class="glyphicon glyphicon-send"></span><b> 转基因植株阳性检测</b></p>
 
<br /><p class="subHead"><span class="glyphicon glyphicon-send"></span><b> 转基因植株阳性检测</b></p>
 
<br /><p>经过农杆菌侵染后,成功导入外源基因,具有卡那霉素抗性的烟草在大约3周后开始出牙,经扩大培养后多株T0代烟草再生出来。我们提取了存活下来且长势良好的T0代烟草基因组DNA,并设计了多对引物对相应目的基因进行PCR扩增。同野生型相比,我们在T0代转基因烟草中成功扩增出了目的条带,初步说明我们的表达系统成功工作且我们获得了转基因阳性植株。</p>
 
<br /><p>经过农杆菌侵染后,成功导入外源基因,具有卡那霉素抗性的烟草在大约3周后开始出牙,经扩大培养后多株T0代烟草再生出来。我们提取了存活下来且长势良好的T0代烟草基因组DNA,并设计了多对引物对相应目的基因进行PCR扩增。同野生型相比,我们在T0代转基因烟草中成功扩增出了目的条带,初步说明我们的表达系统成功工作且我们获得了转基因阳性植株。</p>
<p class="pic"><img src="" style="width: ;"/></p>
+
 +
<br /><p class="pic"><img src="https://static.igem.org/mediawiki/2017/2/2e/T--UESTC-China--result_1.png" style="width: 80%;"/></p>
 +
<p>Fig.5 PCR assays of NT carrying piGEM2017-001. M, positive control. WT, negative control (wild type NT).</p>
 +
 +
<br /><p class="pic"><img src="https://static.igem.org/mediawiki/2017/c/c2/T--UESTC-China--result_2.png" style="width: 80%;"/></p>
 +
<p>Fig.6 PCR assays of NT carrying piGEM2017-002. M, positive control. WT, negative control (wild type NT).</p>
 +
 +
<br /><p class="pic"><img src="https://static.igem.org/mediawiki/2017/7/70/T--UESTC-China--result_3.png" style="width: 80%;"/></p>
 +
<p>Fig.7 PCR assays of NT carrying piGEM2017-003. M, positive control. WT, negative control (wild type NT).</p>
 +
 +
<br /><p class="pic"><img src="https://static.igem.org/mediawiki/2017/7/76/T--UESTC-China--result_4.png" style="width: 60%;"/></p>
 +
<p>Fig.8 PCR assays of NT carrying piGEM2017-004. M, positive control. WT, negative control (wild type NT).</p>
 +
 +
 +
 +
<br /><p class="pic"><img src="https://static.igem.org/mediawiki/2017/f/f7/T--UESTC-China--result_5.png" style="width: 60%;"/></p>
 +
<p>Fig.9 PCR assays of NT carrying piGEM2017-005. M, positive control. WT, negative control (wild type NT).</p>
 +
<br /><br />
 
 
 
<br /><p class="subHead"><span class="glyphicon glyphicon-send"></span><b> RT-PCR检测</b></p>
 
<br /><p class="subHead"><span class="glyphicon glyphicon-send"></span><b> RT-PCR检测</b></p>
 
<br /><p>为了确认DhaA, HheC, EchA以及CKX3这四种外源基因可以在烟草细胞中正常转录,同时为了确定上述基因在烟草细胞中的转录水平,我们提取了烟草植株中叶片和根部的RNA进行RT-PCR检测并选择了烟草内源基因Actin作为RT-PCR内参。同野生型相比,转基因烟草的cDNA均扩增出了相应大小的条带,说明以上四种外源基因在烟草中成功转录。同时,pYK10启动子启动的外源基因表达piGEM2017-02X在根部组织的cDNA扩增出了明显条带,而叶片中没有或弱,说明pYK10成功将DhaA, HheC, EchA以及CKX3这四种外源基因表达在了烟草根部,达到了预期的效果。</p>
 
<br /><p>为了确认DhaA, HheC, EchA以及CKX3这四种外源基因可以在烟草细胞中正常转录,同时为了确定上述基因在烟草细胞中的转录水平,我们提取了烟草植株中叶片和根部的RNA进行RT-PCR检测并选择了烟草内源基因Actin作为RT-PCR内参。同野生型相比,转基因烟草的cDNA均扩增出了相应大小的条带,说明以上四种外源基因在烟草中成功转录。同时,pYK10启动子启动的外源基因表达piGEM2017-02X在根部组织的cDNA扩增出了明显条带,而叶片中没有或弱,说明pYK10成功将DhaA, HheC, EchA以及CKX3这四种外源基因表达在了烟草根部,达到了预期的效果。</p>
<p class="pic"><img src="" style="width: ;"/></p>
+
 +
<br /><p class="pic"><img src="https://static.igem.org/mediawiki/2017/c/c3/T--UESTC-China--result_6.png" style="width: 60%;"/></p>
 +
<p>Fig.10 RT-PCR analysis of expression levels of DhaA31 gene in several transgenic NT carrying piGEM2017-001. NT tubulin, internal control. M, positive control. WT, negative control (wild-type NT).</p>
 +
 +
<p class="pic"><img src="https://static.igem.org/mediawiki/2017/9/90/T--UESTC-China--result_7.png" style="width: 60%;"/></p>
 +
<p>Fig.11 RT-PCR analysis of expression levels of HheC gene in several transgenic NT carrying piGEM2017-002 and piGEM2017-005. NT tubulin, internal control. M, positive control. WT, negative control (wild-type NT).</p>
 +
 +
<p class="pic"><img src="https://static.igem.org/mediawiki/2017/3/3f/T--UESTC-China--result_8.png" style="width: 60%;"/></p>
 +
<p>Fig.12 RT-PCR analysis of expression levels of EchA gene in several transgenic NT carrying piGEM2017-004. NT tubulin, internal control. M, positive control. WT, negative control (wild-type NT).</p>
 
</div>
 
</div>
  

Revision as of 05:36, 21 September 2017

Team:UESTC-China/Result

1.Plasmid Construct


Vector construction for the expression of DhaA, HheC, EchA in 烟草


为了将三种从微生物中分离出来的酶表达在烟草中,我们首先对三种酶的基因在双子叶植物中进行了密码子优化,而后应用2A肽及Golden Gate策略,我们将DhaA, HheC, EchA 这三种酶的基因构建在由组成型启动子pCaMV35s 启动的植物表达载体中,筛选压为NptII,农杆菌抗性为卡那霉素。


Before DNA sequencing, those vectors were verified by restriction enzyme digestion. After electrophoresis analysis, the samples which contained all desired bands were selected and sent for sequencing. The sequencing results showed that all the above constructed vectors were successful.


Vector construction for the root expression of DhaA, HheC, EchA in 烟草


为了将三种酶富集表达在植物根部获得更好的降解TCP效果,来自拟南芥的植物根特异性启动子pYK10 被我们选用,替换掉植物组成型启动子pCaMV35s。同时为了强化烟草根部发育,可以表达细胞分裂素的基因CKX3在经过双子叶植物密码子优化之后同样构建在上述这套植物表达系统中。


Before DNA sequencing, those vectors were verified by restriction enzyme digestion. After electrophoresis analysis, the samples which contained all desired bands were selected and sent for sequencing. The sequencing results showed that all the above constructed vectors were successful.


Vector construction for the extracellular expression of DhaA, HheC, EchA in 烟草


为了将烟草表达出的三种酶运输到细胞外发挥作用,我们选择植物蛋白细胞壁定位信肽AO-S帮助实现这一目的,同时AO-S还具有稳定蛋白表达的功能。基于此,AO-S与三酶共表达的质粒被构建出来。最后为了能直观确认我们所涉及的多基因植物表达系统能否发挥作用,GUS报告基因也被我们设计构建进了骨架载体当中构建了如下质粒。


Before DNA sequencing, those vectors were verified by restriction enzyme digestion. After electrophoresis analysis, the samples which contained all desired bands were selected and sent for sequencing. The sequencing results showed that all the above constructed vectors were successful.

2.烟草转化


为了将外源基因导入烟草细胞中并进行稳定表达,我们应用农杆菌侵染来获得转基因烟草。首先通过农杆菌转化将植物表达载体转入农杆菌中,其次再通过农杆菌侵染将T-DNA段整合到植物染色体组上进行稳定表达。农杆菌侵染分为预培养、侵染、筛选、再生等四个阶段,整个周期约6周,如下图。

3.转基因植株阳性检测及RT-PCR检测


转基因植株阳性检测


经过农杆菌侵染后,成功导入外源基因,具有卡那霉素抗性的烟草在大约3周后开始出牙,经扩大培养后多株T0代烟草再生出来。我们提取了存活下来且长势良好的T0代烟草基因组DNA,并设计了多对引物对相应目的基因进行PCR扩增。同野生型相比,我们在T0代转基因烟草中成功扩增出了目的条带,初步说明我们的表达系统成功工作且我们获得了转基因阳性植株。


Fig.5 PCR assays of NT carrying piGEM2017-001. M, positive control. WT, negative control (wild type NT).


Fig.6 PCR assays of NT carrying piGEM2017-002. M, positive control. WT, negative control (wild type NT).


Fig.7 PCR assays of NT carrying piGEM2017-003. M, positive control. WT, negative control (wild type NT).


Fig.8 PCR assays of NT carrying piGEM2017-004. M, positive control. WT, negative control (wild type NT).


Fig.9 PCR assays of NT carrying piGEM2017-005. M, positive control. WT, negative control (wild type NT).




RT-PCR检测


为了确认DhaA, HheC, EchA以及CKX3这四种外源基因可以在烟草细胞中正常转录,同时为了确定上述基因在烟草细胞中的转录水平,我们提取了烟草植株中叶片和根部的RNA进行RT-PCR检测并选择了烟草内源基因Actin作为RT-PCR内参。同野生型相比,转基因烟草的cDNA均扩增出了相应大小的条带,说明以上四种外源基因在烟草中成功转录。同时,pYK10启动子启动的外源基因表达piGEM2017-02X在根部组织的cDNA扩增出了明显条带,而叶片中没有或弱,说明pYK10成功将DhaA, HheC, EchA以及CKX3这四种外源基因表达在了烟草根部,达到了预期的效果。


Fig.10 RT-PCR analysis of expression levels of DhaA31 gene in several transgenic NT carrying piGEM2017-001. NT tubulin, internal control. M, positive control. WT, negative control (wild-type NT).

Fig.11 RT-PCR analysis of expression levels of HheC gene in several transgenic NT carrying piGEM2017-002 and piGEM2017-005. NT tubulin, internal control. M, positive control. WT, negative control (wild-type NT).

Fig.12 RT-PCR analysis of expression levels of EchA gene in several transgenic NT carrying piGEM2017-004. NT tubulin, internal control. M, positive control. WT, negative control (wild-type NT).

4.GUS染色


β- D - 葡糖醛酸酶(GUS基因编码)是从大肠杆菌K- 12 菌株分离出的一种酸性水解酶, 能催化许多β-葡萄糖苷酯类物质的水解。在以X-gluc为底物的组织化学染色法中,含有GUS基因的植株将会显出蓝色。我们将含有GUS基因的转基因烟草(piGEM2017-02X)与野生型同时进行组织化学染色24h后发现,转基因烟草成功被染成蓝色,证明我们设计的基因表达系统在烟草中正常工作。同时,由pYK10启动的piGEM2017-02X 成功在根部观察到了密集的蓝色而叶片及其他组织中相较于pCaMV35s启动的烟草全株表达外源基因明显弱,证明pYK10可以正常发挥根特异性表达的作用。

5.CKX3对植株影响的观察


在全株植物细胞中过表达CKX系列基因会使细胞分裂素生产增多,从而促进根部生长,但相应的它会抑制茎的分化,影响植株正常发育。为了避免上述情况发生,我们选择应用植物根特异性表达启动子特异启动CKX3基因,将其表达在烟草根部,既促进烟草根部发育又可以减弱对烟草生长发育的影响。我们选取长势相同的四种转基因植株piGEM2017-0XX以及野生型烟草同时开始培养,给予相同的环境及营养,培养一段时间发现,pCaMV35s启动的含CKX3基因的烟草长势弱,而由pYK10启动的含CKX3基因的烟草长势良好且根部同野生型相比明显更为粗壮,说明CKX3确实达到了我们预期的效果。

6.气相色谱


为了证明三种酶在植物体内能正常表达,我们利用气相色谱法检测了三种酶的酶活。色谱柱ZB-FFAP 30 m x 0.25 mm x 0.25 Gm (Phenomenex, USA)能够检测到此三酶链式反应中5种反应物,因此在酶活检测中,能够得到底物随时间减少以及产物随时间增加的折线图,从而证明转基因植株正常工作。


我们首先在35S启动子的三种单基因植株中分别检测了三种酶的酶活,得到的产物生成曲线如下,这证明了三种单基因植株都能正常工作(???),为后来三基因植株及根部表达和其他优化的正常工作打好了基础。(转化效率的问题)


接下来我们进行双基因和三基因植株的酶活检测,在研磨液中加入底物TCP,通过气相色谱检测中间产物的变化,来确定转基因植株正常工作,得到的曲线如下。(待完善)


对于根部特异性启动子,由于只在根部表达相关酶,叶片研磨的方法不再适用,所以我们采用水培的方法。在含有一定量TCP的培养液中培养转基因植株,定期从培养液中取样,用气相色谱进行检测,得到了中间产物随时间变化的曲线,如下图。


最后,对于三酶降解TCP的终产物甘油,我们使用色谱柱DB-5 column (L60 m×i.d. 0.25 mm and df0.25 _m thin coating film) (Supelco,Bellefonate, PA, USA).进行专门的检测。对35S启动的三基因植株,我们使用叶片研磨的方法,最终在反应体系中检测到了甘油的生成,得到甘油随时间变化的曲线如图。


(注:每个株系各有三组重复,进行统计分析)

7.水培及土培






8.Work Going On