Difference between revisions of "Team:INSA-UPS France/Description"

Line 1: Line 1:
{{INSA-UPS_France/CSS}}
+
{{INSA-UPS_France/Links_new}}
{{INSA-UPS_France/Links}}
+
{{INSA-UPS_France/Style_new}}
 +
{{INSA-UPS_France/Header_new}}
  
<!-- HEADER -->
 
  
{{INSA-UPS_France/Header1}}
 
Description
 
{{INSA-UPS_France/Header2}}
 
 
<!-- CONTENT -->
 
 
<html>
 
<html>
 +
<style>
  
<style>
+
main{
p{
+
   position:relative;
font-size: 20px !important;
+
   overflow: auto;
font-family: "Scope One", serif !important;
+
   height:100%;
}
+
aside{
+
   position:absolute;
+
   top:1020px;
+
   right:72%;
+
 
}
 
}
article_container{
+
 
width:60% !important;
+
.main_content{
   margin:20px 10% 50px auto !important;
+
  position:fixed;  
 +
   top:90px;
 +
  right:0px;
 +
  left:0px;
 +
  bottom:0px;
 +
  overflow:auto;
 +
  background-image: linear-gradient(45deg, #4296c1 0%, #e4efe9 100%);
 
}
 
}
  .img_center, .image_50, .image_60, .image_80, .image_90{
+
.middle_container{
    display:block;
+
  padding-bottom: 80px;
    margin:0px auto;
+
}
  }
+
.section_container{
  .image_50{
+
  width:90%;
    width:50%;
+
   min-height:100%;
   }
+
   margin:0px auto;
  .image_60{
+
   position:relative;
    width:60%;
+
}
   }
+
@media screen and (max-width: 900px){
  .image_80{
+
     .section_container{
    width:80%;
+
      width:100%;
   }
+
     }
  .image_90{
+
    width:90%;
+
  }
+
  .first_image_container{
+
    background:none;
+
    text-align:center;
+
    margin:0px auto !important;
+
  }
+
  .first_image_container img{
+
     height:600px;
+
  }
+
  .anchor_offset{
+
    position:relative;
+
     top:-70px;
+
 
   }
 
   }
 +
section{
 +
  background-color: rgba(255,255,255,0.2);
 +
  padding:3% 10%;
 +
  text-align: justify;
 +
  border-radius:20px;
 +
  position:relative;
 +
  margin-top:100px;
 +
}
 +
 +
.main_title{
 +
  height:300px;
 +
  font: 700 4em/1.5 'Quicksand', sans-serif;
 +
  position:relative;
 +
  letter-spacing: 0.1em;
 +
  z-index:10;
 +
  margin-bottom:50px;
 +
  width:100%;
 
    
 
    
  .table_img{
+
}
    width:100%;
+
.main_title > div{
   }
+
  width:100%;
  .table_img td{
+
   position:absolute;
    text-align: center;
+
   bottom:-10px;
   }
+
   background:rgba(255,255,255,0.2);
  sup a{
+
   border-radius: 20px;
    color:#68829e;
+
}
    text-decoration: none;
+
    font-weight: bold;
+
  }
+
   sup a:hover, sup a:active, sup a:visited{
+
    color:#505160;
+
  }
+
  ol li{
+
    padding-left: 20px;
+
    font-style: italic;
+
  }
+
  ol li a{
+
    color:#68829e;
+
    font-weight: bold;
+
  }
+
  ol li a:hover, ol li a:active, ol li a:visited{
+
  color:#505160;
+
  }
+
  .not_italic{
+
    font-style: normal !important;
+
   }
+
  table td, table tr, table{
+
  border:none !important;
+
  }
+
</style>
+
  
   <div class="container_section" >
+
.main_title p{
  <section>
+
   padding:30px;
 +
}
 +
 
 +
.main_title img{
 +
  position:absolute;
 +
  right:0;
 +
  width:400px;
 +
  bottom:-25px;
 +
}
 +
/*for now*/
 +
sup{
 +
  display: none;
 +
}
 +
</style>
 +
 
 +
<!-- C O N T E N T -->
 
    
 
    
   <div class="article_container no_aside first_image_container">
+
   <main class="site-main">
    <img src="https://static.igem.org/mediawiki/2017/archive/b/b8/20170824132548%21T--INSA-UPS_France--Description_croco_map.png" alt="">
+
  <div class="main_content">
   </div>
+
   <div class="middle_container">
  
   <div class="article_offset" id="a1">
+
   <div class="section_container">
  <div class="article_container">
+
  <h3>Cholera: still a widespread disease</h3>
+
  <article>
+
    <p>
+
      <b>Cholera is a worldwide diarrheal disease, caused by the ingestion of <i>Vibrio cholerae</i> in contaminated water.</b> Nowadays cholera is still occurring in developing countries, war zones and natural disasters zones. The WHO reported over <b>1 million cases over the year 2015</b> and the mortality was around 1%<sup><a href="#ref1">1</a></sup>. In April 2017, a <b>cholera epidemic burst in Yemen</b>. In August, more than 500,000 cases have already been identified. These epidemics and crisis are sometimes still surpassing the abilities of the non-governmental organizations to help populations<sup><a href="#ref2">2</a></sup> in  the long-term. Drinking water shortages and the lack of hygienic facilities in developing countries are the main reasons explaining current outbreaks.
+
  
     </p>
+
     <div class="main_title">
  </article>
+
      <div>
  </div>
+
        <p>Description</p>
  </div>
+
      </div>
 +
      <img src="https://static.igem.org/mediawiki/2017/e/e8/T--INSA-UPS_France--description_croco.png" alt="">
 +
    </div>
  
  <div class="article_offset" id="a2">
+
     <style>
  <div class="article_container">
+
     /* ASIDE NAV */
     <h3>Current solutions</h3>
+
       .left_container{
     <article>
+
         width:25%;
      <h4>Therapeutics</h4>
+
        position:absolute;
       <p>
+
        top:400px;
         While direct preventive methods such as vaccination are currently used, they have been shown to have low efficiency<sup><a href="#ref3">3</a></sup>. The most used treatment is the <b>Oral Rehydratation Solution (ORS)</b>, composed of salts and glucose in order to fight the extreme loss of water due to cholera. It can be drunk or injected intravenously depending of the patient and his symptoms<sup><a href="#ref4">4</a></sup>.
+
         padding:0;
      </p>
+
        display:inline-block;
      <table class="table_img">
+
        font-family: 'Quicksand', sans-serif;
         <tr>
+
        font-weight: 400;
          <td>
+
        font-size:16pt;
            <img src="https://static.igem.org/mediawiki/2017/c/c8/T--INSA-UPS_France--Description-therapeutics_1.png" alt="" style="height:200px;">
+
         text-align: right;
          </td>
+
       }
          <td>
+
            <img src="https://static.igem.org/mediawiki/2017/1/1d/T--INSA-UPS_France--Description-therapeutics_2.png" alt="" style="height:200px;">
+
          </td>
+
         </tr>
+
       </table>
+
  
       <h4>Water treatment</h4>
+
       .aside-nav__item + .aside-nav__item{
       <p>
+
        margin-top:20px;
         Moreover, most of the detection or purification methods need professionals to be performed<sup><a href="#ref3">3</a></sup>. Currently the most efficient ways to eradicate  cholera from water include sodium hypochlorite treatment or filters use. These existing prevention methods are expensive and difficult to set up. Finally, the main curative method, rehydrating patient with intravenous salted water, does not wipe out the disease vector. Even if the ORS treatment is really efficient, it would be more convenient for people to use prevention methods. However people living  in remote villages don&rsquo;t have easily access to these systems and it can take them days to reach a camp to be cured. Thus, new methods of prevention and treatment have to be developed.  
+
       }
         That&rsquo;s why we decided to design  a system that treats water and is suitable for these situations.
+
      .aside-nav__item{
 +
         width:100%;
 +
        position:relative;
 +
      }
 +
      .aside-nav__item:after{
 +
        content:'';
 +
        border:solid #3377a8 3px;
 +
        position:absolute;
 +
        right:-30px;
 +
        top:40%;
 +
        width:12px;
 +
        height:12px;
 +
        border-radius: 12px;   
 +
        margin-left:20px;
 +
      }
 +
      .aside-nav__item.selected-item:after{
 +
        background:#3377a8;
 +
      }
 +
      .aside-fixed{
 +
        position:fixed;
 +
        top:100px;
 +
        width:22.5%;
 +
      }
 +
      .aside-nav__item a, .aside-nav__item a:focus, .aside-nav__item a:visited, .aside-nav__item a:hover{
 +
         text-decoration: none;
 +
        color:black;
 +
      }
 +
      .aside-nav__item a:hover{
 +
        font-weight: 700;
 +
      }
 +
    </style>
  
      </p>
+
    <div class="left_container">
       <table class="table_img">
+
    <div class="left_container__inside">
         <tr>
+
       <div class="aside-nav__item">
          <td>
+
      <a href="#a1" data-number="1">
            <img src="https://static.igem.org/mediawiki/2017/3/36/T--INSA-UPS_France--Description-treatment_1.png" alt="" style="height:200px;"">
+
         Combine to improve: a synthetic biology scale-up
          </td>
+
      </a>
          <td>
+
      </div>
            <img src="https://static.igem.org/mediawiki/2017/3/39/T--INSA-UPS_France--Description-treatment_2.png" alt="" style="height:200px;"">
+
      <div class="aside-nav__item">
          </td>
+
      <a href="#a2" data-number="2">
          <td>
+
        A core: prokaryotic eukaryotic communication
            <img src="https://static.igem.org/mediawiki/2017/d/d6/T--INSA-UPS_France--Description-treatment_3.png" alt="" style="height:200px;"">
+
      </a>
          </td>
+
      </div>
        </tr>
+
      <div class="aside-nav__item">
      </table>
+
      <a href="#a3" data-number="3">
 +
        A microbial consortium against cholera
 +
      </a>
 +
      </div>
 +
      <div class="aside-nav__item">
 +
      <a href="#a4" data-number="4">
 +
        Finding a sensor
 +
      </a>
 +
      </div>
 +
      <div class="aside-nav__item">
 +
      <a href="#a5" data-number="5">
 +
        Finding an effector
 +
      </a>
 +
      </div>
 +
      <div class="aside-nav__item">
 +
      <a href="#a6" data-number="6">
 +
        Our system
 +
      </a>
 +
      </div>
 +
    </div>
 +
    </div>
  
       <h4>Research effort in synthetic biology</h4>
+
    <style>
 +
    section img{
 +
      width:100%;
 +
    }
 +
    section h1{
 +
      font-family: 'Quicksand', sans-serif;
 +
      font-size:34pt;
 +
      margin-top:-60px;
 +
      text-align: right;
 +
    }
 +
    section p{
 +
      font-family: 'Merriweather', serif;
 +
      font-size:14pt;
 +
      font-weight: 300;
 +
      margin-top:20px;
 +
    }
 +
    .right_container{
 +
        width:70%;
 +
        margin-left:30%;
 +
    }
 +
    .article_offset{
 +
      margin-bottom:20px;
 +
      border: solid 1px transparent;
 +
    }
 +
    </style>
 +
 
 +
   
 +
    <div class="right_container">
 +
 
 +
    <div class="article_offset" id="a1"></div>
 +
    <section>
 +
       <h1>Combine to improve: a synthetic biology scale-up</h1>
 
       <p>
 
       <p>
         Recently, research teams started to focus on synthetic biology in order to find a way to deal with <i>Vibrio cholerae</i><sup><a href="#ref5">5</a>,<a href="#ref6">6</a></sup>. Additionally, some iGEM teams also took the challenge of detecting <i>V. cholerae</i>, using <i>E. coli</i> as a host for the quorum sensing system, but it seems that this strategy did not succeed<sup><a href="#ref7">7</a></sup> or showed mixed results<sup><a href="#ref8">8</a></sup>. Most of the iGEM teams intended to prevent the cholera infection thanks to <b>gene targeting</b> such as cleaving toxicity genes<sup><a href="#ref9">9</a></sup> or inhibiting specific genes on the pathogen<sup><a href="#ref10">10</a></sup>.  
+
         Nature offers us a wide variety of tools in order to sense precise chemical or physical parameters. For example, enzymes and receptors are specialized for unique or restrained range of molecule, or even for specific light wavelength.<sup>1,2,3</sup> Obviously, as mankind progressed in the comprehension of life science, he wanted to take advantage from this extreme diversity and specialization. Synthetic biology was born thanks to those expectations in the early of the twentieth century<sup>4</sup> and made quite notable breakthrough. However, most of those works were based on the insertion of a lot of DNA information on one single model, typically <i>E. coli</i>. We observed that all those informations are not always compatible with the use of a unique microbial chassis : although standard microbial models are quite modular, they have a particular membrane, specific pathways and different ways to do protein maturation.
 
       </p>
 
       </p>
    </article>
 
  </div>
 
  </div>
 
 
  <div class="article_offset" id="a3">
 
  <div class="article_container" id="a3">
 
    <h3>The crocodile, an unexpected helper</h3>
 
    <article>
 
      <img src="https://static.igem.org/mediawiki/2017/b/bd/T--INSA-UPS_France--Description-crocodile_helper.png" alt="" class="img_center image_80" style="max-width:600px;">
 
 
       <p>
 
       <p>
         <b>Non-salty water is the natural habitat of <i>V. cholerae</i><sup><a href="#ref21">21</a></sup></b>. Fortunatelty, Sobek, the Crocodile God of water and fertility which inspired us for our mascot Sobki, also likes those kind of environment. Indeed, crocodiles have an impressive immune system, that allows them to resist against lots of  diseases vectors infections<sup><a href="#ref22">22</a>,<a href="#ref23">23</a>,<a href="#ref24">24</a></sup>. We took from their amazing immune system  promising molecules: <b>antimicrobial peptides (AMP)</b> that have proven to have a good killing efficiency against <i>V. cholerae</i><sup><a href="#ref13">13</a>,<a href="#ref14">14</a></sup>.
+
         Why should we persist to use a single model when we have access to a wide diversity of organisms?
 
       </p>
 
       </p>
   
 
    </article>
 
  </div>
 
  </div>
 
 
  <div class="article_offset" id="a4">
 
  <div class="article_container">
 
    <h3>Our system : Croc'n Cholera</h3>
 
    <article>
 
 
       <p>
 
       <p>
         In contrast to current prevention systems, the iGEM INSA-UPS team of Toulouse would like to create <b>a low-cost and easy-to-use device that could be able to both detect and destroy cholera to treat water</b>. Our system implies interactions between three microorganisms:
+
         For our iGEM project, we decided to focus on the multi organisms aspect, making communication between prokaryotic and eukaryotic possible.
 
       </p>
 
       </p>
      <img src="https://static.igem.org/mediawiki/2017/5/51/T--INSA-UPS_France--Description-project_overview.png" alt="" class="image_80">
+
    </section>
  
       <h4>1. Sense</h4>
+
   
 +
    <div class="article_offset" id="a2"></div>
 +
    <section>
 +
       <h1>A core: prokaryotic-eukaryotic communication
 +
</h1>
 
       <p>
 
       <p>
         Our first goal was to <b>detect <i>V. cholerae</i> in water</b>. To do so, we used its <b>quorum sensing</b> property: at low concentration, <i>V. cholerae</i> CqsS/CAI-1 pathway isn&rsquo;t activated. AlphA is thus activated and HapR is inactivated (responsible for the bacterium virulence) thanks to a phosphorylation cascade. At high concentration, HapR makes <i>V. cholerae</i> virulent<sup><a href="#ref15">15</a></sup>.  
+
         Our first challenge was to design an eukaryote-prokaryote communication system, so we can have a standardized way of communication, with modulable input and output. This system answers to some of the synthetic biology current challenges<sup>8</sup> that are: device modularization and standardisation with the core, using the diversity of living systems and so, using the right cellular chassis, with the right genetics elements.
 +
      </p>
 +
      <img src="https://static.igem.org/mediawiki/2017/b/b3/T--INSA-UPS_France--description_sense-effect.png" alt="">
 +
      <p class="left-p">
 +
        Team SCUT<sup>26</sup> already described a binding-receptor system built on <i>Saccharomyces cerevisiae</i><sup>18</sup>, based on the Odr-10 receptor, a G Protein Coupled Receptor isolated from Caenorhabditis elegans<sup>19</sup>. The pathway is engaged by the activation of Odr-10 and has been shown to start the mating cascade which ends with  the activation of the pFUS1 promoter by Ste12<sup>20</sup>. After a discussion with Diethard Mattanovich , the supervisor of iGEM Team Boku Vienna, it appears from his transcriptomic data that the mating pathway including Ste12 was also present on Pichia pastoris, a yeast gaining more and more interest for being a robust tool for protein and metabolite production.<sup>33</sup> Once we found a molecule factory, we needed to find a way to induce it, whenever the bacteria sensor we were using. Checking the metabolism of diacetyl on KEGG Pathway, we identified that a simple enzyme, the acetolactate synthase (ALS), processes to produce the diacetyl from pyruvate, a ubiquitous metabolite.
 +
      </p>
 +
      <img class="right-img" src="https://static.igem.org/mediawiki/2017/2/24/T--INSA-UPS_France--Description-communicate.png" alt="">
 +
      <img class="left-img" src="https://static.igem.org/mediawiki/2017/9/91/T--INSA-UPS_France--description_diacetyl.png" alt="">
 +
      <p class="right-p">
 +
        As this mechanism relies on diacetyl detection for pFUS1 activation, we needed  the sensing module to produce this molecule. Online tools predict that the missing enzyme to catalyse the production of this molecule is the acetolactate synthase (ALS). Indeed, this enzyme catalyses acetolactate production, which is then oxidized into diacetyl. Thus we decided to add the gene responsible for ALS production in the genetic construction we put in the sensing module.
 
       </p>
 
       </p>
     
+
    </section>
  
      <table>
 
        <tr>
 
          <td>
 
            <img src="https://static.igem.org/mediawiki/2017/9/90/T--INSA-UPS_France--Description-sense-quorum_1.png" alt="" style="width:100%;">
 
          </td>
 
          <td>
 
            <img src="https://static.igem.org/mediawiki/2017/e/eb/T--INSA-UPS_France--Description-sense-quorum_2.png" alt="" style="width:100%;">
 
          </td>
 
        </tr>
 
        <tr>
 
          <td style="text-align: center;"><i><b>
 
            Low CAI-1 concentration
 
          </b></i></td>
 
          <td style="text-align: center;"><i><b>
 
            High CAI-1 concentration
 
          </b></i></td>
 
        </tr>
 
      </table>
 
  
      <p style="margin-top:50px;">
+
    <div class="article_offset" id="a3"></div>
        For safety reasons, we were not able to manipulate <i>V. cholerae</i> in our lab. This is why we had to <b>engineer <i>E. coli</i> to mimick <i>V. cholerae</i></b> in order to further test our system. The challenge was to make <i>E. coli</i> produce the specific quorum sensing molecules of <i>V. cholerae</i>: CAI-1.
+
    <section>
      </p>
+
      <h1>A microbial consortium against cholera</h1>
 
       <p>
 
       <p>
         We then used this <b>quorum sensing mechanism in <i>Vibrio harveyi</i></b>, a non-pathogenic strain of Vibrio that is close enough from <i>V. cholerae</i>, to detect cholera in water. We chose this particular strain because it is easy to engineer its receptor to detect and respond to cholera, already having the capacity to detect such quorum sensing molecules.
+
         Recently, research teams started to focus on synthetic biology in order to find a way to deal with Vibrio cholerae<sup>5,6</sup>. Additionally, some iGEM teams also took the challenge of detecting <i>V. cholerae</i>, using <i>E. coli</i> as a host for the quorum sensing system, but it seems that this strategy did not succeed7 or showed mixed results<sup>8</sup>. Most of the iGEM teams intended to prevent the cholera infection thanks to gene targeting such as cleaving toxicity genes<sup>9</sup> or inhibiting specific genes on the pathogen<sup>10</sup>. With this lack of successful stories in iGEM on mono-microorganism and the need to have a whole specialised lab in order to build a complex system of synthetic biology, this statement could be perfect to test our core in real conditions and with a useful application.  
 
       </p>
 
       </p>
 +
    </section>
 +
 +
    <div class="article_offset" id="a4"></div>
 +
    <section>
 +
      <h1>Finding a sensor</h1>
 +
      <p class="left-p">
 +
        First we had to detect the initial state of the system in order to activate the core. An interesting property of <i>Vibrio cholerae</i> is its quorum sensing system that depends on the CAI-1 molecule. CAI-1 directly reflects the amount of <i>V. cholerae</i> on water, and thus its virulence. Once CAI-1 is at high concentration, it can be detected and then  provides us a good way of detecting <i>V. cholerae</i> once it becomes pathogenic<sup>19</sup>. <i>Vibrio harveyi</i>, a non-pathogenic strain of <i>Vibrio</i>, showed itself as a perfect sensor of the CAI-1 molecule and thus of the quantity of <i>V. cholerae</i>. This strain fulfilled the requirements we wanted as a good synthetic biology chassis: easy to engineer, already has part of our final system such as the CqsS/CAI-1 pathway<sup>19,20</sup>. We only had to mutate the receptor and integrate the als gene to trigger diacetyl production in presence of CAI-1.
  
      <h4>2. Communicate</h4>
 
      <p>
 
        As we wanted to both detect and destroy cholera, one of our challenges was to create an <b>eukaryote-prokaryote communication system</b>, so that <i>V. harveyi</i> could trigger the production of antimicrobial peptides (AMPs) by <i>P. pastoris</i> upon cholera detection.
 
      </p>
 
      <p>
 
        Team SCUT already described a binding-receptor system built on <i>Saccharomyces cerevisiae</i><sup><a href="#ref18">18</a></sup>, based on the ODR10 receptor, a G Protein Coupled Receptor isolated from <i>Caenorhabditis elegans</i><sup><a href="#ref19">19</a></sup>. The pathway engaged by the activation of ODR10 has been engineered in order to start the mating cascade which ends with  the activation of the pFUS1 promoter by Ste12<sup><a href="#ref20">20</a></sup>.
 
 
       </p>
 
       </p>
       <img src="https://static.igem.org/mediawiki/2017/2/24/T--INSA-UPS_France--Description-communicate.png" alt="" class="image_60" style="margin-bottom:40px;">
+
       <figure>
 +
        <img src="https://static.igem.org/mediawiki/2017/e/eb/T--INSA-UPS_France--Description-sense-quorum_2.png" alt="" class="right-img">
 +
        <figcaption><i>Quorum sensing mechanism in</i> V. cholerae</figcaption>
 +
      </figure>
 
       <p>
 
       <p>
         As this mechanism relies on <b>diacetyl detection</b> for pFUS1 activation, we needed our sensing module to produce this molecule. Diacetyl is not produced by wild type <i>Vibrio harveyi</i> (Kegg pathway), but online tools predict that the missing enzyme to catalyse the production of this molecule is the acetolactate synthase (ALS). Indeed, this enzyme catalyses acetolactate production, which is then oxidized into diacetyl. Thus we decided to add the gene responsible for ALS production in the genetic construction we put in <i>V. harveyi</i>.
+
         For safety reasons, we were not able to manipulate <i>V. cholerae</i> in our lab. This is why we had to engineer <i>E. coli</i> to mimick <i>V. cholerae</i> in order to further test our system. The idea was to make <i>E. coli</i> produce the specific quorum sensing molecules of <i>V. cholerae</i>: CAI-1.
 
       </p>
 
       </p>
      <img src="https://static.igem.org/mediawiki/2017/2/22/T--INSA-UPS_France--Description-communicate-ALS.png" alt="" class="image_60" style="min-width:400px;max-width:700px;">
+
    </section>
  
       <h4>3. Treat</h4>
+
    <div class="article_offset" id="a5"></div>
 +
    <section>
 +
       <h1>Finding an effector</h1>
 
       <p>
 
       <p>
         Instead of using gene targeting, we decided to eradicate the pathogen bacteria thanks to <b>crocodile antimicrobial peptides (AMPs)</b><sup><a href="#ref13">13</a>,<a href="#ref14">14</a></sup>. Those peptides are cationic molecules and can target bacterium membranes, to create pores in it, leading to the lysis of the cells<sup><a href="#ref24">24</a></sup>.  
+
         Because of our will to kill gram-negative bacteria, we assessed that a prokaryotic chassis could not be adequate to achieve the desired effect without drawbacks. So the information of <i>V. cholerae</i> detection must be transmitted  to an eukaryotic protein expressor : <i>Pichia pastoris</i>. Once we had both the sensor, and the core, we had to act on the system. In our application, we aim to reduce the amount of <i>V. cholerae</i>, or even better, to totally kill it. We found the solution thanks to an unorthogonal approach: we looked in the environment of <i>V. cholerae</i> in order to find out a competitor, or an organism not affected by it. It appears quite fast that crocodiles have an impressive immune system, that allows them to resist against lots of diseases vectors infections<sup>22,23,24</sup>. We used from their amazing immune system promising molecules: antimicrobial peptides that have proven to have a good killing efficiency against <i>V. cholerae</i><sup>13,14</sup>. Moreover, this effector, with a good efficiency against bacteria and the need to be secreted, was a perfect effector to implement in our multi organisms system with specialised tasks.
 +
 
 
       </p>
 
       </p>
      <img src="https://static.igem.org/mediawiki/2017/8/80/T--INSA-UPS_France--Description-kill.png" alt="" class="img_center" style="min-width:400px; max-width:800px; width:50%;">
 
 
       <p>
 
       <p>
         Since these peptides have a high killing efficiency on <i>V. cholerae</i> it was obvious that our sensor, which is another species of <i>Vibrio</i>, could not stand any close contact with AMPs  and would be killed by them. That’s why we needed to find another organism to produce it. We thus used a <b>robust yeast</b> as our effector, <i>Pichia pastoris</i><sup><a href="#ref16">16</a>,<a href="#ref17">17</a></sup> which is also famous for being a high protein producer.
+
         Those peptides are cationic molecules and can target bacterium membranes, to create pores in it, leading to the lysis of the cells<sup>24</sup>.  
 
       </p>
 
       </p>
       <img src="https://static.igem.org/mediawiki/2017/0/0b/T--INSA-UPS_France--Description-kill-MICAMP.png" alt="" class="image_50">
+
       <img src="https://static.igem.org/mediawiki/2017/8/80/T--INSA-UPS_France--Description-kill.png" alt="">
       <p style="text-align: center;">
+
       <p class="left-p">
         <i><b>
+
         The fact that literature described the robustness of <i>Pichia pastoris</i><sup>16,17</sup> for the production of antimicrobial peptide made us definitively enthousiast about using this yeast as part of the core.  
        Minimal inhibitory concentration 50 of selected antimicrobial peptides against <i>Vibrio cholerae</i><sup><a href="#ref13">13</a>,<a href="#ref14">14</a>,<a href="#ref22">22</a></sup>.
+
        </b></i>
+
 
       </p>
 
       </p>
     </article>
+
      <img src="https://static.igem.org/mediawiki/2017/0/0b/T--INSA-UPS_France--Description-kill-MICAMP.png" alt="" class="right-img">
  </div>
+
     </section>
  </div>
+
 
 +
    <div class="article_offset" id="a6"></div>
 +
    <section style="background: none;">
 +
      <h1 style="text-align:left;">Our system</h1>     
 +
      <!--<p>
 +
        See design for more informations of the genetic engineering we used!
 +
      </p>-->
 +
      <img src="https://static.igem.org/mediawiki/2017/b/b8/T--INSA-UPS_France--description_loop.png" alt="">     
 +
    </section>
 +
 
 +
    </div>
 +
    <!-- fin section -->   
  
  <div class="article_offset" id="a5">
 
  <div class="article_container">
 
    <h3>References</h3>
 
    <article>
 
      <ol>
 
        <li>
 
        <div class="anchor_offset" id="ref1"></div>
 
          Ali M, Nelson AR, Lopez AL &amp; Sack DA (2015) Updated Global Burden of Cholera in Endemic Countries. PLOS Neglected Tropical Diseases 9 e0003832
 
        </li>
 
        <li>
 
          <div class="anchor_offset" id="ref2"></div>
 
          <a href="http://www.who.int/hac/crises/yem/en/">WHO 23 SEPTEMBER 2016, 91thYEAR / No 38, 2016, 91, 433&ndash;440</a>
 
        </li>
 
        <li>
 
          <div class="anchor_offset" id="ref3"></div>
 
          Clemens JD, Nair GB, Ahmed T, Qadri F &amp; Holmgren J (2017) Cholera. The Lancet
 
        </li>
 
        <li>
 
          <div class="anchor_offset" id="ref4"></div>
 
          Davies HG, Bowman C &amp; Luby SP (2017) Cholera - management and prevention. Journal of Infection
 
        </li>
 
        <li>
 
          <div class="anchor_offset" id="ref5"></div>
 
          Focareta A, Paton JC, Morona R, Cook J &amp; Paton AW (2006) A Recombinant Probiotic for Treatment and Prevention of Cholera. Gastroenterology 130 1688&ndash;1695
 
        </li>
 
        <li>
 
          <div class="anchor_offset" id="ref6"></div>
 
          Holowko MB, Wang H, Jayaraman P &amp; Poh CL (2016) Biosensing <span class="not_italic">Vibrio cholerae</span> with Genetically Engineered <span class="not_italic">Escherichia coli</span>. ACS Synthetic Biology
 
        </li>
 
        <li>
 
          <div class="anchor_offset" id="ref7"></div>
 
          <a href="https://2014.igem.org/Team:UI-Indonesia">iGEM UI-Indonesia 2014</a>
 
        </li>
 
        <li>
 
          <div class="anchor_offset" id="ref8"></div>
 
          <a href="https://2010.igem.org/Team:Sheffield">iGEM Sheffield 2010</a>
 
        </li>
 
        <li>
 
          <div class="anchor_offset" id="ref9"></div>
 
          <a href="https://2014.igem.org/Team:UT-Dallas">iGEM UT-Dallas 2014</a>
 
        </li>
 
        <li>
 
          <div class="anchor_offset" id="ref10"></div>
 
          <a href="https://2016.igem.org/Team:Dundee">iGEM Dundee 2016</a>
 
        </li>
 
        <li>
 
          <div class="anchor_offset" id="ref11"></div>
 
          Ng W-L, Perez LJ, Wei Y, Kraml C, Semmelhack MF &amp; Bassler BL (2011) Signal production and detection specificity in <span class="not_italic">Vibrio</span> CqsA/CqsS quorum-sensing systems: <span class="not_italic">Vibrio</span> quorum-sensing systems. Molecular Microbiology 79 1407&ndash;1417
 
        </li>
 
        <li>
 
          <div class="anchor_offset" id="ref12"></div>
 
          Bolitho ME, Perez LJ, Koch MJ, Ng W-L, Bassler BL &amp; Semmelhack MF (2011) Small molecule probes of the receptor binding site in the <span class="not_italic">Vibrio cholerae</span> CAI-1 quorum sensing circuit. Bioorganic &amp; Medicinal Chemistry 19 6906&ndash;6918
 
        </li>
 
        <li>
 
          <div class="anchor_offset" id="ref13"></div>
 
          Prajanban B, Jangpromma N, Araki T &amp; Klaynongsruang S (2017) Antimicrobial effects of novel peptides cOT2 and sOT2 derived from <span class="not_italic">Crocodylus siamensis</span> and <span class="not_italic">Pelodiscus sinensis</span> ovotransferrins. Biochimica et Biophysica Acta (BBA) - Biomembranes 1859 860&ndash;869
 
        </li>
 
        <li>
 
          <div class="anchor_offset" id="ref14"></div>
 
          Yaraksa N, Anunthawan T, Theansungnoen T, Daduang S, Araki T, Dhiravisit A &amp; Thammasirirak S (2014) Design and synthesis of cationic antibacterial peptide based on Leucrocin I sequence, antibacterial peptide from crocodile (Crocodylus siamensis) white blood cell extracts. Journal of Antibiotics 67 205
 
        </li>
 
        <li>
 
          <div class="anchor_offset" id="ref15"></div>
 
          Ng W-L, Perez L, Cong J, Semmelhack MF &amp; Bassler BL (2012) Broad Spectrum Pro-Quorum-Sensing Molecules as Inhibitors of Virulence in <span class="not_italic">Vibrios</span>. PLoS Pathogens 8 e1002767
 
        </li>
 
        <li>
 
          <div class="anchor_offset" id="ref16"></div>
 
          Huang Y (2012) Secretion and activity of antimicrobial peptide cecropin D expressed in <span class="not_italic">Pichia pastoris</span>. Experimental and Therapeutic Medicine
 
        </li>
 
        <li>
 
          <div class="anchor_offset" id="ref17"></div>
 
          Zhang Y, Teng D, Mao R, Wang X, Xi D, Hu X &amp; Wang J (2014) High expression of a plectasin-derived peptide NZ2114 in <span class="not_italic">Pichia pastoris</span> and its pharmacodynamics, postantibiotic and synergy against <span class="not_italic">Staphylococcus aureus</span>. Applied Microbiology and Biotechnology 98 681&ndash;694
 
        </li>
 
        <li>
 
          <div class="anchor_offset" id="ref18"></div>
 
          <a href="https://2013.igem.org/Team:SCUT">iGEM SCUT 2013</a>
 
        </li>
 
        <li>
 
          <div class="anchor_offset" id="ref19"></div>
 
          Zhang Y, Chou JH, Bradley J, Bargmann CI &amp; Zinn K (1997) The <span class="not_italic">Caenorhabditis elegans</span> seven-transmembrane protein ODR-10 functions as an odorant receptor in mammalian cells. Proceedings of the National Academy of Sciences 94 12162&ndash;12167
 
        </li>
 
        <li>
 
          <div class="anchor_offset" id="ref20"></div>
 
          Audet M &amp; Bouvier M (2012) Restructuring G-Protein- Coupled Receptor Activation. Cell 151 14&ndash;23
 
        </li>
 
        <li>
 
          <div class="anchor_offset" id="ref21"></div>
 
          Robert Koch and the cholera vibrio: a centenary. N Howard-Jones, British Medical Journal (Clinical Research Edition)
 
        </li>
 
        <li>
 
          <div class="anchor_offset" id="ref22"></div>
 
          Pata S, Yaraksa N, Daduang S, Temsiripong Y, Svasti J, Araki T &amp; Thammasirirak S (2011) Characterization of the novel antibacterial peptide Leucrocin from crocodile (Crocodylus siamensis) white blood cell extracts. Developmental &amp; Comparative Immunology 35 545&ndash;553
 
        </li>
 
        <li>
 
          <div class="anchor_offset" id="ref23"></div>
 
          Preecharram S, Jearranaiprepame P, Daduang S, Temsiripong Y, Somdee T, Fukamizo T, Svasti J, Araki T &amp; Thammasirirak S (2010) Isolation and characterisation of crocosin, an antibacterial compound from crocodile (<span class="not_italic">Crocodylus siamensis</span>) plasma: CROCODILE PLASMA ANTIBACTERIAL COMPOUND. Animal Science Journal 81 393&ndash;401
 
        </li>
 
        <li>
 
          <div class="anchor_offset" id="ref24"></div>
 
          Mar&iacute;n-Medina N, Ram&iacute;rez DA, Trier S &amp; Leidy C (2016) Mechanical properties that influence antimicrobial peptide activity in lipid membranes. Applied Microbiology and Biotechnology 100 10251&ndash;10263
 
        </li>
 
      </ol>
 
     
 
    </article>
 
 
   </div>
 
   </div>
 
   </div>
 
   </div>
 +
    <style>
 +
 +
footer{
 +
  position:relative;
 +
  text-align:center;
 +
  margin-top:20px;
 +
  background: #323537;
 +
  width:100%;
 +
}
 +
 +
/* CONTACT ICONS */
 +
 +
.icons{ 
 +
  display:inline-block;
 +
  margin:40px 0;
 +
 +
 +
}
 +
 +
.icons > a{
 +
  color:black;
 +
  margin:10px;
 +
  text-shadow:2px 2px 0px white;
 +
}
 +
 +
#fbIcon:hover{
 +
  color:#3b5998;
 +
  text-shadow:2px 2px 0 #000000;
 +
}
 +
 +
#twitterIcon:hover{
 +
  color:#55acee;
 +
  text-shadow:2px 2px 0 #000000;
 +
}
 +
 +
#contactIcon:hover{
 +
  color:#e5e5e5;
 +
  text-shadow:2px 2px 0 #000000;
 +
}
 +
#instaIcon:hover{
 +
  color:#8a3ab9;
 +
  text-shadow:2px 2px 0 #000000;
 +
}
 +
 +
/* SPONSORS IMG */
 +
 +
.footer_sponsors img{
 +
  max-height:50px;
 +
  display:inline-block;
 +
  margin:10px;
 +
  opacity:0.5;
 +
}
 +
.footer_sponsors img:hover{
 +
  opacity:1;
 +
}
 +
 +
</style>
 +
  <footer>
 +
   
 +
    <div class="footer_sponsors">
 +
          <a href="http://www.lisbp.fr/en/index.html"><img src="https://static.igem.org/mediawiki/2017/3/3e/T--INSA-UPS_France--Logo_lisbp.png" alt=""></a>
 +
          <a href="http://www.toulouse-white-biotechnology.com/en/"><img src="https://static.igem.org/mediawiki/2017/5/56/T--INSA-UPS_France--Logo_twb.png" alt=""></a>
 +
          <a href="http://fondation.insa-lyon.fr/"><img src="https://static.igem.org/mediawiki/2017/6/6d/T--INSA-UPS_France--Logo_fondationinsal.png" alt=""></a>
 +
          <a href="https://fr-fr.facebook.com/insaadnconceptclub/"><img src="https://static.igem.org/mediawiki/2017/b/b7/T--INSA-UPS_France--Logo_ia2c.png" alt=""></a>
 +
          <a href="http://www.biomerieux.com/en"><img src="https://static.igem.org/mediawiki/2017/8/83/T--INSA-UPS_France--Logo_biomerieux.png" alt=""></a>
 +
          <a href="http://www.sunwaterlife.com/en/"><img src="https://static.igem.org/mediawiki/2017/0/09/T--INSA-UPS_France--Logo_sunwaterlife.png" style="width:150px;" alt=""></a>
 +
          <a href="http://www.univ-tlse3.fr/home/home-page-en-379161.kjsp?RH=ACCUEIL"><img src="https://static.igem.org/mediawiki/2017/2/28/T--INSA-UPS_France--Logo_ups.png" alt=""></a>
 +
          <a href="http://www.fsi.univ-tlse3.fr/"><img src="https://static.igem.org/mediawiki/2017/a/ab/T--INSA-UPS_France--Logo_fsi.png" alt=""></a>
 +
          <a href="https://www.kbs-frb.be/"><img src="https://static.igem.org/mediawiki/2017/c/cf/T--INSA-UPS_France--Logo_ernestsolvay.png" alt=""></a>
 +
          <a href="http://www.insa-toulouse.fr/fr/institution/fondation-insa-toulouse.html#"><img src="https://static.igem.org/mediawiki/2017/6/62/T--INSA-UPS_France--Logo_fondationinsat.png" alt=""></a>
 +
      <a href="http://www.adisseo.com/en/"><img src="https://static.igem.org/mediawiki/2017/9/96/T--INSA-UPS_France--Logo_adisseo.png" alt=""></a>
 +
      <a href="http://www.insa-toulouse.fr/fr/index.html"><img src="https://static.igem.org/mediawiki/2017/2/2d/T--INSA-UPS_France--Logo_insatoulouse.png" style="width:150px;" alt=""></a>
 +
      <a href="https://www.veolia.com/en"><img src="https://static.igem.org/mediawiki/2017/9/91/T--INSA-UPS_France--Logo_veolia.png" alt=""></a>
 +
      <a href="https://www.france-science.org/-Homepage-English-.html"><img src="https://static.igem.org/mediawiki/2017/1/1a/T--INSA-UPS_France--Logo_ambassade.jpg" alt=""></a>
 +
      <a href="http://www.univ-tlse3.fr/associations-+/do-you-have-a-project--378066.kjsp?RH=1238417866394"><img src="https://static.igem.org/mediawiki/2017/5/5b/T--INSA-UPS_France--Logo_fsdie.png" alt=""></a>
 +
      <a href="http://en.univ-toulouse.fr/our-strengths"><img src="https://static.igem.org/mediawiki/2017/9/93/T--INSA-UPS_France--Logo_fsie.jpg" alt=""></a>
 +
 +
 +
      <a href="https://www.crous-toulouse.fr/english/"><img src="https://static.igem.org/mediawiki/2017/3/37/T--INSA-UPS_France--Logo_crous.png" alt=""></a> 
 +
 +
    </div>
 +
    <div class="icons">
 +
      <a id="fbIcon" href="https://www.facebook.com/IGEM-Toulouse-1604834019761538/?fref=ts"><i class="fa fa-facebook fa-3x"></i></a>
 +
      <a id="twitterIcon" href="https://twitter.com/iGEM_Toulouse"><i class="fa fa-twitter fa-3x"></i></a>
 +
      <a id="instaIcon" href="https://www.instagram.com/igem_toulouse/"><i class="fa fa-instagram fa-3x"></i></a>
 +
      <a id="contactIcon" href="mailto:igem.toulouse@gmail.com"><i class="fa fa-envelope fa-3x"></i></a> 
 +
    </div>
  
  
   </section>
+
   </footer>
 
   </div>
 
   </div>
 +
  </main>
  
  <!-- VERTICAL NAV -->
+
<!--
 +
  -->
  
<aside class="vertical_nav">
+
</div>
  
    <div class="aside_circle"><a href="#a1" data-number="1">About cholera</a></div>
 
    <div class="aside_circle"><a href="#a2" data-number="2">Current solutions</a></div>
 
    <div class="aside_circle"><a href="#a3" data-number="3">The crocodile, an unexpected helper</a></div>
 
    <div class="aside_circle"><a href="#a4" data-number="4">Our system: Croc&rsquo; n Cholera</a></div>
 
    <div class="aside_circle"><a href="#a5" data-number="6">References</a></div>
 
  
</aside>
 
  
  
 +
<!-- C O N T E N T -->
 +
<script type="text/javascript">
 +
  $('.js-sticky').addClass('is-sticky');
 +
</script>
  
 +
 +
<script type="text/javascript">
 +
  $('.main_content').scroll(function(){
 +
    console.log($('.main_content').scrollTop());
 +
    console.log("position 1 :");
 +
    console.log($("#a1").position().top);
 +
    console.log("position 2 :");
 +
    console.log($("#a2").position().top);
 +
    var pos = $('.main_content').scrollTop();
 +
    // BOLD ASIDE NAV
 +
    if(pos>$("#a1").position().top-10){
 +
      $('*[data-number="1"]').css("font-weight", "bold");
 +
      $('*[data-number="1"]').parent().addClass("selected-item");
 +
      $('*[data-number="2"]').css("font-weight", "normal");
 +
      $('*[data-number="2"]').parent().removeClass("selected-item");
 +
      $('*[data-number="3"]').css("font-weight", "normal");
 +
      $('*[data-number="3"]').parent().removeClass("selected-item");
 +
      $('*[data-number="4"]').css("font-weight", "normal");
 +
      $('*[data-number="4"]').parent().removeClass("selected-item");
 +
      $('*[data-number="5"]').css("font-weight", "normal");
 +
      $('*[data-number="5"]').parent().removeClass("selected-item");
 +
      $('*[data-number="6"]').css("font-weight", "normal");
 +
      $('*[data-number="6"]').parent().removeClass("selected-item");
 +
      if(pos>$("#a2").position().top-10){
 +
        $('*[data-number="1"]').css("font-weight", "normal");
 +
        $('*[data-number="1"]').parent().removeClass("selected-item");
 +
        $('*[data-number="2"]').css("font-weight", "bold");
 +
        $('*[data-number="2"]').parent().addClass("selected-item");
 +
        $('*[data-number="3"]').css("font-weight", "normal");
 +
        $('*[data-number="3"]').parent().removeClass("selected-item");
 +
        $('*[data-number="4"]').css("font-weight", "normal");
 +
        $('*[data-number="4"]').parent().removeClass("selected-item");
 +
        $('*[data-number="5"]').css("font-weight", "normal");
 +
        $('*[data-number="5"]').parent().removeClass("selected-item");
 +
        $('*[data-number="6"]').css("font-weight", "normal");
 +
        $('*[data-number="6"]').parent().removeClass("selected-item");
 +
        if(pos>$("#a3").position().top-10){
 +
          $('*[data-number="1"]').css("font-weight", "normal");
 +
          $('*[data-number="1"]').parent().removeClass("selected-item");
 +
          $('*[data-number="2"]').css("font-weight", "normal");
 +
          $('*[data-number="2"]').parent().removeClass("selected-item");
 +
          $('*[data-number="3"]').css("font-weight", "bold");
 +
          $('*[data-number="3"]').parent().addClass("selected-item");
 +
          $('*[data-number="4"]').css("font-weight", "normal");
 +
          $('*[data-number="4"]').parent().removeClass("selected-item");
 +
          $('*[data-number="5"]').css("font-weight", "normal");
 +
          $('*[data-number="5"]').parent().removeClass("selected-item");
 +
          $('*[data-number="6"]').css("font-weight", "normal");
 +
          $('*[data-number="6"]').parent().removeClass("selected-item");
 +
          if(pos>$("#a4").position().top-10){
 +
            $('*[data-number="1"]').css("font-weight", "normal");
 +
            $('*[data-number="1"]').parent().removeClass("selected-item");
 +
            $('*[data-number="2"]').css("font-weight", "normal");
 +
            $('*[data-number="2"]').parent().removeClass("selected-item");
 +
            $('*[data-number="3"]').css("font-weight", "normal");
 +
            $('*[data-number="3"]').parent().removeClass("selected-item");
 +
            $('*[data-number="4"]').css("font-weight", "bold");
 +
            $('*[data-number="4"]').parent().addClass("selected-item");
 +
            $('*[data-number="5"]').css("font-weight", "normal");
 +
            $('*[data-number="5"]').parent().removeClass("selected-item");
 +
            $('*[data-number="6"]').css("font-weight", "normal");
 +
            $('*[data-number="6"]').parent().removeClass("selected-item");
 +
            if(pos>$("#a5").position().top-10){
 +
              $('*[data-number="1"]').css("font-weight", "normal");
 +
              $('*[data-number="1"]').parent().removeClass("selected-item");
 +
              $('*[data-number="2"]').css("font-weight", "normal");
 +
              $('*[data-number="2"]').parent().removeClass("selected-item");
 +
              $('*[data-number="3"]').css("font-weight", "normal");
 +
              $('*[data-number="3"]').parent().removeClass("selected-item");
 +
              $('*[data-number="4"]').css("font-weight", "normal");
 +
              $('*[data-number="4"]').parent().removeClass("selected-item");
 +
              $('*[data-number="5"]').css("font-weight", "bold");
 +
              $('*[data-number="5"]').parent().addClass("selected-item");
 +
              $('*[data-number="6"]').css("font-weight", "normal");
 +
              $('*[data-number="6"]').parent().removeClass("selected-item");
 +
              if(pos>$("#a6").position().top-10){
 +
                $('*[data-number="1"]').css("font-weight", "normal");
 +
                $('*[data-number="1"]').parent().removeClass("selected-item");
 +
                $('*[data-number="2"]').css("font-weight", "normal");
 +
                $('*[data-number="2"]').parent().removeClass("selected-item");
 +
                $('*[data-number="3"]').css("font-weight", "normal");
 +
                $('*[data-number="3"]').parent().removeClass("selected-item");
 +
                $('*[data-number="4"]').css("font-weight", "normal");
 +
                $('*[data-number="4"]').parent().removeClass("selected-item");
 +
                $('*[data-number="5"]').css("font-weight", "normal");
 +
                $('*[data-number="5"]').parent().removeClass("selected-item");
 +
                $('*[data-number="6"]').css("font-weight", "bold");
 +
                $('*[data-number="6"]').parent().addClass("selected-item");
 +
              }
 +
            }
 +
          }
 +
        }
 +
      }
 +
    }
 +
    // FIXED ASIDE NAV
 +
    if(pos>371){
 +
      $('.left_container').addClass("aside-fixed");
 +
    }
 +
    else{
 +
      $('.left_container').removeClass("aside-fixed");
 +
    }
 +
  });
 +
 +
</script>
 +
 +
<script type="text/javascript">
 +
 +
    // NAV BAR SUBNAV CLICK
 +
 +
  $(document).on("click",".cat_name", function(){
 +
    if($(this).parent().children('.subnav').css("max-height")=="0px"){
 +
      $('.subnav').css("max-height","0px");
 +
      $(this).parent().children('.subnav').css("max-height","1000px");
 +
    }
 +
    else{
 +
      $(this).parent().children('.subnav').css("max-height","0px");
 +
    }   
 +
  });
 +
</script>
 +
 +
<script type="text/javascript">
 +
  var contentSections = $('.article_offset'),
 +
  navigationItems = $('.left_container .aside-nav__item:after');
 +
 +
  updateNavigation();
 +
  $('.main_content').on('scroll', function(){
 +
    updateNavigation();
 +
    });
 +
 +
 +
  function updateNavigation() {
 +
    contentSections.each(function(){
 +
      $this = $(this);
 +
 +
      var activeSection = $('.left_container a[href="#'+$this.attr('id')+'"]').data('number') - 1;
 +
    });
 +
  }
 +
 +
  function smoothScroll(target) {
 +
        $('body,html').animate(
 +
          {'scrollTop':target.offset().top},
 +
          600
 +
        );
 +
  }
 +
</script>
 +
 +
</body>
 
</html>
 
</html>
 
+
{{INSA-UPS_France/General_script}}
<!-- FOOTER -->
+
{{INSA-UPS_France/Header_script}}
{{INSA-UPS_France/Footer}}
+
{{INSA-UPS_France/script_scroll}}
+

Revision as of 10:53, 21 September 2017


Description

Combine to improve: a synthetic biology scale-up

Nature offers us a wide variety of tools in order to sense precise chemical or physical parameters. For example, enzymes and receptors are specialized for unique or restrained range of molecule, or even for specific light wavelength.1,2,3 Obviously, as mankind progressed in the comprehension of life science, he wanted to take advantage from this extreme diversity and specialization. Synthetic biology was born thanks to those expectations in the early of the twentieth century4 and made quite notable breakthrough. However, most of those works were based on the insertion of a lot of DNA information on one single model, typically E. coli. We observed that all those informations are not always compatible with the use of a unique microbial chassis : although standard microbial models are quite modular, they have a particular membrane, specific pathways and different ways to do protein maturation.

Why should we persist to use a single model when we have access to a wide diversity of organisms?

For our iGEM project, we decided to focus on the multi organisms aspect, making communication between prokaryotic and eukaryotic possible.

A core: prokaryotic-eukaryotic communication

Our first challenge was to design an eukaryote-prokaryote communication system, so we can have a standardized way of communication, with modulable input and output. This system answers to some of the synthetic biology current challenges8 that are: device modularization and standardisation with the core, using the diversity of living systems and so, using the right cellular chassis, with the right genetics elements.

Team SCUT26 already described a binding-receptor system built on Saccharomyces cerevisiae18, based on the Odr-10 receptor, a G Protein Coupled Receptor isolated from Caenorhabditis elegans19. The pathway is engaged by the activation of Odr-10 and has been shown to start the mating cascade which ends with the activation of the pFUS1 promoter by Ste1220. After a discussion with Diethard Mattanovich , the supervisor of iGEM Team Boku Vienna, it appears from his transcriptomic data that the mating pathway including Ste12 was also present on Pichia pastoris, a yeast gaining more and more interest for being a robust tool for protein and metabolite production.33 Once we found a molecule factory, we needed to find a way to induce it, whenever the bacteria sensor we were using. Checking the metabolism of diacetyl on KEGG Pathway, we identified that a simple enzyme, the acetolactate synthase (ALS), processes to produce the diacetyl from pyruvate, a ubiquitous metabolite.

As this mechanism relies on diacetyl detection for pFUS1 activation, we needed the sensing module to produce this molecule. Online tools predict that the missing enzyme to catalyse the production of this molecule is the acetolactate synthase (ALS). Indeed, this enzyme catalyses acetolactate production, which is then oxidized into diacetyl. Thus we decided to add the gene responsible for ALS production in the genetic construction we put in the sensing module.

A microbial consortium against cholera

Recently, research teams started to focus on synthetic biology in order to find a way to deal with Vibrio cholerae5,6. Additionally, some iGEM teams also took the challenge of detecting V. cholerae, using E. coli as a host for the quorum sensing system, but it seems that this strategy did not succeed7 or showed mixed results8. Most of the iGEM teams intended to prevent the cholera infection thanks to gene targeting such as cleaving toxicity genes9 or inhibiting specific genes on the pathogen10. With this lack of successful stories in iGEM on mono-microorganism and the need to have a whole specialised lab in order to build a complex system of synthetic biology, this statement could be perfect to test our core in real conditions and with a useful application.

Finding a sensor

First we had to detect the initial state of the system in order to activate the core. An interesting property of Vibrio cholerae is its quorum sensing system that depends on the CAI-1 molecule. CAI-1 directly reflects the amount of V. cholerae on water, and thus its virulence. Once CAI-1 is at high concentration, it can be detected and then provides us a good way of detecting V. cholerae once it becomes pathogenic19. Vibrio harveyi, a non-pathogenic strain of Vibrio, showed itself as a perfect sensor of the CAI-1 molecule and thus of the quantity of V. cholerae. This strain fulfilled the requirements we wanted as a good synthetic biology chassis: easy to engineer, already has part of our final system such as the CqsS/CAI-1 pathway19,20. We only had to mutate the receptor and integrate the als gene to trigger diacetyl production in presence of CAI-1.

Quorum sensing mechanism in V. cholerae

For safety reasons, we were not able to manipulate V. cholerae in our lab. This is why we had to engineer E. coli to mimick V. cholerae in order to further test our system. The idea was to make E. coli produce the specific quorum sensing molecules of V. cholerae: CAI-1.

Finding an effector

Because of our will to kill gram-negative bacteria, we assessed that a prokaryotic chassis could not be adequate to achieve the desired effect without drawbacks. So the information of V. cholerae detection must be transmitted to an eukaryotic protein expressor : Pichia pastoris. Once we had both the sensor, and the core, we had to act on the system. In our application, we aim to reduce the amount of V. cholerae, or even better, to totally kill it. We found the solution thanks to an unorthogonal approach: we looked in the environment of V. cholerae in order to find out a competitor, or an organism not affected by it. It appears quite fast that crocodiles have an impressive immune system, that allows them to resist against lots of diseases vectors infections22,23,24. We used from their amazing immune system promising molecules: antimicrobial peptides that have proven to have a good killing efficiency against V. cholerae13,14. Moreover, this effector, with a good efficiency against bacteria and the need to be secreted, was a perfect effector to implement in our multi organisms system with specialised tasks.

Those peptides are cationic molecules and can target bacterium membranes, to create pores in it, leading to the lysis of the cells24.

The fact that literature described the robustness of Pichia pastoris16,17 for the production of antimicrobial peptide made us definitively enthousiast about using this yeast as part of the core.

Our system