(Replaced content with "<html> <head> <meta charset="utf-8"> <script src="https://2017.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTML...") |
|||
Line 2: | Line 2: | ||
<head> | <head> | ||
<meta charset="utf-8"> | <meta charset="utf-8"> | ||
+ | <title>BNU-China</title> | ||
+ | <meta name="viewport" content="width=device-width, initial-scale=1.0"> | ||
+ | <meta name="Team" content="BNU-China" /> | ||
+ | <meta name="keywords" content="iGEM 2017" /> | ||
+ | <meta name="author" content="Ziyu Liu(刘梓钰),Zhaodong Wang(王兆栋),Xizong Zhang(张溪棕)"/> | ||
+ | <link type="text/ttf" rel="stylesheet" href="https://2017.igem.org/File:T--BNU-China--CiceroSans.ttf"/> | ||
+ | <link type="text/ttf" rel="stylesheet" href="https://2017.igem.org/File:T--BNU-China--Regular.ttf"/> | ||
+ | <link type="text/css" rel="stylesheet" href="https://2017.igem.org/Template:BNU-China/CSS/background?action=raw&ctype=text/css"/> | ||
+ | <link type="text/css" rel="stylesheet" href="https://2017.igem.org/Template:BNU-China/CSS/template?action=raw&ctype=text/css" /> | ||
+ | <link type="text/css" rel="stylesheet" href="https://2017.igem.org/Template:BNU-China/CSS/final?action=raw&ctype=text/css" /> | ||
+ | <script type="text/javascript" src="https://2017.igem.org/Template:BNU-China/Javascript/final?action=raw&ctype=text/javascript"></script> | ||
+ | <script type="text/javascript" src="https://2017.igem.org/Template:BNU-China/Javascript/index?action=raw&ctype=text/javascript"></script> | ||
<script src="https://2017.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> | <script src="https://2017.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> | ||
+ | |||
</head> | </head> | ||
<body style="background-color:rgb(247,237,183);"> | <body style="background-color:rgb(247,237,183);"> | ||
Line 8: | Line 21: | ||
<div> | <div> | ||
<p> | <p> | ||
− | + | \[ | |
− | + | \left\{ | |
− | + | \begin{aligned} | |
+ | \frac{\mathrm{d}c_m}{\mathrm{d}t}&=-r_ac_{m,eq}\\ | ||
+ | \frac{\mathrm{d}c_p}{\mathrm{d}t}&=-r_dc_{p,eq}+a_1\frac{\mathrm{d}m}{\mathrm{d}t}\\ | ||
+ | \frac{\mathrm{d}c_h}{\mathrm{d}t}&=mr_h\\ | ||
+ | \frac{\mathrm{d}m}{\mathrm{d}t}&=m(1-\frac{m}{K(c_{h,eq})}) | ||
+ | \end{aligned} | ||
+ | \qquad\qquad | ||
+ | \begin{aligned} | ||
+ | c_m(0)&=c_{m0}\\ | ||
+ | c_p(0)&=c_{p0}\\ | ||
+ | c_h(0)&=c_{h0}\\ | ||
+ | m(0)&=m_0 | ||
+ | \end{aligned} | ||
+ | \right. | ||
+ | \] | ||
+ | |||
+ | |||
</p> | </p> | ||
</div> | </div> | ||
</body> | </body> | ||
</html> | </html> |
Revision as of 07:03, 7 October 2017
\[ \left\{ \begin{aligned} \frac{\mathrm{d}c_m}{\mathrm{d}t}&=-r_ac_{m,eq}\\ \frac{\mathrm{d}c_p}{\mathrm{d}t}&=-r_dc_{p,eq}+a_1\frac{\mathrm{d}m}{\mathrm{d}t}\\ \frac{\mathrm{d}c_h}{\mathrm{d}t}&=mr_h\\ \frac{\mathrm{d}m}{\mathrm{d}t}&=m(1-\frac{m}{K(c_{h,eq})}) \end{aligned} \qquad\qquad \begin{aligned} c_m(0)&=c_{m0}\\ c_p(0)&=c_{p0}\\ c_h(0)&=c_{h0}\\ m(0)&=m_0 \end{aligned} \right. \]