|
|
Line 2: |
Line 2: |
| <head> | | <head> |
| <meta charset="utf-8"> | | <meta charset="utf-8"> |
− | <title>BNU-China</title>
| |
− | <meta name="viewport" content="width=device-width, initial-scale=1.0">
| |
− | <meta name="Team" content="BNU-China" />
| |
− | <meta name="keywords" content="iGEM 2017" />
| |
− | <meta name="author" content="Ziyu Liu(刘梓钰),Zhaodong Wang(王兆栋),Xizong Zhang(张溪棕)"/>
| |
− | <link type="text/ttf" rel="stylesheet" href="https://2017.igem.org/File:T--BNU-China--CiceroSans.ttf"/>
| |
− | <link type="text/ttf" rel="stylesheet" href="https://2017.igem.org/File:T--BNU-China--Regular.ttf"/>
| |
− | <link type="text/css" rel="stylesheet" href="https://2017.igem.org/Template:BNU-China/CSS/background?action=raw&ctype=text/css"/>
| |
− | <link type="text/css" rel="stylesheet" href="https://2017.igem.org/Template:BNU-China/CSS/template?action=raw&ctype=text/css" />
| |
− | <link type="text/css" rel="stylesheet" href="https://2017.igem.org/Template:BNU-China/CSS/final?action=raw&ctype=text/css" />
| |
− | <script type="text/javascript" src="https://2017.igem.org/Template:BNU-China/Javascript/final?action=raw&ctype=text/javascript"></script>
| |
− | <script type="text/javascript" src="https://2017.igem.org/Template:BNU-China/Javascript/index?action=raw&ctype=text/javascript"></script>
| |
| <script src="https://2017.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> | | <script src="https://2017.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> |
− | | + | <script type="text/x-mathjax-config"> |
| + | MathJax.Hub.Config({ TeX: { extensions: ["mhchem.js"] }}); |
| + | </script> |
| </head> | | </head> |
| <body style="background-color:rgb(247,237,183);"> | | <body style="background-color:rgb(247,237,183);"> |
| | | |
− | <div>
| + | \[ |
− | <p>
| + | \begin{align} & \ce{M^2+ + pro <=> pro(M^2+)} \\ |
− | \[ | + | & \ce{H+ + pro <=> pro(H+)} \\ |
− | \left\{
| + | & \ce{MN + 2H+ -> H2N + M^2+} |
− | \begin{aligned} | + | \end{align} |
− | \frac{\mathrm{d}c_m}{\mathrm{d}t}&=-r_ac_{m,eq}\\
| + | \] |
− | \frac{\mathrm{d}c_p}{\mathrm{d}t}&=-r_dc_{p,eq}+a_1\frac{\mathrm{d}m}{\mathrm{d}t}\\
| + | |
− | \frac{\mathrm{d}c_h}{\mathrm{d}t}&=mr_h\\
| + | |
− | \frac{\mathrm{d}m}{\mathrm{d}t}&=m(1-\frac{m}{K(c_{h,eq})})
| + | |
− | \end{aligned} | + | |
− | \qquad\qquad | + | |
− | \begin{aligned}
| + | |
− | c_m(0)&=c_{m0}\\
| + | |
− | c_p(0)&=c_{p0}\\
| + | |
− | c_h(0)&=c_{h0}\\
| + | |
− | m(0)&=m_0
| + | |
− | \end{aligned} | + | |
− | \right.
| + | |
− | \] | + | |
− | | + | |
− | | + | |
− | </p>
| + | |
− | </div>
| + | |
| </body> | | </body> |
| </html> | | </html> |
\[
\begin{align} & \ce{M^2+ + pro <=> pro(M^2+)} \\
& \ce{H+ + pro <=> pro(H+)} \\
& \ce{MN + 2H+ -> H2N + M^2+}
\end{align}
\]