Difference between revisions of "Team:Munich/Hardware"

Line 9: Line 9:
 
<link rel="stylesheet" type="text/css"  
 
<link rel="stylesheet" type="text/css"  
 
href="https://2017.igem.org/Template:Munich/Header?action=raw&ctype=text/css" />
 
href="https://2017.igem.org/Template:Munich/Header?action=raw&ctype=text/css" />
 +
<link rel="stylesheet" type="text/css"
 +
href="https://2017.igem.org/Template:Munich/Filter?action=raw&ctype=text/css" />
 +
<link rel="stylesheet" type="text/css"
 +
href="https://2017.igem.org/Template:Munich/Body?action=raw&ctype=text/css" />
 
<head>
 
<head>
 
<style>
 
<style>
#HQ_page #myContent p{
+
#HQ_page h3{
  font-size: medium;
+
  text-align: left;
 +
margin-bottom: 10px;
 
}
 
}
  
 +
#HQ_page h3{
 +
color: #51a7f9;
 +
}
 +
 +
 +
#myContent *{
 +
color: #919191;
 +
}
 +
 +
#myContent tr p{
 +
margin-bottom: 10px;
 +
}
 
</style>
 
</style>
</head><body>
+
</head></html>
 +
{{Munich/Menu}}
 +
<html>
 +
<body>
 
<table width=100% height=100% cellpadding=0 cellspacing=0 border=0>
 
<table width=100% height=100% cellpadding=0 cellspacing=0 border=0>
 
<!-- Bar -->
 
<tr><td height="32" bgcolor=#51A7f9></td><td class="no-padding" bgcolor=#51A7f9 height="32" width="960" align=center>
 
<div class="dropdown">
 
  <a href="/Team:Munich"><button class="dropbtnCascAid dropbtn"><img src="overlay.png"></button></a>
 
  <div class="dropdown-content dropdown-content">
 
  </div>
 
</div><div class="dropdown">
 
  <a href="project" target=content><button class="dropbtnProject dropbtn"><img src="overlay.png"></button></a>
 
  <div class="dropdown-contentDescription dropdown-content">
 
    <a href="description" target=content></a>
 
  </div>
 
  <div class="dropdown-contentDesign dropdown-content">
 
    <a href="design" target=content></a>
 
  </div>
 
  <div class="dropdown-contentProofofConcept dropdown-content">
 
    <a href="proofofconcept" target=content></a>
 
  </div>
 
  <div class="dropdown-contentDemonstration dropdown-content">
 
    <a href="demonstration" target=content></a>
 
  </div>
 
  <div class="dropdown-contentApplication dropdown-content">
 
    <a href="application" target=content></a>
 
  </div>
 
  <div class="dropdown-contentFinalResults dropdown-content">
 
    <a href="finalresults" target=content></a>
 
  </div>
 
  <div class="dropdown-contentEntrepreneurship dropdown-content">
 
    <a href="entrepreneurship" target=content></a>
 
  </div>
 
  <div class="dropdown-contentAchievements dropdown-content">
 
    <a href="achievements" target=content></a>
 
  </div>
 
</div><div class="dropdown" valign=center>
 
  <a href="wetlab" target=content><button class="dropbtnWetlab dropbtn" valign=center><img src="overlay.png"></button></a>
 
  <div class="dropdown-contentProtocolsMethods dropdown-content">
 
    <a href="protocolsmethods" target=content></a>
 
  </div>
 
  <div class="dropdown-contentMaterials dropdown-content">
 
    <a href="materials" target=content></a>
 
  </div>
 
  <div class="dropdown-contentLabJournal dropdown-content">
 
    <a href="labjournal" target=content></a>
 
  </div>
 
  <div class="dropdown-contentSafety dropdown-content">
 
    <a href="safety" target=content></a>
 
  </div>
 
  <div class="dropdown-contentParts dropdown-content">
 
    <a href="parts" target=content></a>
 
  </div>
 
  <div class="dropdown-contentInterlab dropdown-content">
 
    <a href="interlab" target=content></a>
 
  </div>
 
</div><div class="dropdown">
 
  <a href="model" target=content><button class="dropbtnModel dropbtn"><img src="overlay.png"></button></a>
 
  <div class="dropdown-content dropdown-content">
 
  </div>
 
</div><div class="dropdown">
 
  <a href="softhardware" target=content><button class="dropbtnSoftHardware dropbtn"><img src="overlay.png"></button></a>
 
  <div class="dropdown-contentSoftware dropdown-content">
 
    <a href="software" target=content></a>
 
  </div>
 
  <div class="dropdown-contentHardware dropdown-content">
 
    <a href="hardware" target=content></a>
 
  </div>
 
</div><div class="dropdown">
 
  <a href="hp" target=content><button class="dropbtnHP dropbtn"><img src="overlay.png"></button></a>
 
  <div class="dropdown-contentHPSilver dropdown-content">
 
    <a href="hpsilver" target=content></a>
 
  </div>
 
  <div class="dropdown-contentIHPgold dropdown-content">
 
    <a href="ihpgold" target=content></a>
 
  </div>
 
  <div class="dropdown-contentPublicEngagement dropdown-content">
 
    <a href="publicengagement" target=content></a>
 
  </div>
 
  <div class="dropdown-contentCollaborations dropdown-content">
 
    <a href="collaborations" target=content></a>
 
  </div>
 
</div><div class="dropdown">
 
  <a href="/Team:Munich/Team" target=content><button class="dropbtnTeam dropbtn"><img src="overlay.png"></button></a>
 
  <div class="dropdown-contentTeamMembers dropdown-content">
 
    <a href="teammembers" target=content></a>
 
  </div>
 
  <div class="dropdown-contentSupervisors dropdown-content">
 
    <a href="supervisors" target=content></a>
 
  </div>
 
  <div class="dropdown-contentPIs dropdown-content">
 
    <a href="pis" target=content></a>
 
  </div>
 
  <div class="dropdown-contentCollaboratingInstitutions dropdown-content">
 
    <a href="collaboratinginstitutions" target=content></a>
 
  </div>
 
  <div class="dropdown-contentSponsors dropdown-content">
 
    <a href="sponsors" target=content></a>
 
  </div>
 
  <div class="dropdown-contentAttributions dropdown-content">
 
    <a href="/Team:Munich/Team" target=content></a>
 
  </div>
 
</div>
 
</td><td height="32" bgcolor=#51A7f9></td></tr>
 
 
<!-- Content -->
 
<!-- Content -->
<tr><td width="100%" colspan=3>
+
<tr><td width="100%" colspan=4>
 
<table width=100% height=100% cellpadding=0 cellspacing=0 border=0>
 
<table width=100% height=100% cellpadding=0 cellspacing=0 border=0>
 
<tr>
 
<tr>
Line 129: Line 48:
 
<!-- Head End -->
 
<!-- Head End -->
 
<!-- Content Begin -->
 
<!-- Content Begin -->
<img width="960" src="https://static.igem.org/mediawiki/2017/a/ab/T--Munich--team-picture.png" style="margin-bottom: 15px">
+
<img id="TopPicture" width="960" src="https://static.igem.org/mediawiki/2017/b/be/T--Munich--FrontPagePictures_Attributions.jpg">
<table width="900" border=0 cellspacing=0 cellpadding=10>
+
<table width="960" border=0 cellspacing=0 cellpadding=10>
<tr><td colspan=2 align=left valign=center>
+
<tr>
<font size=7 color=#444444><b>Abstract</b></font>
+
<td width=160></td>
</td></tr>
+
<td width=160></td>
<tr><td align=center valign=center>
+
<td width=160></td>
<p style="text-align:justify">
+
<td width=160></td>
<font size=3 color=#444444>
+
<td width=160></td>
The ongoing crisis of increasing antibiotic resistance demands innovative preventive strategies. Recently, the RNA-targeting protein CRISPR-Cas13a has been used for highly sensitive DNA and RNA detection, promising diverse applications in point-of-care diagnostics. We integrated Cas13a in the detection unit of CascAID, our GMO-free diagnostic platform. CascAID combines an automated microfluidic device for rapid lysis and extraction of nucleic acids with a paper-based readout system. We demonstrated the performance of our device by targeting the 16S RNA from E. coli. We improved the detection limit of our platform, using simulations to optimize our amplification scheme and the final readout.  
+
<td width=160></td>
</font>
+
</tr>
 +
<tr><td colspan=6 align=left valign=center>
 +
<font size=7 color=#51a7f9><b style="color: #51a7f9">Description</b></font>
 +
</td>
 +
</tr>
 +
<tr>
 +
<td colspan = 6 align="left">
 +
<p class="introduction">
 +
Thanks to advances in molecular biology and biochemistry, scientists have been able to consistently detect lower and lower concentration of molecules<sup><a class="myLink" href="#ref_1">1</a></sup>, to the point that single molecules can be reliably recognized with methods such as polymerase chain reaction (PCR)<sup><a class="myLink" href="#ref_2">2</a></sup>, fluorescence in situ hybridization (FISH)<sup><a class="myLink" href="#ref_3">3</a></sup> and enzyme-linked immunosorbent assays (ELISA)<sup><a class="myLink" href="#ref_4">4</a></sup>. This has opened doors for synthetic biology to create better and more accurate diagnostic tests that use biomarkers like nucleic acids and proteins as targets<sup><a class="myLink" href="#ref_5">5</a>,<a class="myLink" href="#ref_6">6</a></sup>. Through such advances, the field of molecular diagnostics developed. Unfortunately, current standard methods require expensive equipment or trained personnel, which generally limits their usability to hospitals or laboratories. Recently, there has been a push to develop new tests that fuse the reliability of standard methods with affordable platforms such as lab-on-a-chip or paper strips  to overcome this restrictions<sup><a class="myLink" href="#ref_7">7-9</a></sup>. We wanted to help close this gap and set out to engineer a diagnosis principle for the detection of a wide array of targets that could be used without difficult-to-meet technical requirements.  
 +
                </p>
 +
 
 +
</td>
 +
</tr>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<tr><td colspan=6 align=center valign=center>
 +
<h3>CascAID</h3>
 +
<p> 
 +
Our project, which we named Cas13a controlled assay for infectious diseases (CascAID), features the recently identified CRISPR/Cas effector Cas13a<sup><a class="myLink" href="#ref_10">10</a></sup>. Unlike other proteins in the familiy, Cas13a has the unique ability to bind and cleave specific RNA targets rather than DNA ones.  Moreover, after cleaving its target, Cas13a is able to unspecifically cleave RNA molecules. By using this collateral activity from Cas13a, our system is capable of detecting virtually any RNA target. This is done by changing the crRNA in the protein, that is a short RNA sequence that determines what is recognized as target.</p>
 +
</td>
 +
</tr>
 +
<tr>
 +
<td colspan=6 align=center valign=center>
 +
<img src="https://static.igem.org/mediawiki/2017/0/04/T--Munich--Description_Cas13a_Mechanism.svg" alt="Diagram for Cas13a's function">
 +
<p>Cas13a binds specific target RNA depending on the crRNA sequence. After activation, Cas13a cleaves RNA indiscriminately.</p>
 +
</td>
 +
 
 +
</tr>
 +
 
 +
<tr><td align=center valign=center colspan=4>
 +
<p> 
 +
We wanted to start our project by showing that Cas13a's collateral activity could be used to detect the presence of specific RNA. For this, we used the RNAse alert system, as done in a recent publication<sup><a class="myLink" href="#ref_11">11</a></sup>, to detect RNA digestion. In this assay, the presence of RNAse-like activity is detected by an increase in green fluorescence. Our experiments yielded a convincing proof-of-principle which we went on to model. Moreover, CascAID can be used to detect a wide spectrum of pathogens, as our experiments with gram-positive and viral targets suggested. As we wanted to make CascAID available for everyone, we focused on building an inexpensive fluorescence detector to measure the presence of the target. Our detector “Lightbringer” was designed to be able to detect the fluorescence produced by the fluorescein in the Rnase alert system<sup><a class="myLink" href="#ref_12">12</a></sup>, but we theorize that changing the filters allows detection of other fluorophores. In addition, we experimented with freeze-drying on paper to make CascAID durable and easily portable.
 
</p>
 
</p>
</font>
+
</td>
</td><td align=center valign=center>
+
<td align=center valign=center colspan=2>
<img src="https://static.igem.org/mediawiki/2017/thumb/a/af/T--Munich--Logo_Final.svg/739px-T--Munich--Logo_Final.svg.png" width="420">
+
<img src="https://static.igem.org/mediawiki/2017/7/7f/T--Munich--Description_Cas13a_Readout_Comparision.svg">
</td></tr>
+
<p>Cas13a can be used to detect specific RNA sequences</p>
<tr><td align=center valign=center>
+
</td>
<p style="text-align:justify">
+
</tr>  
<font size=3 color=#444444>
+
 
Conceived as a distributable platform for rapid point-of-care diagnostics, CascAID can be used to distinguish between bacterial and viral infections, thus minimizing the widespread use of antibiotics.
+
<tr class="lastRow">
</font>
+
<td align=center valign=center colspan=2>
 +
<a href="http://www.uni-muenchen.de/studium/lehre_at_lmu/index.html"><img src="https://static.igem.org/mediawiki/2017/9/9a/T--Munich--Logo_LehreLMU.gif" width="200"></a>
 +
<p>Picture of the Thermocycler</p>
 +
</td>
 +
<td align=center valign=center colspan=4>
 +
<p> 
 +
For RNA extraction from the samples we tested three methods: extraction with silica beads, extraction with silica membrane and heat lysis. We custom-built an affordable thermocycler for signal amplification by RT-PCR to improve the detection limit. We explored recombinase polymerase amplification (RPA), an isothermal amplification procedure, to use over more conventional PCR methods as its simplicity makes it the more attractive option.
 
</p>
 
</p>
</td><td align=center valign=center>
+
</td>
<p style="text-align:justify">
+
</tr>
<font size=3 color=#444444>
+
 
Furthermore, Cas13a allows the fast design of target sequences, making our system adaptive to the emergence of new viral outbreaks or fast mutating pathogens.
+
<tr><td colspan=6 align=center valign=center>
</font>
+
<h3>Colorimetric read-outs</h3>
 +
<p>
 +
To couple CascAID with an easy read-out method we explored three colorimetric read-outs:
 
</p>
 
</p>
</td></tr>
+
</td>
<hr>
+
</tr>
<tr><td colspan=2 align=right valign=center height=10>
+
 
<font size=2>Date</font>
+
<tr><td colspan=2 align=center valign=center>
</td></tr>
+
<p>
<tr><td colspan=2 align=left valign=center>
+
<b>AeBlue</b>: The RNA strand in a specially designed RNA/DNA dimer is cut by Cas13a's collateral
<font size=7><b>Headline</b></font>
+
activity. After digestion, the interaction between the two strands is too weak to hold the dimer and it
</td></tr>
+
decays. We can then use the DNA-strand as template to translate the chromoprotein <a href="http://parts.igem.org/Part:BBa_K864401">aeBlue</a>.
<tr><td align=center valign=center colspan=2>
+
<img src="placeholder.jpg" width="900">
+
</td></tr>
+
<tr><td align=center valign=center>
+
<p style="text-align:justify">
+
<font>
+
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum."</font>
+
 
</p>
 
</p>
</td><td align=center valign=center>
+
</td>
<p style="text-align:justify">
+
<td colspan=4 align=center valign=center>
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum."
+
<img src="https://static.igem.org/mediawiki/2017/9/90/T--Munich--Description_aeBlue.svg">
 +
<p>Diagram of aeBlue</p>
 +
</td>
 +
</tr>
 +
 
 +
<tr><td colspan=2 align=center valign=center>
 +
<p> 
 +
<b>Intein-Extein</b>: By binding TEV-protease with a RNA-linker we can use Cas13a's collateral activity
 +
to regulate the protease's diffusion and use it to cleave a TEV tag separating the intein regions of a
 +
modified chromophore. After the first cleavage, the intein segment excises itself<sup><a class="myLink" href="#13">13</a></sup>, bringing together the
 +
halves of the chromophore. Only then is the chromophore functional and produces the colorimetric
 +
read-out.
 
</p>
 
</p>
</td></tr>
+
</td>
<tr><td colspan=2 align=right valign=center height=10>
+
<td colspan=4 align=center valign=center>
<font size=2>Authors</font><hr>
+
<a href="http://www.uni-muenchen.de/studium/lehre_at_lmu/index.html"><img src="https://static.igem.org/mediawiki/2017/9/9a/T--Munich--Logo_LehreLMU.gif" width="200"></a>
</td></tr>
+
<p>Diagram of Intein-Extein</p>
 +
</td>
 +
</tr>  
  
<hr>
+
<tr class="lastRow"><td colspan=2 align=center valign=center>
<tr><td colspan=2 align=right valign=center height=10>
+
<p>
<font size=2>Date</font>
+
<b>Gold nanoparticles</b>: Gold nanoparticles coated with short DNA sequences are held closely
</td></tr>
+
together by a complementary linker RNA, which makes the solution intense blue<sup><a class="myLink" href="#14">14</a></sup>. Activated Cas13a cuts
<tr><td colspan=2 align=left valign=center>
+
the linker RNA, causing the nanoparticles to diffuse away from each other. This increase in distance
<font size=7><b>Headline</b></font>
+
causes a color change to intense red.
</td></tr>
+
<tr><td align=center valign=center>
+
<p style="text-align:justify">
+
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum."
+
 
</p>
 
</p>
</td><td align=center valign=center rowspan=2>
+
</td>
<img src="placeholder.jpg" height="600" width="420">
+
<td colspan=4 align=center valign=center>
</td></tr>
+
<img src="https://static.igem.org/mediawiki/2017/b/b3/T--Munich--Description_Goldnanoparticles.svg">
<tr><td align=center valign=center>
+
<p>Gold nanoparticles</p>
<p style="text-align:justify">
+
</td>
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum."
+
</tr>  
 +
 
 +
<tr><td colspan=6 align=center valign=center>
 +
<h3>Software</h3>
 +
<p>
 +
To help facilitate the design of crRNA, the sequences that give CascAID its specificity, we developed a
 +
software tool that checks crRNA for unwanted secondary structures. This gives valuable insight on
 +
whether the sequence is suited to use with Cas13a or whether some modifications are needed.
 +
Together with Team Delft's software tool which designs the corresponding crRNA based on the target,
 +
we collaborated to develop a powerful tool that suggests crRNA sequences and checks their usability
 
</p>
 
</p>
</td></tr>
+
</td>
<tr><td colspan=2 align=right valign=center height=10>
+
</tr>
<font size=2>Authors</font><
+
 
</td></tr>
+
<tr><td colspan=6 align=center valign=center>
<tr><td class="no-padding" colspan=2 align=right valign=center height=10>
+
<h3>References</h3>
 +
<p>
 +
    <ol style="text-align: left">
 +
      <li id="ref_1">Cohen, Limor, and David R. Walt. "Single-Molecule Arrays for Protein and Nucleic Acid Analysis." Annual Review of Analytical Chemistry 0 (2017).</li>
 +
      <li id="ref_2">Nakano, Michihiko, et al. "Single-molecule PCR using water-in-oil emulsion." Journal of biotechnology 102.2 (2003): 117-124.</li>
 +
      <li id="ref_3">Taniguchi, Yuichi, et al. "Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells." science 329.5991 (2010): 533-538.</li>
 +
      <li id="ref_4">Rissin, David M., et al. "Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations." Nature biotechnology 28.6 (2010): 595-599.</li>
 +
      <li id="ref_5">Pardee, Keith, et al. "Rapid, low-cost detection of Zika virus using programmable biomolecular components." Cell 165.5 (2016): 1255-1266.</li>
 +
      <li id="ref_6">Slomovic, Shimyn, Keith Pardee, and James J. Collins. "Synthetic biology devices for in vitro and in vivo diagnostics." Proceedings of the National Academy of Sciences 112.47 (2015): 14429-14435.</li>
 +
      <li id="ref_7">Tang, Ruihua, et al. "A fully disposable and integrated paper-based device for nucleic acid extraction, amplification and detection." Lab on a Chip 17.7 (2017): 1270-1279.</li>
 +
      <li id="ref_8">Vashist, Sandeep Kumar, et al. "Emerging technologies for next-generation point-of-care testing." Trends in biotechnology 33.11 (2015): 692-705.</li>
 +
      <li id="ref_9">Gubala, Vladimir, et al. "Point of care diagnostics: status and future." Analytical chemistry 84.2 (2011): 487-515.</li>
 +
      <li id="ref_10">Abudayyeh, Omar O., et al. "C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector." Science 353.6299 (2016): aaf5573.</li>
 +
      <li id="ref_11">Gootenberg, Jonathan S., et al. "Nucleic acid detection with CRISPR-Cas13a/C2c2." Science (2017): eaam9321.</li>
 +
      <li id="ref_12">https://www.idtdna.com/pages/docs/technical-reports/in_vitro_nuclease_detectionD325FDB69855.pdf (retrieved: 13.10.17)</li>
 +
      <li id="ref_13"> Anraku, Yasuhiro, Ryuta Mizutani, and Yoshinori Satow. "Protein splicing: its discovery and structural insight into novel chemical mechanisms." IUBMB life 57.8 (2005): 563-574.</li>
 +
      <li id="ref_14">Link, Stephan, and Mostafa A. El-Sayed. "Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles." The Journal of Physical Chemistry B 103.21 (1999): 4212-4217.</li>
 +
    </ol>
 +
</p>
 +
</td>
 +
</tr>
 +
 
 +
 
 +
 
 +
 
 +
<tr><td class="no-padding" colspan=6 align=right valign=center height=10>
 
<br><br><br><center><hr></center>
 
<br><br><br><center><hr></center>
 
</td></tr>
 
</td></tr>
 
 
</table>
 
</table>
 
<!-- Content End -->
 
<!-- Content End -->
Line 310: Line 307:
  
 
<td bgcolor=#ffffff height="25" width="90" align=center valign=center>
 
<td bgcolor=#ffffff height="25" width="90" align=center valign=center>
<a href="https://www.eurofinsgenomics.eu/" target="_blank1" ><img src="https://static.igem.org/mediawiki/2017/c/c7/T--Munich--wiki_image_sponsors_eurofins.svg" border=0 height="15"></a>
+
<a href="https://www.eurofinsgenomics.eu/" target="_blank1" ><img src="https://static.igem.org/mediawiki/2017/6/65/T--Munich--Logo_Eurofins.png" border=0 height="15"></a>
 
</td>
 
</td>
  

Revision as of 14:49, 16 October 2017


Description

Thanks to advances in molecular biology and biochemistry, scientists have been able to consistently detect lower and lower concentration of molecules1, to the point that single molecules can be reliably recognized with methods such as polymerase chain reaction (PCR)2, fluorescence in situ hybridization (FISH)3 and enzyme-linked immunosorbent assays (ELISA)4. This has opened doors for synthetic biology to create better and more accurate diagnostic tests that use biomarkers like nucleic acids and proteins as targets5,6. Through such advances, the field of molecular diagnostics developed. Unfortunately, current standard methods require expensive equipment or trained personnel, which generally limits their usability to hospitals or laboratories. Recently, there has been a push to develop new tests that fuse the reliability of standard methods with affordable platforms such as lab-on-a-chip or paper strips to overcome this restrictions7-9. We wanted to help close this gap and set out to engineer a diagnosis principle for the detection of a wide array of targets that could be used without difficult-to-meet technical requirements.

CascAID

Our project, which we named Cas13a controlled assay for infectious diseases (CascAID), features the recently identified CRISPR/Cas effector Cas13a10. Unlike other proteins in the familiy, Cas13a has the unique ability to bind and cleave specific RNA targets rather than DNA ones. Moreover, after cleaving its target, Cas13a is able to unspecifically cleave RNA molecules. By using this collateral activity from Cas13a, our system is capable of detecting virtually any RNA target. This is done by changing the crRNA in the protein, that is a short RNA sequence that determines what is recognized as target.

Diagram for Cas13a's function

Cas13a binds specific target RNA depending on the crRNA sequence. After activation, Cas13a cleaves RNA indiscriminately.

We wanted to start our project by showing that Cas13a's collateral activity could be used to detect the presence of specific RNA. For this, we used the RNAse alert system, as done in a recent publication11, to detect RNA digestion. In this assay, the presence of RNAse-like activity is detected by an increase in green fluorescence. Our experiments yielded a convincing proof-of-principle which we went on to model. Moreover, CascAID can be used to detect a wide spectrum of pathogens, as our experiments with gram-positive and viral targets suggested. As we wanted to make CascAID available for everyone, we focused on building an inexpensive fluorescence detector to measure the presence of the target. Our detector “Lightbringer” was designed to be able to detect the fluorescence produced by the fluorescein in the Rnase alert system12, but we theorize that changing the filters allows detection of other fluorophores. In addition, we experimented with freeze-drying on paper to make CascAID durable and easily portable.

Cas13a can be used to detect specific RNA sequences

Picture of the Thermocycler

For RNA extraction from the samples we tested three methods: extraction with silica beads, extraction with silica membrane and heat lysis. We custom-built an affordable thermocycler for signal amplification by RT-PCR to improve the detection limit. We explored recombinase polymerase amplification (RPA), an isothermal amplification procedure, to use over more conventional PCR methods as its simplicity makes it the more attractive option.

Colorimetric read-outs

To couple CascAID with an easy read-out method we explored three colorimetric read-outs:

AeBlue: The RNA strand in a specially designed RNA/DNA dimer is cut by Cas13a's collateral activity. After digestion, the interaction between the two strands is too weak to hold the dimer and it decays. We can then use the DNA-strand as template to translate the chromoprotein aeBlue.

Diagram of aeBlue

Intein-Extein: By binding TEV-protease with a RNA-linker we can use Cas13a's collateral activity to regulate the protease's diffusion and use it to cleave a TEV tag separating the intein regions of a modified chromophore. After the first cleavage, the intein segment excises itself13, bringing together the halves of the chromophore. Only then is the chromophore functional and produces the colorimetric read-out.

Diagram of Intein-Extein

Gold nanoparticles: Gold nanoparticles coated with short DNA sequences are held closely together by a complementary linker RNA, which makes the solution intense blue14. Activated Cas13a cuts the linker RNA, causing the nanoparticles to diffuse away from each other. This increase in distance causes a color change to intense red.

Gold nanoparticles

Software

To help facilitate the design of crRNA, the sequences that give CascAID its specificity, we developed a software tool that checks crRNA for unwanted secondary structures. This gives valuable insight on whether the sequence is suited to use with Cas13a or whether some modifications are needed. Together with Team Delft's software tool which designs the corresponding crRNA based on the target, we collaborated to develop a powerful tool that suggests crRNA sequences and checks their usability

References

  1. Cohen, Limor, and David R. Walt. "Single-Molecule Arrays for Protein and Nucleic Acid Analysis." Annual Review of Analytical Chemistry 0 (2017).
  2. Nakano, Michihiko, et al. "Single-molecule PCR using water-in-oil emulsion." Journal of biotechnology 102.2 (2003): 117-124.
  3. Taniguchi, Yuichi, et al. "Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells." science 329.5991 (2010): 533-538.
  4. Rissin, David M., et al. "Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations." Nature biotechnology 28.6 (2010): 595-599.
  5. Pardee, Keith, et al. "Rapid, low-cost detection of Zika virus using programmable biomolecular components." Cell 165.5 (2016): 1255-1266.
  6. Slomovic, Shimyn, Keith Pardee, and James J. Collins. "Synthetic biology devices for in vitro and in vivo diagnostics." Proceedings of the National Academy of Sciences 112.47 (2015): 14429-14435.
  7. Tang, Ruihua, et al. "A fully disposable and integrated paper-based device for nucleic acid extraction, amplification and detection." Lab on a Chip 17.7 (2017): 1270-1279.
  8. Vashist, Sandeep Kumar, et al. "Emerging technologies for next-generation point-of-care testing." Trends in biotechnology 33.11 (2015): 692-705.
  9. Gubala, Vladimir, et al. "Point of care diagnostics: status and future." Analytical chemistry 84.2 (2011): 487-515.
  10. Abudayyeh, Omar O., et al. "C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector." Science 353.6299 (2016): aaf5573.
  11. Gootenberg, Jonathan S., et al. "Nucleic acid detection with CRISPR-Cas13a/C2c2." Science (2017): eaam9321.
  12. https://www.idtdna.com/pages/docs/technical-reports/in_vitro_nuclease_detectionD325FDB69855.pdf (retrieved: 13.10.17)
  13. Anraku, Yasuhiro, Ryuta Mizutani, and Yoshinori Satow. "Protein splicing: its discovery and structural insight into novel chemical mechanisms." IUBMB life 57.8 (2005): 563-574.
  14. Link, Stephan, and Mostafa A. El-Sayed. "Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles." The Journal of Physical Chemistry B 103.21 (1999): 4212-4217.