Line 29: | Line 29: | ||
<div class="column half_size"> | <div class="column half_size"> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/2/2f/HQ_foundational_heidelberg2015.jpg"> | ||
+ | <h3><a href="https://2015.igem.org/Team:Heidelberg"> Heidelberg 2015 </a></h3> | ||
+ | <h4>Catch it if you can </h4> | ||
+ | |||
+ | <p> | ||
+ | Like Proteins, RNA folds into a unique, functionally relevant 3D structure – as a catalytic ribozyme or an aptamer detecting and selectively binding a ligand. To obtain these functional RNAs, simple transcription of a DNA sequence is sufficient. Yet finding the few functional sequences has so far been challenging and has impeded its widespread use in synthetic biology. As a part of our project, we develop a software that drastically reduces both required resources and effort of directed evolution, as it creates aptamers for virtually any molecule through computational simulation. With the goal to provide the iGEM community with the power of RNA, we develop a toolbox consisting of easy to use standards for in vitro RNA usage, practical readouts and means for mRNA editing. To reach the end user with our work, we create straightforward tests for the detection of numerous noxious substances. | ||
+ | </p> | ||
</div> | </div> | ||
+ | |||
+ | |||
+ | |||
+ | |||
</html> | </html> |
Revision as of 23:40, 15 December 2016
Foundational Advance Track
Synthetic Biology has the potential to achieve great things in the 21st century, which has already been described as the century of biology. While DNA sequencing and synthesis are advancing in capacity at a rate about five times faster than Moore's law, they are not the only technologies necessary to bring about this revolution. Reading and writing DNA will become ever more crucial tools as the field of synthetic biology advances but knowing how to program using DNA will be the key to the field.
iGEM relies on a number of foundational technologies to function. We use BioBricks, standardization (RFCs), high-throughput quality control and many other processes to run the competition. We are continually expanding our capacities and a number of the projects listed below are examples of teams who have contributed parts, kits or work that advances iGEM. Unlike most other tracks, teams are not competing to solve a practical problem. The Foundational Advance track allows teams to come up with novel solution to technical problems surrounding core synbio technologies.
You will find images and abstracts of the winning Foundational Advance teams from 2013 to 2015 in the page below. Also, follow the links below to see projects from all the Foundational Advance track teams.
Heidelberg 2015
Catch it if you can
Like Proteins, RNA folds into a unique, functionally relevant 3D structure – as a catalytic ribozyme or an aptamer detecting and selectively binding a ligand. To obtain these functional RNAs, simple transcription of a DNA sequence is sufficient. Yet finding the few functional sequences has so far been challenging and has impeded its widespread use in synthetic biology. As a part of our project, we develop a software that drastically reduces both required resources and effort of directed evolution, as it creates aptamers for virtually any molecule through computational simulation. With the goal to provide the iGEM community with the power of RNA, we develop a toolbox consisting of easy to use standards for in vitro RNA usage, practical readouts and means for mRNA editing. To reach the end user with our work, we create straightforward tests for the detection of numerous noxious substances.