Difference between revisions of "Team:SDU-Denmark/testvyff"

(Vyff prøver ting of)
(Vyff prøver ting of)
Line 133: Line 133:
  
 
<p>
 
<p>
For natural purposes the half life of RelB decreases significantly under starvation due to lon-protease, with shifts the equilibrium of RelB and RelE to a high state of RelE. The interactions with the promoter, keeps the amount of free RelE at a very low value outside starvation and stabilises the system.
+
For natural purposes the half life of RelB decreases significantly under starvation due to lon-protease, with shifts the equilibrium of RelB and RelE to a high state of RelE. The interactions with the promoter, keeps the amount of free RelE at a very low value outside starvation and stabilises the system
  <span class="reference"><span class="referencetext"><a target="blank" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3413109/">Cataudella I., Trusina A., Sneppen K., Gerdes K., Mitarai N. Conditional cooperativity in toxin-antitoxin regulation prevents random toxin activation and promotes fast translational recovery. Nucleic Acids Res. 2012;40:6424–6434. doi: 10.1093/nar/gks297</a></span></span>
+
  <span class="reference"><span class="referencetext"><a target="blank" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3413109/">Cataudella I., Trusina A., Sneppen K., Gerdes K., Mitarai N. Conditional cooperativity in toxin-antitoxin regulation prevents random toxin activation and promotes fast translational recovery. Nucleic Acids Res. 2012;40:6424–6434. doi: 10.1093/nar/gks297</a></span></span>.
 
In our simulation the shift in equilibrium is made by introducing additional translation of RelE.  
 
In our simulation the shift in equilibrium is made by introducing additional translation of RelE.  
 
<br>
 
<br>

Revision as of 11:28, 18 October 2017

Modelling


In order to find the best way to implement the toxin-antitoxin system, we resort to modelling. We use the gillespie algorithm to model the interactions of the toxin antitoxin system.
We find that when we implement enhanced relE production as a tool to make the bacteria dormant, an additional implementation of relB to ensure don’t stay dormant when in light again.
The model found that the system is sensitive to the relE:relB ratio as well as the total production, and that an implementation with production rates in the vicinity of 50 and 35 molecules pr. min for relB and relE respectively yields close to the wished for effect: THe bacteria goes dormant in an hour and wakes up quickly.