|
|
Line 1: |
Line 1: |
| + | |
| {{INSA-UPS_France/Links_new}} | | {{INSA-UPS_France/Links_new}} |
| {{INSA-UPS_France/Style_new}} | | {{INSA-UPS_France/Style_new}} |
| {{INSA-UPS_France/Header_new}} | | {{INSA-UPS_France/Header_new}} |
− |
| |
− |
| |
| <html> | | <html> |
| | | |
− | <!-- C O N T E N T -->
| |
− |
| |
| <main class="site-main"> | | <main class="site-main"> |
| <div class="main_content"> | | <div class="main_content"> |
Line 15: |
Line 12: |
| | | |
| <section style="display:table;background:none;padding:0px !important;z-index:100; "> | | <section style="display:table;background:none;padding:0px !important;z-index:100; "> |
− | <h1 style="vertical-align:bottom;display:table-cell; width:70%;font-size:60pt;letter-spacing: 0.2em;z-index:120;text-align: center;">Description</h1> | + | <h1 style="vertical-align:bottom;display:table-cell; width:70%;font-size:60pt;letter-spacing: 0.2em;z-index:120;text-align: center;">Parts</h1> |
− | <img style="vertical-align:bottom;display:table-cell; width:100%;" src="https://static.igem.org/mediawiki/2017/e/e8/T--INSA-UPS_France--description_croco.png" alt=""> | + | <img style="vertical-align:bottom;display:table-cell; width:100%;" src="https://static.igem.org/mediawiki/2017/7/7e/T--INSA-UPS_France--Parts_croco.png" alt=""> |
| </section> | | </section> |
| | | |
| <style> | | <style> |
− | /* ASIDE NAV */
| + | section table{ |
− | .left_container{ | + | margin:10px; |
− | width:12%; | + | text-align: center; |
− | position:absolute; | + | width:100%; |
− | top:300px;
| + | border-collapse: collapse; |
− | padding:0;
| + | |
− | display:inline-block;
| + | |
− | font-family: 'Quicksand', sans-serif;
| + | |
− | font-weight: 400; | + | |
− | font-size:11pt; | + | |
− | text-align: right;
| + | |
| } | | } |
| + | section table tr td{ |
| + | padding: 10px; |
| + | text-align: center; |
| + | border:solid 1px #eee; |
| | | |
− | .aside-nav__item + .aside-nav__item{
| |
− | margin-top:20px;
| |
| } | | } |
− | .aside-nav__item{ | + | section table tr th{ |
| + | padding: 10px; |
| + | text-align: center; |
| + | } |
| + | section table tr td img{ |
| width:100%; | | width:100%; |
− | position:relative;
| |
| } | | } |
− | .aside-nav__item:after{
| + | section > img{ |
− | content:'';
| + | max-width: 600px; |
− | border:solid #3377a8 2px;
| + | |
− | position:absolute;
| + | |
− | right:-30px;
| + | |
− | top:40%;
| + | |
− | width:10px;
| + | |
− | height:10px;
| + | |
− | border-radius: 10px;
| + | |
− | margin-left:20px;
| + | |
− | }
| + | |
− | .aside-nav__item.selected-item:after{
| + | |
− | background:#3377a8;
| + | |
− | }
| + | |
− | .aside-fixed{
| + | |
− | position:fixed;
| + | |
− | top: 120px;
| + | |
− | width: 7%;
| + | |
− | }
| + | |
− | .aside-nav__item a, .aside-nav__item a:focus, .aside-nav__item a:visited, .aside-nav__item a:hover{
| + | |
− | text-decoration: none;
| + | |
− | color:black;
| + | |
− | }
| + | |
− | .aside-nav__item a:hover{
| + | |
− | font-weight: 700;
| + | |
− | }
| + | |
− | section img{ | + | |
− | max-width: 400px; | + | |
| } | | } |
| </style> | | </style> |
| | | |
− | <div class="left_container">
| + | <section style="background:none;"> |
− | <div class="left_container__inside"> | + | <h1>New parts submitted to the registry</h1> |
− | <div class="aside-nav__item">
| + | <table> |
− | <a href="#a1" data-number="1"> | + | <tr> |
− | Synthetic biology | + | <th>Name</th> |
− | </a>
| + | <th>Function</th> |
− | </div>
| + | <th>Type</th> |
− | <div class="aside-nav__item"> | + | <th>Part</th> |
− | <a href="#a2" data-number="2"> | + | <th>State</th> |
− | A microbial consortium chassis against cholera | + | </tr> |
− | </a>
| + | <tr> |
− | </div> | + | <td><a href="">BBa_K2278001</a></td> |
− | <div class="aside-nav__item"> | + | <td>QS molecule generator </td> |
− | <a href="#a3" data-number="3">
| + | <td>basic </td> |
− | Mimicking <i>Vibrio cholerae</i> | + | <td> |
− | </a> | + | <img src="https://static.igem.org/mediawiki/parts/4/40/T--INSA-UPS_France--K2278001.png" alt=""> |
− | </div> | + | </td> |
− | <div class="aside-nav__item">
| + | <td>working</td> |
− | <a href="#a4" data-number="4">
| + | </tr> |
− | The sensing organism: <i>Vibrio harveyi</i> | + | <tr> |
− | </a> | + | <td><a href="">BBa_K2278002</a></td> |
− | </div> | + | <td>QS molecule generator</td> |
− | <div class="aside-nav__item">
| + | <td>basic</td> |
− | <a href="#a5" data-number="5">
| + | <td><img src="https://static.igem.org/mediawiki/parts/5/51/T--INSA-UPS_France--K2278002.png" alt=""></td> |
− | The effecting organism: <i>Pichia pastoris</i> | + | <td>not released</td> |
− | </a> | + | </tr> |
− | </div> | + | <tr> |
− | <div class="aside-nav__item">
| + | <td><a href="">BBa_K2278011</a></td> |
− | <a href="#a6" data-number="6">
| + | <td>Diacetyl generator </td> |
− | Our system | + | <td>basic</td> |
− | </a>
| + | <td> |
− | </div> | + | <img src="https://static.igem.org/mediawiki/parts/0/00/T--INSA-UPS_France--K2278011.png" alt=""> |
− | <div class="aside-nav__item"> | + | </td> |
− | <a href="#a7" data-number="7">
| + | <td>issues </td> |
− | References | + | </tr> |
− | </a>
| + | <tr> |
− | </div> | + | <td><a href="">BBa_K2278021</a></td> |
− | </div> | + | <td>D-NY15 AMP generator </td> |
− | </div>
| + | <td>basic</td> |
| + | <td> |
| + | <img src="https://static.igem.org/mediawiki/parts/f/f9/T--INSA-UPS_France--K2278021.png" alt=""> |
| + | </td> |
| + | <td>Working </td> |
| + | </tr> |
| + | <tr> |
| + | <td><a href="">BBa_K2278022</a></td> |
| + | <td>Leucrocin I AMP generator</td> |
| + | <td>basic</td> |
| + | <td> |
| + | <img src="https://static.igem.org/mediawiki/parts/2/2b/T--INSA-UPS_France--K2278022.png" alt=""> |
| + | </td> |
| + | <td>unsuccessful </td> |
| + | </tr> |
| + | <tr> |
| + | <td><a href="">BBa_K2278023</a></td> |
| + | <td>coT2 AMP generator</td> |
| + | <td>basic</td> |
| + | <td> |
| + | <img src="https://static.igem.org/mediawiki/parts/a/aa/T--INSA-UPS_France--K2278023.png" alt=""> |
| + | </td> |
| + | <td>unsuccessful</td> |
| + | </tr> |
| + | </table> |
| + | </section> |
| | | |
− | <style>
| + | <section> |
− | .right_container{
| + | <h1>Existing Parts we have contributed to characterized</h1> |
− | width:83%;
| + | |
− | margin-left:17%;
| + | |
− | }
| + | |
− | .article_offset{
| + | |
− | margin-bottom:20px;
| + | |
− | border: solid 1px transparent;
| + | |
− | }
| + | |
− | </style> | + | |
− |
| + | |
− |
| + | |
− | <div class="right_container">
| + | |
| | | |
− | <div class="article_offset" id="a1"></div> | + | <h2><a href="http://parts.igem.org/Part:BBa_J04450">BBa_J04450</a></h2> |
− | <section>
| + | |
− | <h1>Synthetic biology: to the multi-organisms communication and beyond </h1>
| + | <figure> |
− | <p>
| + | <img src="https://static.igem.org/mediawiki/parts/1/1e/T--INSA-UPS_France--Vh1.png" alt=""> |
− | Nature is still developing a wide large diversity of remarkably efficient pathways in order to sense presence of specific chemical, or even physical parameters such as temperature, pressure and light<sup><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246677/" target="_blank">1</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/26308982" target="_blank">2</a></sup>. While biology originally described these phenomena, synthetic biology emerged to take advantage of Nature’s tricks, basically by inserting genetic information from microorganisms into a single and unique one, most of the time <i>Escherichia coli</i><sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/24686414" target="_blank">3</a></sup>. However, focusing only on this type of bacteria is not appropriate to reflect the large complexity of living organisms and more, their intimate relationship in Nature. This aspect starts to be a limiting border in the way of the development of the synthetic biology<sup><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531478/" target="_blank">4</a></sup>.
| + | <figcaption> |
− | </p>
| + | BBa_J04450 biobrick conjugated in <i>Vibrio harveyi</i> |
− | <p>
| + | </figcaption> |
− | Then, our iGEM project focused on a multi organisms communication pathway, especially between prokaryotic and eukaryotic cells. Thus, we developed a strategy using a cascade of events from a sensor cell (<i>Vibrio harveyi</i>) to an effector cell (<i>Pichia pastoris</i>) in order to detect and eradicate a <i>Vibrio cholera</i> mimicking cell (<i>Escherichia coli</i>) using an antimicrobial peptides from crocodile.
| + | </figure> |
− | </p>
| + | |
− | <img src="https://static.igem.org/mediawiki/2017/b/b3/T--INSA-UPS_France--description_sense-effect.png" alt=""> | + | <p> |
− | <h2>Genesis of our molecular strategy</h2> | + | BBa_J04450 was tested in the <i>Vibrio harveyi</i> background. BBa_J04450 biobrick was cloned in a broad host range plasmid (pBBR1MCS-4) and conjugated into <i>Vibrio harveyi</i> to demonstrate the production of RFP in this chassis. |
− | <p> | + | </p> |
− | During our iGEM brainstorming, while defining our strategy, cholera epidemic started unfortunately to expand in Yemen<sup><a href="http://www.emro.who.int/yem/yemeninfocus/situation-reports.html" target="_blank">5</a></sup>. Actually, the bacteria <i>Vibrio cholerae</i> that causes cholera disease is usually found in water and infects more than a million of people each year. This terrible situation led us to focus on this problematic and it appeared that current solutions were not efficient enough to deal with this situation.
| + | |
− | </p>
| + | <p> |
− | <p>
| + | <b>To learn more: </b> <a href="http://parts.igem.org/Part:BBa_J04450">http://parts.igem.org/Part:BBa_J04450</a> |
− | Recently, academic research groups started to focus on synthetic biology in order to find a way to deal with <i>Vibrio cholerae</i><sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/16697733" target="_blank">6</a>,<a href="http://pubs.acs.org/doi/abs/10.1021/acssynbio.6b00079" target="_blank">7</a></sup>. Additionally, some iGEM teams tried also to deal with the challenging detection of <i>V. cholerae</i><sup><a href="https://2014.igem.org/Team:UI-Indonesia" target="_blank">8</a>,<a href="https://2010.igem.org/Team:Sheffield" target="_blank">9</a>,<a href="https://2014.igem.org/Team:UT-Dallas" target="_blank">10</a></sup>, using <i>E. coli</i>. They based their strategy around the quorum sensing system of <i>V. cholerae</i> in order to detect it, implementing CqsS receptor and the LuxU/O pathway into <i>E. coli</i> in order to activate gene expression. However these projects, no matter how clever and brilliant they might be, were not successful enough maybe due to the process complexity of introducing a large amount of DNA information in a single microorganism. That is why we built a synthetic consortium of microorganism against <i>Vibrio cholerae</i>.
| + | </p> |
− | </p>
| + | |
− | </section>
| + | <h2><a href="http://parts.igem.org/Part:BBa_K431009">BBa_K431009</a>: glyceraldehyde 3-phosphate dehydrogenase promoter (pGAP)</h2> |
| + | </section> |
| + | |
| + | <section> |
| + | <h1>Parts used in our project but not submitted to the registry </h1> |
| + | </section> |
| | | |
| | | |
− | <div class="article_offset" id="a2"></div> | + | <!-- fin section --> |
− | <section>
| + | |
− | <h1>A microbial consortium chassis against cholera
| + | |
− | </h1>
| + | |
− | <p>
| + | |
− | We finally created an artificial consortium chassis to deal with cholera disease. The different partners are described below.
| + | |
− | </p>
| + | |
− | <ul>
| + | |
− | <li>
| + | |
− | To mimic <i>V. cholerae</i> by producing CAI-1 molecule. This will be done in <i>E. coli</i>
| + | |
− | </li>
| + | |
− | <li>
| + | |
− | A bacteria with a quorum sensing pathway activated on the <i>V. cholerae</i> presence on which CAI-1 bind. <i>Vibrio harveyi</i> naturally possess that pathway. It will lead to the production of a messenger molecule: that we choose to be diacetyl.
| + | |
− | </li>
| + | |
− | <li>
| + | |
− | The diacetyl binds to the Odr-10 receptor that can be expressed on yeast such as <i>Pichia pastoris</i> and start a molecular pathway.This pathway lead to the activation of pFUS1 and will produce our antimicrobial peptide with a secretion cassette. Those peptides will kill <i>Vibrio cholerae</i>.
| + | |
− | </li>
| + | |
− | </ul>
| + | |
− |
| + | |
− |
| + | |
− | </section>
| + | |
| | | |
| + | </div> |
| + | </div> |
| + | <style> |
| | | |
− | <div class="article_offset" id="a3"></div>
| + | footer{ |
− | <section>
| + | position:relative; |
− | <h1>Mimicking <i>Vibrio cholerae</i> using <i>Escherichia coli</i></h1>
| + | text-align:center; |
− | <p>
| + | margin-top:20px; |
− | An interesting property of <i>Vibrio cholerae</i> is its quorum sensing autoinducer system based on the production of CAI-1 molecule<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/22001326" target="_blank">11</a></sup>. The amount of this secreted molecule, produced by the enzyme CqsA synthase, is a good reporter of the quantity of bacteria in water. As we were not allowed to work with pathogens in our lab, we engineered the strain <i>Escherichia coli</i> in order to mimic <i>V. cholerae</i>. Thus, we transformed <i>E. coli</i> strain with the CqsA synthase coding gene of <i>Vibrio harveyi</i>, non-pathogen bacteria. CqsA from <i>V. harveyi</i> produces an analog of CAI-1, the molecule C8-CAI-1, from (S)-adenosylmethionine (SAM) and octanoyl-coenzyme A12. Finally, we developed an <i>E. coli</i> strain which produces a marker simulating the presence of the pathogen <i>V. cholerae</i> in the medium. This is the first step of our molecular cascade.
| + | background: #323537; |
− | </p>
| + | width:100%; |
− | </section>
| + | } |
| | | |
− | <div class="article_offset" id="a4"></div>
| + | /* CONTACT ICONS */ |
− | <section>
| + | |
− | <h1>The sensing organism: <i>Vibrio harveyi</i></h1>
| + | |
− | <p>
| + | |
− | Once we developed <i>E. coli</i> to produce the <i>V. harveyi</i> C8-CAI-1, this molecule as to be detected in the medium. The easiest way to do it is to use directly the quorum sensing of the non-pathogen <i>V. harveyi</i>. This bacteria is an advantageous good engineerable chassis. We identified that <i>V. harveyi</i> already possesses gene expression depending on the binding of C8-CAI-1 on its receptor, CqsS<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/21219472" target="_blank">12</a></sup>. For example, pQRR4 is a promoter which activation depends on the presence of C8-CAI-1. To fit with CAI-1 molecule, the CqsS receptor of <i>V. harveyi</i> only needed to be mutated on a single amino acid. We only had to mutate CqsS changing the phenylalanine 175 into a cystein and to integrate the ALS gene under the control of pQRR4 to trigger diacetyl production in presence of CAI-1<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/21219472" target="_blank">12</a></sup>.
| + | |
− | </p>
| + | |
− | <figure>
| + | |
− | <img src="https://static.igem.org/mediawiki/2017/e/eb/T--INSA-UPS_France--Description-sense-quorum_2.png" alt="" class="right-img">
| + | |
− | <figcaption>
| + | |
− | <b>Cascade of events depending on the CAI-1/CqsS binding in V. cholerae<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/21219472" target="_blank">12</a></sup></b>. the CAI-1/CqsS binding will start a dephosphorylation cascade leading to the inhibition of pQRR4 and its depending siRNA. The lack of his siRNA will allow the translation of their targeted mRNA.
| + | |
− | </figcaption>
| + | |
− | </figure>
| + | |
− | <p>
| + | |
− | We checked the metabolism of diacetyl of <i>V. harveyi</i> on KEGG Pathway, and identified that the acetolactate synthase (ALS) alone allowed the production of diacetyl from pyruvate, a ubiquitous metabolite.This is the second step of our molecular cascade.
| + | |
− | </p>
| + | |
− | <figure>
| + | |
− | <img src="https://static.igem.org/mediawiki/parts/0/0a/T--INSA-UPS_France--ALSpathway.png" alt="">
| + | |
− | <figcaption>
| + | |
− | <b>Production of diacetyl from pyruvate.</b> The addition of the acetolactate synthase (ALS) can lead to the production of acetolactate which convert itself into diacetyl without enzymatic process.
| + | |
− | </figcaption>
| + | |
− | </figure>
| + | |
− | </section>
| + | |
| | | |
− | <div class="article_offset" id="a5"></div>
| + | .icons{ |
− | <section>
| + | display:inline-block; |
− | <h1>The effecting organism: <i>Pichia pastoris</i></h1>
| + | margin:40px 0; |
− | <p>
| + | |
− | The molecular response to the presence of the mimicking vibrio <i>E. coli</i> strain is the production by <i>V. harveyi</i> of diacetyl. We then need a third partner to produce toxic molecule to kill <i>V. cholerae</i>. This last partner needs to be resistant to the toxic molecule so we choose an eukaryotic cell. Team SCUT<sup><a href="https://2013.igem.org/Team:SCUT" target="_blank">13</a></sup> previously described a binding-receptor system involving diacetyl and an eukaryotic receptor, the Odr-10 receptor<sup><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC23737/" target="_blank">14</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/2302121" target="_blank">15</a></sup>. It is a G Protein Coupled Receptor isolated from <i>Caenorhabditis elegans</i> that once activated by diacetyl, lead to the activation of the pFUS1 promoter by Ste12. <i>Pichia pastoris</i> has been chosen as it displays already the Odr-10/pFUS1 pathway.
| + | |
− | </p>
| + | |
− | <figure>
| + | |
− | <img src="https://static.igem.org/mediawiki/2017/2/24/T--INSA-UPS_France--Description-communicate.png" alt="">
| + | |
− | <figcaption>
| + | |
− | <b>Activation cascade on the dependence of Diacetyl/Odr-10 binding<sup><a href="https://2013.igem.org/Team:SCUT" target="_blank">13</a></sup></b>. Once diacetyl bind to Odr-10 a cascade of activation of Ste proteins will lead to the binding of Ste12 on pFUS1 promoter, and so to the expression of gene of interest.
| + | |
− | </figcaption>
| + | |
− | </figure>
| + | |
− | <p>
| + | |
− | Moreover, <i>P. pastoris</i> is a good protein producing organism<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/27905091" target="_blank">16</a>,<a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494115/" target="_blank">17</a></sup>. We engineered the yeast to secret the toxic molecule under the promoter of Ste12. The toxic molecule secreted by <i>P. pastoris</i> is originated from crocodiles<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/21184776" target="_blank">18</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/2059789" target="_blank">19</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/28159460" target="_blank">20</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/24192554" target="_blank">21</a></sup>. Crocodiles display a remarkable and efficient immune system, allowing the reptiles to resist to a large spectrum of diseases. Thus, they produced antimicrobial peptides (AMPs) which are able to lyse bacteria such as <i>V. cholerae</i>. AMPs are cationic pore-forming molecules targeting bacterium membranes, causing bacterial lysis and death<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/27837316" target="_blank">22</a></sup>. This is the third step of our cascade.
| + | |
− | </p>
| + | |
− | <figure>
| + | |
− | <img src="https://static.igem.org/mediawiki/2017/8/80/T--INSA-UPS_France--Description-kill.png" alt="">
| + | |
− | <figcaption>
| + | |
− | <b>Mechanism of action of antimicrobial peptide and their effects on cells<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/27837316" target="_blank">22</a></sup>. </b> Antimicrobial peptides are making pore formation into the membrane leading to death of the cell. Transmission electron microscopy provide an insight of the effect of the peptide on the cell.
| + | |
− | </figcaption>
| + | |
− | <img src="https://static.igem.org/mediawiki/2017/0/0b/T--INSA-UPS_France--Description-kill-MICAMP.png" alt="" class="right-img">
| + | |
− | <figcaption>
| + | |
− | <b>efficiency of the antimicrobial peptide from crocodile on V. cholerae<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/21184776" target="_blank">18</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/28159460" target="_blank">20</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/24192554" target="_blank">21</a></sup></b>.The three peptides display and minimal inhibitory concentration 50 in the scale of mg/L.
| + | |
− | </figcaption>
| + | |
− | </figure>
| + | |
| | | |
| | | |
− |
| + | } |
− | </section>
| + | |
| | | |
− | <div class="article_offset" id="a6"></div>
| + | .icons > a{ |
− | <section style="background: none;">
| + | color:black; |
− | <h1>Our system</h1>
| + | margin:10px; |
− | <p>
| + | text-shadow:2px 2px 0px white; |
− | See our <a href="https://2017.igem.org/Team:INSA-UPS_France/Design">Design page</a> for more informations of the genetic engineering we used!
| + | } |
− | </p>
| + | |
− | <img style="max-width: 800px;" src="https://static.igem.org/mediawiki/2017/b/b8/T--INSA-UPS_France--description_loop.png" alt="">
| + | |
− | </section>
| + | |
| | | |
− | <style>
| + | #fbIcon:hover{ |
− | ol{
| + | color:#3b5998; |
− | text-align:justify;
| + | text-shadow:2px 2px 0 #000000; |
− | }
| + | } |
− | </style>
| + | |
| | | |
− | <div class="article_offset" id="a7"></div>
| + | #twitterIcon:hover{ |
− | <section>
| + | color:#55acee; |
− | <h1>References</h1>
| + | text-shadow:2px 2px 0 #000000; |
− | <ol>
| + | } |
− | <li>Brogi S, Tafi A, Désaubry L & Nebigil CG (2014) Discovery of GPCR ligands for probing signal transduction pathways. <i>Frontiers in Pharmacology</i> <br />
| + | |
− | <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246677/">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246677/</a>
| + | |
− | </li>
| + | |
− | <li>
| + | |
− | Deisseroth K (2015) Optogenetics: 10 years of microbial opsins in neuroscience. <i>Nature Neuroscience</i>. <br/>
| + | |
− | <a href="https://www.ncbi.nlm.nih.gov/pubmed/26308982">https://www.ncbi.nlm.nih.gov/pubmed/26308982</a>
| + | |
− | </li>
| + | |
− | <li>
| + | |
− | Cameron E, Bashor C & Collins J (2014) A brief history of synthetic biology. <i>Nature Reviews Microbiology</i>
| + | |
− | <a href="https://www.ncbi.nlm.nih.gov/pubmed/24686414">https://www.ncbi.nlm.nih.gov/pubmed/24686414</a>
| + | |
− | </li>
| + | |
− | <li>
| + | |
− | Hennig S, Rödel G & Ostermann K (2015) Artificial cell-cell communication as an emerging tool in synthetic biology applications. <i>Journal of Biological Engineering</i> <br />
| + | |
− | <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531478/">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531478/</a>
| + | |
− | </li>
| + | |
− | <li>
| + | |
− | <a href="http://www.emro.who.int/yem/yemeninfocus/situation-reports.html
| + | |
− | ">http://www.emro.who.int/yem/yemeninfocus/situation-reports.html
| + | |
− | </a>
| + | |
− | </li>
| + | |
− | <li>
| + | |
− | Focareta A, Paton JC, Morona R, Cook J & Paton AW (2006) A Recombinant Probiotic for Treatment and Prevention of Cholera. <i>Gastroenterology</i> <b>130</b> 1688–1695 <br />
| + | |
− | <a href="https://www.ncbi.nlm.nih.gov/pubmed/16697733">https://www.ncbi.nlm.nih.gov/pubmed/16697733</a>
| + | |
− | </li>
| + | |
− | <li>
| + | |
− | Holowko MB, Wang H, Jayaraman P & Poh CL (2016) Biosensing Vibrio cholerae with Genetically Engineered <i>Escherichia coli</i>. <i>ACS Synthetic Biology</i>
| + | |
− | <a href="http://pubs.acs.org/doi/abs/10.1021/acssynbio.6b00079">http://pubs.acs.org/doi/abs/10.1021/acssynbio.6b00079</a>
| + | |
− | </li>
| + | |
− | <li>
| + | |
− | <a href="https://2014.igem.org/Team:UI-Indonesia">https://2014.igem.org/Team:UI-Indonesia</a>
| + | |
− | </li>
| + | |
− | <li>
| + | |
− | <a href="https://2010.igem.org/Team:Sheffield">https://2010.igem.org/Team:Sheffield</a>
| + | |
− | </li>
| + | |
− | <li>
| + | |
− | <a href="https://2014.igem.org/Team:UT-Dallas">https://2014.igem.org/Team:UT-Dallas</a>
| + | |
− | </li>
| + | |
− | <li>
| + | |
− | Bolitho ME, Perez LJ, Koch MJ, Ng W-L, Bassler BL & Semmelhack MF (2011) Small molecule probes of the receptor binding site in the <i>Vibrio cholerae</i> CAI-1 quorum sensing circuit. <i>Bioorganic & Medicinal Chemistry</i> <b>19</b> 6906–691 <br />
| + | |
− | <a href="https://www.ncbi.nlm.nih.gov/pubmed/22001326">https://www.ncbi.nlm.nih.gov/pubmed/22001326</a>
| + | |
− | </li>
| + | |
− | <li>
| + | |
− | Ng W-L, Perez LJ, Wei Y, Kraml C, Semmelhack MF & Bassler BL (2011) Signal production and detection specificity in Vibrio CqsA/CqsS quorum-sensing systems: Vibrio quorum-sensing systems. <i>Molecular Microbiology</i> <b>79</b> 1407–1417 <br />
| + | |
− | <a href="https://www.ncbi.nlm.nih.gov/pubmed/21219472">https://www.ncbi.nlm.nih.gov/pubmed/21219472</a>
| + | |
− | </li>
| + | |
− | <li>
| + | |
− | <a href="https://2013.igem.org/Team:SCUT">https://2013.igem.org/Team:SCUT</a>
| + | |
− | </li>
| + | |
− | <li>
| + | |
− | Zhang Y, Chou JH, Bradley J, Bargmann CI & Zinn K (1997) The Caenorhabditis elegans seven-transmembrane protein ODR-10 functions as an odorant receptor in mammalian cells. <i>Proceedings of the National Academy of Sciences</i> <b>94</b> 12162–12167 <br />
| + | |
− | <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC23737/">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC23737/</a>
| + | |
− | </li>
| + | |
− | <li>
| + | |
− | Audet M & Bouvier M (2012) Restructuring G-Protein- Coupled Receptor Activation. <i>Cell</i> <b>151</b> 14–2 <br />
| + | |
− | <a href="https://www.ncbi.nlm.nih.gov/pubmed/2302121">https://www.ncbi.nlm.nih.gov/pubmed/2302121</a>
| + | |
− | </li>
| + | |
− | <li>
| + | |
− | Kang Z, Huang H, Zhang Y, Du G & Chen J (2017) Recent advances of molecular toolbox construction expand Pichia pastoris in synthetic biology applications. <i>World Journal of Microbiology and Biotechnology</i> <br />
| + | |
− | <a href="https://www.ncbi.nlm.nih.gov/pubmed/27905091">https://www.ncbi.nlm.nih.gov/pubmed/27905091</a>
| + | |
− | </li>
| + | |
− | <li>
| + | |
− | Huang Y (2012) Secretion and activity of antimicrobial peptide cecropin D expressed in Pichia pastoris. <i>Experimental and Therapeutic Medicine</i> <br />
| + | |
− | <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494115/">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494115/</a>
| + | |
− | </li>
| + | |
− | <li>
| + | |
− | Pata S, Yaraksa N, Daduang S, Temsiripong Y, Svasti J, Araki T & Thammasirirak S (2011) Characterization of the novel antibacterial peptide Leucrocin from crocodile (Crocodylus siamensis) white blood cell extracts. <i>Developmental & Comparative Immunology</i> <b>35</b> 545–553 <br />
| + | |
− | <a href="https://www.ncbi.nlm.nih.gov/pubmed/21184776">https://www.ncbi.nlm.nih.gov/pubmed/21184776</a>
| + | |
− | </li>
| + | |
− | <li>
| + | |
− | Preecharram S, Jearranaiprepame P, Daduang S, Temsiripong Y, Somdee T, Fukamizo T, Svasti J, Araki T & Thammasirirak S (2010) Isolation and characterisation of crocosin, an antibacterial compound from crocodile (Crocodylus siamensis) plasma: CROCODILE PLASMA ANTIBACTERIAL COMPOUND. <i>Animal Science Journal</i> <b>81</b> 393–401 <br />
| + | |
− | <a href="https://www.ncbi.nlm.nih.gov/pubmed/2059789">https://www.ncbi.nlm.nih.gov/pubmed/2059789</a>
| + | |
− | </li>
| + | |
− | <li>
| + | |
− | Prajanban B, Jangpromma N, Araki T & Klaynongsruang S (2017) Antimicrobial effects of novel peptides cOT2 and sOT2 derived from Crocodylus siamensis and Pelodiscus sinensis ovotransferrins. <i>Biochimica et Biophysica Acta (BBA) - Biomembranes</i> <b>1859</b> 860–869 <br />
| + | |
− | <a href="https://www.ncbi.nlm.nih.gov/pubmed/28159460">https://www.ncbi.nlm.nih.gov/pubmed/28159460</a>
| + | |
− | </li>
| + | |
− | <li>
| + | |
− | Yaraksa N, Anunthawan T, Theansungnoen T, Daduang S, Araki T, Dhiravisit A & Thammasirirak S (2014) Design and synthesis of cationic antibacterial peptide based on Leucrocin I sequence, antibacterial peptide from crocodile (Crocodylus siamensis) white blood cell extracts. <i>Journal of Antibiotics</i> <b>67</b> 205 <br />
| + | |
− | <a href="https://www.ncbi.nlm.nih.gov/pubmed/24192554">https://www.ncbi.nlm.nih.gov/pubmed/24192554</a>
| + | |
− | </li>
| + | |
− | <li>
| + | |
− | Marín-Medina N, Ramírez DA, Trier S & Leidy C (2016) Mechanical properties that influence antimicrobial peptide activity in lipid membranes. <i>Applied Microbiology and Biotechnology</i> <b>100</b> 10251–10263 <br />
| + | |
− | <a href="https://www.ncbi.nlm.nih.gov/pubmed/27837316">https://www.ncbi.nlm.nih.gov/pubmed/27837316</a>
| + | |
− | </li>
| + | |
− | </ol>
| + | |
− | </section>
| + | |
| | | |
− | </div>
| + | #contactIcon:hover{ |
− | <!-- fin section -->
| + | color:#e5e5e5; |
| + | text-shadow:2px 2px 0 #000000; |
| + | } |
| + | #instaIcon:hover{ |
| + | color:#8a3ab9; |
| + | text-shadow:2px 2px 0 #000000; |
| + | } |
| | | |
− | </div>
| + | /* SPONSORS IMG */ |
− | </div> | + | |
− |
| + | .footer_sponsors img{ |
| + | max-height:50px; |
| + | display:inline-block; |
| + | margin:10px; |
| + | opacity:0.5; |
| + | } |
| + | .footer_sponsors img:hover{ |
| + | opacity:1; |
| + | } |
| + | |
| + | </style> |
| <footer> | | <footer> |
| | | |
Line 378: |
Line 232: |
| | | |
| | | |
− | <!-- C O N T E N T -->
| |
| | | |
− | <script type="text/javascript">
| |
− | $('.main_content').scroll(function(){
| |
− | var pos = $('.main_content').scrollTop();
| |
− | // BOLD ASIDE NAV
| |
− | if(pos>$("#a1").position().top-10){
| |
− | $('*[data-number="1"]').css("font-weight", "bold");
| |
− | $('*[data-number="1"]').parent().addClass("selected-item");
| |
− | $('*[data-number="2"]').css("font-weight", "normal");
| |
− | $('*[data-number="2"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="3"]').css("font-weight", "normal");
| |
− | $('*[data-number="3"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="4"]').css("font-weight", "normal");
| |
− | $('*[data-number="4"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="5"]').css("font-weight", "normal");
| |
− | $('*[data-number="5"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="6"]').css("font-weight", "normal");
| |
− | $('*[data-number="6"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="7"]').css("font-weight", "normal");
| |
− | $('*[data-number="7"]').parent().removeClass("selected-item");
| |
− | if(pos>$("#a2").position().top-10){
| |
− | $('*[data-number="1"]').css("font-weight", "normal");
| |
− | $('*[data-number="1"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="2"]').css("font-weight", "bold");
| |
− | $('*[data-number="2"]').parent().addClass("selected-item");
| |
− | $('*[data-number="3"]').css("font-weight", "normal");
| |
− | $('*[data-number="3"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="4"]').css("font-weight", "normal");
| |
− | $('*[data-number="4"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="5"]').css("font-weight", "normal");
| |
− | $('*[data-number="5"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="6"]').css("font-weight", "normal");
| |
− | $('*[data-number="6"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="7"]').css("font-weight", "normal");
| |
− | $('*[data-number="7"]').parent().removeClass("selected-item");
| |
− | if(pos>$("#a3").position().top-10){
| |
− | $('*[data-number="1"]').css("font-weight", "normal");
| |
− | $('*[data-number="1"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="2"]').css("font-weight", "normal");
| |
− | $('*[data-number="2"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="3"]').css("font-weight", "bold");
| |
− | $('*[data-number="3"]').parent().addClass("selected-item");
| |
− | $('*[data-number="4"]').css("font-weight", "normal");
| |
− | $('*[data-number="4"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="5"]').css("font-weight", "normal");
| |
− | $('*[data-number="5"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="6"]').css("font-weight", "normal");
| |
− | $('*[data-number="6"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="7"]').css("font-weight", "normal");
| |
− | $('*[data-number="7"]').parent().removeClass("selected-item");
| |
− | if(pos>$("#a4").position().top-10){
| |
− | $('*[data-number="1"]').css("font-weight", "normal");
| |
− | $('*[data-number="1"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="2"]').css("font-weight", "normal");
| |
− | $('*[data-number="2"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="3"]').css("font-weight", "normal");
| |
− | $('*[data-number="3"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="4"]').css("font-weight", "bold");
| |
− | $('*[data-number="4"]').parent().addClass("selected-item");
| |
− | $('*[data-number="5"]').css("font-weight", "normal");
| |
− | $('*[data-number="5"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="6"]').css("font-weight", "normal");
| |
− | $('*[data-number="6"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="7"]').css("font-weight", "normal");
| |
− | $('*[data-number="7"]').parent().removeClass("selected-item");
| |
− | if(pos>$("#a5").position().top-10){
| |
− | $('*[data-number="1"]').css("font-weight", "normal");
| |
− | $('*[data-number="1"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="2"]').css("font-weight", "normal");
| |
− | $('*[data-number="2"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="3"]').css("font-weight", "normal");
| |
− | $('*[data-number="3"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="4"]').css("font-weight", "normal");
| |
− | $('*[data-number="4"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="5"]').css("font-weight", "bold");
| |
− | $('*[data-number="5"]').parent().addClass("selected-item");
| |
− | $('*[data-number="6"]').css("font-weight", "normal");
| |
− | $('*[data-number="6"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="7"]').css("font-weight", "normal");
| |
− | $('*[data-number="7"]').parent().removeClass("selected-item");
| |
− | if(pos>$("#a6").position().top-10){
| |
− | $('*[data-number="1"]').css("font-weight", "normal");
| |
− | $('*[data-number="1"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="2"]').css("font-weight", "normal");
| |
− | $('*[data-number="2"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="3"]').css("font-weight", "normal");
| |
− | $('*[data-number="3"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="4"]').css("font-weight", "normal");
| |
− | $('*[data-number="4"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="5"]').css("font-weight", "normal");
| |
− | $('*[data-number="5"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="6"]').css("font-weight", "bold");
| |
− | $('*[data-number="6"]').parent().addClass("selected-item");
| |
− | $('*[data-number="7"]').css("font-weight", "normal");
| |
− | $('*[data-number="7"]').parent().removeClass("selected-item");
| |
− | if(pos>$("#a7").position().top-10){
| |
− | $('*[data-number="1"]').css("font-weight", "normal");
| |
− | $('*[data-number="1"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="2"]').css("font-weight", "normal");
| |
− | $('*[data-number="2"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="3"]').css("font-weight", "normal");
| |
− | $('*[data-number="3"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="4"]').css("font-weight", "normal");
| |
− | $('*[data-number="4"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="5"]').css("font-weight", "normal");
| |
− | $('*[data-number="5"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="6"]').css("font-weight", "normal");
| |
− | $('*[data-number="6"]').parent().removeClass("selected-item");
| |
− | $('*[data-number="7"]').css("font-weight", "bold");
| |
− | $('*[data-number="7"]').parent().addClass("selected-item");
| |
− | }
| |
− | }
| |
− | }
| |
− | }
| |
− | }
| |
− | }
| |
− | }
| |
− | // FIXED ASIDE NAV
| |
− | if(pos>371){
| |
− | $('.left_container').addClass("aside-fixed");
| |
− | }
| |
− | else{
| |
− | $('.left_container').removeClass("aside-fixed");
| |
− | }
| |
− | });
| |
| | | |
− | </script>
| |
| | | |
− | <script type="text/javascript"> | + | <!-- C O N T E N T --> |
| | | |
− | // NAV BAR SUBNAV CLICK
| + | </html> |
| | | |
− | $(document).on("click",".cat_name", function(){
| |
− | if($(this).parent().children('.subnav').css("max-height")=="0px"){
| |
− | $('.subnav').css("max-height","0px");
| |
− | $(this).parent().children('.subnav').css("max-height","1000px");
| |
− | }
| |
− | else{
| |
− | $(this).parent().children('.subnav').css("max-height","0px");
| |
− | }
| |
− | });
| |
− | </script>
| |
− |
| |
− | <script type="text/javascript">
| |
− | var contentSections = $('.article_offset'),
| |
− | navigationItems = $('.left_container .aside-nav__item:after');
| |
− |
| |
− | updateNavigation();
| |
− | $('.main_content').on('scroll', function(){
| |
− | updateNavigation();
| |
− | });
| |
− |
| |
− |
| |
− | function updateNavigation() {
| |
− | contentSections.each(function(){
| |
− | $this = $(this);
| |
− |
| |
− | var activeSection = $('.left_container a[href="#'+$this.attr('id')+'"]').data('number') - 1;
| |
− | });
| |
− | }
| |
− |
| |
− | function smoothScroll(target) {
| |
− | $('body,html').animate(
| |
− | {'scrollTop':target.offset().top},
| |
− | 600
| |
− | );
| |
− | }
| |
− | </script>
| |
− |
| |
− | </body>
| |
− | </html>
| |
| {{INSA-UPS_France/General_script}} | | {{INSA-UPS_France/General_script}} |
| {{INSA-UPS_France/Header_script}} | | {{INSA-UPS_France/Header_script}} |