ENERGY STORED IN CELLULOSE • LIGHT-DEPENDANT DORMANCY SYSTEM • OPTIMISED NANOWIRES
For further information about our wiki, read here.
About Our Wiki
A Green Wiki
Our project is all about ensuring a greener and more sustainable future for ourselves and the coming generations. This of course meant, that our wiki had to to follow this pursue. CO2NeutralWebsite sponsored our wiki with a CO2 quota equal to the amount of CO2 produced, by having the wiki running until 31-Oct-2018. This does not mean the wiki is CO2 neutral, but that the quote equal to its pollution is bought. Buying a quota means, that other companies won’t be able to buy this CO2 quota, thus, forcing them to improve their environmental policies if they wish to become CO2 neutral.
Functionality
Hi there, and welcome to our iGEM experience. I’m the creator of this wiki, and this year I decided to make it a one-page wiki - to make it stand out from the crowd. All you have to do is keep scrolling, and you will be guided through the project. You will always be able to follow your process through the wiki, by looking at the navigation bar. Whenever you want, you can click on one of the tabs, to get an overview of the sections associated with it. If you know where you want to go, you can click the section-links in each of the tab menus, and they will get you there immediately.
Since it’s a one page wiki, all of our text will be displayed on this page, which might seem overwhelming at first. Don’t worry though, to avoid unnecessary time consumption, the front page of the wiki will only contain the strictly necessary information. Whenever you need this additional information, you can always click a ‘read more’-link, which will display the information as a pop-up window. Once you have finished reading the in-depth details, you simply close the pop-up window, and continue right where you left off. We have prepared an example for you right here. Throughout the wiki, you might stumble upon this icon (book icon), which if you hover over it with the mouse, will show the references used for the associated statements.
I am fully aware of our readers being in a constant race against time, and I definitely identify with those who just want to read the essentials of the wiki as fast as possible. So, I went ahead and highlighted some of the important segments, making the entire wiki easy to quickly skim-read. Whenever you need my highlights, just go ahead and enable them in the top right corner. Go ahead and give it a try, it makes this wiki-nonsense so much easier to read. ;-)
Abstract
The PowerLeaf introduces a novel solution for long-term storage of solar energy, thus becoming an alternative to solar cells. This is accomplished with the use of renewable resources. The device is designed to resemble a plant leaf aimed to provide a nature-in-city ambience. This hypothetical implementation of the PowerLeaf in an urban environment was developed through public engagement and collaboration. The bacterial solar battery is composed of an energy storing unit (a) and an energy converting unit (b). The energy storing unit (a) is defined by a genetically engineered Escherichia coli that fixates carbon dioxide into the chemically stable polymer cellulose. A light-dependant system activates dormancy during nighttime to reduce energy lost by metabolism. The energy converting unit (b) uses genetically engineered Escherichia coli to consume the stored cellulose. Retrieved electrons are transferred by optimised nanowires to an anode resulting in an electrical current.
Introduction
Welcome to our wiki! We are the IGEM team from the University of Southern Denmark. We have been waiting with great anticipation for the chance to tell you our story.
Our adventure began with a meeting between strangers from eight different studies. Despite our different backgrounds, we had one thing in common; a shared interest in synthetic biology. Soon after this first meeting, we were herded off to a weekend in a cottage - far away from our regular lives. The cottage was a place to bond and discuss project ideas. It immediately became apparent that being an interdisciplinary team was going to be our strength. Each member had unique qualities that enabled them to efficiently tackle different aspects of the iGEM competition. So, we made it our goal to take advantage of these qualities.
We decided to make a proof-of-concept project. Specifically, we wanted to use bacteria as a novel and greener solution for solar energy storage. This project was later dubbed the PowerLeaf – a bacterial solar battery.
Since it is a one-page wiki you can just keep on scrolling, and you will be taken on a journey through our iGEM experience.
Achievements
Bronze Medal Requirements 4/4
Register and attend – Our team applied 2017-03-30 and got accepted 2017-05-04. We had an amazing summer and are looking forward to attend the Giant Jamboree! Meet all the deliverables requirements – You are reading the team wiki now, so that’s one cat in the bag. You can find all attributions made to the project in the credits section of the wiki here. The team poster and team presentation are ready to be presented at the Giant Jamboree. We also filled the safety form, the judging form and all our parts were registered and submitted in time. Clearly state the Attributions – All attributions made to our project have been clearly credited in the credits section. Improve and/or characterize an existing Biobrick Part or Device – Pending
Silver Medal Requirements 3/3
Validated part/contribution – Pending Collaboration – We have collaborated with several teams throughout our project by taking part in discussions, meetups, answering questionnaires - we even hosted our first meetup for our fellow Danish teams. You will get to read all about all of this in the credits section. Human Practices – Our philosopher, historian and biologist have discussed the ethical and educational aspects of our project in great detail. In extension to their work, we have been working extensively with public engagement and education.
Gold Medal Requirements 3/4
Integrated Human Practices – Regarding the development and implementation of the device, we reached out to and remained in contact with city planners from our hometown throughout our project. This regarded advice and conversations on anything from the possible design, value, safety, use, placement and plastic type of our device. We also made sure to integrate the findings of said conversations into our overall project. Additionally we focused on demonstrating this process on our wiki; in order to inspire future iGEM teams. Improve a previous part or project – Pending Model your project – Through extensive modelling we have learned that it is possible to regulate bacterial dormancy. However, the modelling showed that it would be inadequate to only regulate RelE (toxin), as this would make the bacteria unable to exit dormancy. To make them enter dormancy, it would require tight regulation of the RelB (anti-toxin). This information was used in the approach to light sensitive dormancy system. Demonstrate your work – Requirement not fulfilled.
World Situation
A Global Problem
redo the approach in this section
In a Local Environment
We are a team of young adults raised to be aware of climate changes and the potential limitations to the continuation of our way of life. We are a generation that appreciates open source and shared information. A generation that has been encouraged to constantly challenge the ideas of yesterday. With this in mind, we decided the best solution to the eventual energy crisis would be to seek out experts, the general public, even children, in order to rethink the current notion; that the only way to save our planet is to compromise our living standards.
Fortunately we learned through interaction with local experts that a great deal of people share our belief; that we ought to pursue the advancement of low energy cities with a high quality of life. In fact, we even discovered that our own hometown Odense wants to be the greenest, most renewable city in Denmark by 2050.Odense municipality’s website, regarding their politics on the current climate changes.
We decided to pursue this goal by taking on the challenge to create a truly green solution, which will provide both an environmental-friendly source of energy, as well as a green aesthetic and naturalistic ambience to compliment a high quality of city-life.
Please keep scrolling if you wish to read more about our solution, or go straight to bioethics if you wish to read about why we not only could, but ought to do something about the current energy crisis.
Inspiration
Our early ideas were reviewed after attending the Danish Science Festival, where we met several young minds with creative and inspiring ideas. The children would come to our booth with their parents to learn about bacteria, GMO, ethics and iGEM. After which, they would attend our “Draw-a-Bacteria”-competition. While drawing their own unique bacteria, they would present us with detailed stories about their design.
Through this, we felt inspired and decided to revise our ideas. They even inspired the physical design for our original prototype; the PowerLeaf.
Our Solution
Our Solution
The bacterial solar battery we envision, is composed of an energy storing- and an energy converting unit. The energy storing unit is defined by a genetically engineered Escherichia coli (E. coli). The E. coli uses solar energy for ATP production to fixate carbon dioxide into the chemically stable polymer cellulose, which essentially is the battery. A light sensing system activates dormancy during nighttime, in order to reduce energy lost by metabolism. The energy converting unit uses genetically engineered E. coli to consume the stored cellulose, by using an inducible switch. Retrieved electrons are transferred by optimised nanowires to an anode, resulting in an electrical current. The complete system will be combined into a single device containing a compartment for each of the two units. Details about the construction and device will be discussed in the Integrated Practices section.
The device was originally designed to resemble a plant leaf aimed to provide a nature-in-city ambience. This hypothetical implementation of the PowerLeaf in an urban environment was developed through creative thinking, public engagement, and collaborations. We worked with local city planners from our hometown Odense, in order to advance on this design and to provide other, changeable, designs.
Our vision was clear and ambitions were high, probably too high, considering the limited timeframe. So, at an early stage, we decided to focus on the following features:
Light-dependant dormancy system
Converting CO2 to glucose
Biosynthesis and secretion of cellulose produced from glucose
Converting cellulose to glucose
Extracellular electron transfer
It will then be up to prospective iGEM teams to continue on the development of the PowerLeaf. We would love to see our project become a reality one day hence we have created a special page for future iGEM teams. This page includes suggestions for further development of the project.
Project & Results
We have throughout the project worked on the development of 2 units for our device, an energy storing and an energy converting unit. Each of the systems we worked on for the units can be seen here: Energy storing (E. Coli)
Light-dependant dormancy system
Carbon fixation
Cellulose biosynthesis and secretion
Energy converting (G. Sulfurreducens)
Breakdown of cellulose
Extracellular electron transfer
Once you reach each of the 5 systems in the 'Project Design'-section, you will first be given a short introduction to the underlying theory, which you will be able to expand on, by pressing “read more”. Which in turn will open a pop-up window with the additional information. After the theory, you will be given the approach used in each of the respective systems for the project. Before continuing on to the next system. To make things easier on you, we have developed icons to each of the above systems which will be used throughout the rest of the wiki.
Project Design
overview picture, fix later, in a hurry, soft wiki
Photosynthetic bacteria draw energy from sunlight to drive the fixation of carbon, implying that the bacteria are not able to carry out carbon fixation in absence of light. However, the bacteria constantly metabolise and the carbon fixed during time of exposure to light, will be used as an energy source for the cells. To circumvent this, a photocontrol system created by the UT Austin iGEM 2004 team is used in combination with the RelE-RelB toxin-antitoxin system native to E. coli. In this way, a light-dependent dormancy system is implemented in E. coli.
In 2004 the Austen and UCSF iGEM team created a device sensitive to light in regard to the Coliroid project. In this project, this system is combined with the RelE-RelB toxin-antitoxin system in the endeavour to mediate light-dependent dormancy in bacteria. As the RelE-RelB system requires tight regulation Tashiro Y, Kawata K, Taniuchi A, Kakinuma K, May T, Okabe S. RelE-Mediated Dormancy Is Enhanced at High Cell Density in Escherichia coli. J Bacteriol. 2012;194(5):1169-76., different systems have been duly considered in the endeavours to find a way to induce RelE without completely paralysing the cells. By modelling the toxin-antitoxin system and testing different approaches, a suitable and hypothetical working system-design has been implemented.
Different system-designs have been considered and tested thoroughly throughout the summer. This constitutes the foundation for how the design of the light induced dormancy system in E. coli has been optimized and the final approach shaped. Ultimately, the dormancy system, which is illustrated in figure #, was composed of the following parts:
The photocontrol device controlled by the PenI-regulated promoter, BBa_R0074, on a high copy vector.
The antitoxin RelB controlled by pBAD on a low copy vector.
The toxin RelE controlled by the OmpR-regulated promoter, BBa_R0082, on either a low copy vector or the chromosome.
For further information about our approach, read here.
Light Sensing System
Approach
The genes needed for inducing dormancy when the bacteria are not exposed to light, are found in the photocontrol device part, BBa_K519030. This part is composed of three genes named ho1, pcyA, and cph8, all of which are essential to ensure the cells ability to respond to red light. When the photocontrol device is exposed to light, a phosphorylation cascade activates the transcription factor OmpR, which in turn induces transcription through the OmpR-regulated promoter. This system is combined with the RelE-RelB toxin-antitoxin system in the endeavour to mediate light-dependent dormancy in bacteria. In the first envisaged design of the light-dependent dormancy system, the aim was to clone the photocontrol device, BBa_K519030, under control of a constitutive promoter, RelE under control of the OmpR-regulated promoter, BBa_R0082, and RelB under control of a constitutive promoter, all into one high copy BioBrick assembly plasmid pSB1C3, as seen on figure #.
From the constitutive promoter family the weak promoter, BBa_J23114, the two medium promoters, BBa_J23106, and BBa_J23110, and the strong promoter, BBa_J23102, were tested by fluorescence microscopy to determine which one to use for expression of the photocontrol device and RelB. Overnight cultures of the submitted parts expressed in E. coli TOP10 illustrated a clear gradient of increasing red fluorescent protein (RFP) expression correlated with the strength of the promoter, as seen on figure #.
On the basis of the data obtained by fluorescence microscopy, the strong constitutive promoter, BBa_J23102, was chosen to control the photocontrol device. For so far inexplicable reasons the photocontrol device emerged difficult to clone with the strong constitutive promoter. Although the molecular cloning of these parts was optimised several times very few successful clonings were accomplished, and the few times correct assembly was obtained, the BioBrick was not reproducibly purifiable. By sequencing, it was deduced that a region of the plasmid containing both the promoter and the BioBrick prefix had vanished. To circumvent this inconvenient cloning two other promoters, that are constitutive in E. coli, were examined, namely the PenI-regulated, BBa_R0074, and the Mnt-regulated, BBa_R0073, promoters. By performing fluorescence microscopy on composite parts of the promoters controlling yellow fluorescent protein (YFP), BBa_I6102, and BBa_I6103, respectively, the expression levels were assessed. The obtained results revealed that the PenI-regulated promoter facilitated very strong expression of the marker gene, whereas the expression controlled by the Mnt-regulated promoter was noticeably lower. Based on these findings, the photocontrol device was placed under the control of the PenI-regulated promoter instead of the strong constitutive promoter from the constitutive promoter family. As it turned out, this cloning likewise emerged difficult. After several attempts, it was decided to focus on the other aspects of the dormancy system.
The first construct containing the genes required for the light induced dormancy was designed as shown in figure #. (Reference to first figure) To confirm the functionality of the OmpR-regulated promoter, a reporter system containing the OmpR-regulated promoter controlling RFP was cloned into the E. coli strain MG1655 ΔOmpR. The phenotype of the resulting cultures revealed a dysregulation of the OmpR-regulated promoter. Thorough research lead to the finding that the OmpR-dependent promoter is not controllable when cloned on a high copy vector, but should be fusioned into the bacterial chromosome to obtain proper regulation Levskaya A, Chevalier AA, Tabor JJ, Simpson ZB, Lavery LA, Levy M, et al. Synthetic biology: engineering Escherichia coli to see light. Nature. 2005;438(7067):441-2.. This intriguing finding let to the aspiration to investigate the controllability of the OmpR-dependent promoter on vectors with different copy numbers compared to the chromosome, thereby improving the characterisation of the promoter for the benefit to future iGEM teams.
To incorporate DNA onto the bacterial chromosome, homologous recombination with the red λ recombinase is a suitable approach Thompson JF, de Vargas LM, Skinner SE, Landy A. Protein-protein interactions in a higher-order structure direct lambda site-specific recombination. Journal of molecular biology. 1987;195(3):481-93.. Using this technique, a short fragment of chromosomal DNA at the bacterial attachment site attB Groth AC, Calos MP. Phage integrases: biology and applications. Journal of molecular biology. 2004;335(3):667-78. is replaced with a linear DNA fragment encoding the OmpR dependent promoter, RelE, and an chloramphenicol resistance cassette. Using polymerase chain reaction (PCR), the linear DNA sequence is flanked by sequences that are homologous to part of the chromosome. The linear DNA fragment is electroporated into bacteria containing the pKD46 plasmid encoding the red λ recombinase Thompson JF, de Vargas LM, Skinner SE, Landy A. Protein-protein interactions in a higher-order structure direct lambda site-specific recombination. Journal of molecular biology. 1987;195(3):481-93., which mediates the recombination. The fundamental concept of this approach is illustrated in figure #.
Using this approach, it was attempted to assemble the OmpR-regulated promoter controlling RelE with the flanking regions by PCR. The assembly of the fragment derived from the plasmid with either one of the flanking fragments was achieved. However, the assembly of the complete chromosomal insertion fragment containing all three segments emerged problematic. Several attempts with numerous process optimisations were performed, but unfortunately without success. To circumvent this, another attachment site was chosen. The assembly of the complete fragment by PCR was achieved and chromosomal insertion by electroporation was attempted several times, but without success. In consideration of the fact that RelE is a bacterial toxin, the cloning of this gene was inconvenient. To account for this, overexpression of the antitoxin RelB is required. As the homologous recombination of this fragment emerged such a challenging task, it was decided to focus on the conduct of the OmpR-regulated promoter on different plasmids, as this was evidently the more convenient approach of the general implementation of the OmpR-regulated promoter.
Originally, it was thought to place the antitoxin RelB under a constitutive promoter of appropriate strength. However, it was deduced that it would be more suitable to utilise an inducible promoter for this purpose and it was decided to put RelB under control of the LacI-regulated, lambda pL hybrid promoter, BBa_R0011. The William and Mary team found that the LacI-regulated, lambda pL hybrid promoter had a low level of noise when cloned into a low copy vector, and therefore this regulated promoter was chosen.
To simulate the RelB expression, a reporter system composed of the LacI-regulated, lambda pL hybrid promoter and GFP was assembled to identify the appropriate concentrations of IPTG required to induce the promoter on a low copy vector. During the cloning, it was discovered that the site between the LacI-regulated, lambda hybrid promoter and this particular reporter construct under the tested conditions had formed a hotspot for transposons. In the light of this finding, the ordinary LacI-regulated promoter, BBa_R0010, was chosen to express RelB. Experience from the previous projects shows that gene expression varies as a function of IPTG concentration only when the LacI-regulated promoter is expressed on a low copy plasmid. However, the promoter emerged unresponsive to regulation. Thus, another inducible promoter was chosen. The HKUST-Rice iGEM 2015 team demonstrated that induction of the AraC-regulated promoter, pBAD caused a gradual increase in gene expression when cloned into the low to medium copy plasmid pSB3K3, in contrast to a all-or-none behavior when cloned into pSB1K3. Taking these result into consideration, the pBAD promoter was used in combination with the pSB3K3 vector for regulation the expression of the antitoxin RelB. Again, a reporter system was used to simulate the expression of RelB. The part, BBa_I6058, containing YFP controlled by pBAD was assessed on different vectors.
In the light of the system approaches reviewed in the preceding part, the final design, which is illustrated on figure # was established. Ultimately, the dormancy system was composed of the photocontrol device controlled by the PenI-regulated promoter on a high copy vector, RelB controlled by pBAD on a low copy vector, and RelE controlled by the OmpR-regulated promoter on either a low copy vector or the chromosome.
Controllable dormancy is a feature that holds the potential to be applied in many different situations. Inducing dormancy and bringing the bacteria back to a metabolic active state is like balancing on a tightrope. To establish the basis of the future implementations, the properties of this system would have to be investigated further. In an endeavour to provide this, mathematical modeling was performed in an attempt to prognosticate the system and simulate the interactions between the toxin and antitoxin. To consolidate the model, the capacity of the toxin-antitoxin system was assessed in an experiment. By manually regulating the RelB expression, the controllability of the dormancy system was studied.
Modelling
In order to find the best way to implement the RelE-RelB toxin-antitoxin system, modelling of the system was performed. The gillespie algorithm was utilised to model the interactions of the toxin and antitoxin. The toxin RelE is inhibited by the antitoxin RelB through complex formation, and both interact with their promoter in a feedback mechanism.
[Bilag 1]
It was deduced, that when enhanced RelE production is implemented as a tool to make the bacteria dormant, the effect come easily. However, an additional implementation of RelB expression is found necessary to ensure that the bacteria enter an active state again.
The model showed that the system is sensitive to the RelE:RelB ratio as well as the total production of toxin. Implementation, with production rates in the vicinity of 50 and 35 molecules pr. min for RelB and RelE respectively, yields an acceptable effect: The bacteria lay dormant within the computed time, and re-enter an active state quickly. From the sensitivity to RelB production and RelE-RelB on activation time, it is evident that it will be challenging to implement an optimised system.
Gillespie Algorithm
Approach
The Gillespie algorithm is a way to get calculate the evolution of stochastic functions; in this case cell concentrations. To use the algorithm, two things are needed:
reaction rates of the system (a1, a2, a3) at a given configuration.
a random number generator.
For each time step two things are calculated, using the random number generator: The time before next reaction and which reaction occurs.
The time before next step is given by ( Figure (well... equation): reaction time insert here (tex doc))
Where S is the sum of the reaction rates and r1 is a random number between 0 and 1. This gives the time as if the system was one reaction with reaction rate S, using the random number to give a statistic distribution.
The reaction is chosen proportionally to each individual reaction rate, using another random number. This way, reaction with high rates compared to other reactions will happen the most.
The reaction is carried out, the time is moved the calculated amount, and new reaction rates can now be calculated, to repeat the whole process. This continues until the time reaches the wanted limit or a specific number of reactions have occurred. It is necessary to have a limit on the number of reactions as it is possible for the time steps to grow smaller and smaller, in which case the calculation time quickly become either immense or impossible.
Toxin/Antitoxin System
Approach
We are modelling the RelE RelB toxin-antitoxin system. RelE is a toxin restricting growth, by inducing a dormant state. This is inhibited by RelB, which forms complexes with RelE. Two different complexes are made: RelB2RelE and RelB2RelE2, containing 1 and 2 RelE molecules respectively.
Both RelE and RelB are expressed from the same promoter, RelBE. When only small amounts of RelE is present, RelB and RelB2RelE represses transcription of RelBE, by binding to the operator.
At higher concentrations of RelE, the toxin mitigates this repression, by reacting with bound complexes.
For natural purposes the half life of RelB decreases significantly under starvation due to lon-protease, with shifts the equilibrium of RelB and RelE to a high state of RelE. The interactions with the promoter, keeps the amount of free RelE at a very low value outside starvation and stabilises the system. In our simulation the shift in equilibrium is made by introducing additional translation of RelE.
We used two model in two ways. First we saw how a given configuration of relB and RelE production increased the relE concentration and if it could cause dormancy within 2 hours. Second we investigated for how long each configuration
Rates and reactions
In the units off all reaction rates we use the approximation that in an E.coli. with a size of 1-2 μm, 1 molecule in the cell = 1nm. Thus we convert all units to be measured in molecules, as this fits the premises of the gillespie algorithm.
The RelB forms dimers at a high rate, so we assume all present RelB to be in dimers, capable of forming complexes with RelE.
RelB has a relatively low half-life at about 3-5 minutes, while RelE is stable and it’s half life is an effect from dilution due to growing bacteria (we use 43 min). During dormancy, growth is restricted and we increase RelE half life to 2000 min (around a day) as the dilution.
The transcription rates of RelE and RelB is based on the concentration of RelE and RelB under stable conditions. Here RelB is 10 times more prevalent than RelE (citation 2), so to make up for the higher half life of RelE, RelB has a much higher transcription rate than RelE (100 times)
The complexes are close to stable and given the same half life as RelE. However, to get free RelE to work RelB in complexes need to decay as well. The rate is set to a fourth of free RelB.
For the promoter bindings we let the operator be inhibited by binding with either RelB or 1-2 RelB2RelE, given that the operator has to binding sites. We consider the cell to have four chromosomes with one promoter on each (less chromosomes would let the system work, but with more noise).
The initial values in the model are given by:
insert table with numbers and constants
Notice that all values are integers as the gillespie algorithm works with discrete numbers of molecules. The values were chosen based on a stable equilibrium found by letting the model run a simulation of the inherent system over 450 minutes, with different starting values.
The implemented total production rates shown in the model might seem too high as they range from 1-350 molecules pr. min, while the rates in the inherit system is effectively around 80-100 for relB and 2-5 for relE. The possibility of placing the system on high-copy plasmids, however, makes the high total production values reasonable, as the individual relE promoter only need a production of 0.01-2 (assuming a few hundred copies).
Considering the inherent toxin-antoxin system activating under starvation, we see that the the magnitude of relE copies around 50-80 molecules pr. cell. This makes it reasonable to believe that the cell enters dormancy when a few tens of free relE copies.
Running the model
The model is using the gillespie algorithm to give a stochastic view of the system and is run on matlab. The code uses an implementation by matlab user Nezar (https://se.mathworks.com/matlabcentral/fileexchange/34707-gillespie-stochastic-simulation-algorithm).
For the dormancy runs we input deterministic initial values, and then let the system run 30 min without activating the inserted toxin promoter. This results in a stochastic distribution of initial values mimicking variations between cells. Analysis show that 30 minutes is enough for the model to find a stable distribution, which is realistic considering the growth cycle of an e.coli.
For wakeup runs, we use the data generated at the end of a sleep run as initial value and remove the production of relE. We consider a cell to be woken up when the concentration of free relE decreases below 15 copies. This is perhaps a low value, but tests show marginal difference between 15 and 45 copies, where the low bound is chosen to decrease uncertainty of the cells state.
All runs simulate 1000 cells, which should be sufficient to get stable averages. The model assumes well-mixed conditions in each cell, but considers each cell independently.
The model has no cut off for maximum values of relE, as we don’t know the exact relation between relE concentration and hibernation state, yet as a functional cutoff is found through wake-up times, it is not necessary.
For the Calvin cycle to proceed, energy in the form of ATP and electrons carried by NADPH are required. The photosystems are complexes in photosynthesising organisms that can supply this by photophosphorylation. To engineer E. coli to do photosynthesis, 13 genes is needed for the assembly of chlorophyll a and 17 genes for the assembly of photosystem II, which needs to be heterogeneously expressed. An alternative process, in which a diverse array of phototrophic bacteria and archaea harvest energy from light, is through a retinal-containing protein called proteorhodopsin, which catalyses the light-activated proton efflux across the cell membrane and thereby drive ATP synthesis. Opposed to the photosystems, the proteorhodopsin is anoxygenic and generates no NADPH, which is crucial for the Calvin cycle to proceed Walter JM, Greenfield D, Bustamante C, Liphardt J. Light-powering Escherichia coli with proteorhodopsin. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(7):2408-12.. For further information about the theory behind the carbon fixation, read here.
In order to engineer E. coli in the outer chamber to turn atmospheric CO2 into cellulose, the carbon first needs to be fixated by the bacteria. This requires the heterologous expression of the genes encoding the three enzymes RuBisCo, SBPase, and PRK. Furthermore, the implementation of the carboxysome from the cso operon can increase the levels of CO2 fixation. The 2014 Bielefeld iGEM team had worked with a similar approach in their project. In an endeavour to optimise the carbon fixation process, our project build upon their experiences. The assembly of the individual parts into pairs of composite parts was achieved, however, the cloning of these parts with a promoter emerged problematic. Consequently, it was decided to prioritise other aspects of the project and therefore keep this part theoretical henceforth. For further information about our approach, read here.
Carbon Fixation
Approach
Calvin cycle
In order to engineer E. coli in the outer chamber to turn atmospheric CO2 into cellulose, the carbon first needs to be fixated by the bacteria. This requires the heterologous expression of the genes encoding the three enzymes RuBisCo, SBPase, and PRK. In correspondence with the 2014 Bielefeld iGEM team, who worked with a similar subpart of their project, we discussed the cloning of these genes and received two crucial parts. The first of this was BBa_K1465214, containing RubisCO from Halothiobacillus neapolitanus and PRK from Synechococcus elongatus under the control of a composite promoter controllable by IPTG. The second was BBa_K1465228, which contained SBPase from Bacillus methanolicus. Through the concurrent expression of these parts in E. coli, all enzymes required to fixate CO2 through the Calvin cycle were present in the cells.
The first approach was to assemble both parts on one plasmid by molecular cloning, as shown on figure #. In doing this, it was discovered that the BBa_K1465214 part was missing roughly 1 kbp when digested with standard restriction enzymes with recognition sites within the BioBrick prefix and suffix. Sequencing of the part revealed that the part was missing the entire promoter sequence of 1239 bp. Consequently, the assembly of the parts additionally required the cloning of a promoter. For this purpose, the Tac-promoter (Ptac) from the part BBa_K864400 was chosen, as this is commonly used to overexpress genes in E. coli. With the objective to place the two Calvin cycle parts on different vectors, it was attempted to clone Ptac in front of both parts. However, this did not succeed and it was decided to prioritise other aspects of the project and therefore keep this part theoretical henceforth.
Carboxysome
The implementation of the microcompartment carboxysome in the test organism can increase the efficiency of the carbon fixation process substantially. As for the Calvin cycle parts, we corresponded with the 2014 Bielefeld iGEM team on their experience of the implementation of the carboxysome, and received the two parts that together contained the cso operon from Halothiobacillus neapolitanus. These parts were BBa_K1465204, containing csoS2, and BBa_K1465209, containing csoS3, csoS14, and csoS1D. As part of the optimisation, we aimed to combine these parts into one part containing the entire cso operon, as shown on figure #. Furthermore, a promoter was required to drive the gene expression. For this purpose, Ptac was chosen, as for the genes encoding the Calvin cycle enzymes.
We succeeded in assembling both carboxysome parts, but for some inexplicable reason, this composite part likewise emerged difficult to clone with the Tac-promoter. Therefore, it was decided to focus at other aspects of the project and, as for the Calvin cycle part, keep this part theoretical henceforth.
A fitting approach to verify the expression of the genes involved in carbon fixation, could consist of matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) and quantitative PCR (qPCR). For this, one could build upon the experience obtained by the 2014 Bielefeld iGEM team.
In order to test the functionality of the parts we had hoped to assemble, we had reached out to Nordcee, which is a major research groups within the Department of Biology at SDU. Our hope was to compare the carbon fixation rates for cultures expressing the Calvin cycle enzymes alone and in combination with the carboxysome, whereby the effectivity of the microcompartment also would have been assessed. In cooperation with the Nordcee, measurements of CO2 decrease in an airtight culture with an infrared CO2analyser. Another test approach would have been using 14CO2, and then measure the amount our organism had taken in.
Cellulose Biosynthesis and Secretion
Theory
Cellulose is a biopolymer produced by different species of gram-negative bacteria, especially by Acetobactors. An efficient producer of bacterial cellulose is Glucoacetobater xylinus, which produces large quantities of high quality cellulose. Cellulose is produced from the recourse glucose-6-phosphate. Glucose-6-phosphate is a key intermediate in the core carbon metabolism of bacteria given its importance in glycolysis, gluconeogenesis and pentose phosphate pathway. Even though the conversion of glucose and glucose-6-phosphate into cellulose is rather short, not only does the cell spends energy on forming UDP-glucose for cellulose production, it also uses glucose, which otherwise would have contributed to generation of ATP.
The ability for G. xylinus to produce, crystallise and secrete cellulose is controlled by genes in the cellulose synthase operon acsABCD. The acsABCD operon encodes four different proteins whereof AcsA and AcsB forms a dimer known as AcsAB. Together with AcsC, AcsAB is essential for biosynthesis of cellulose. AcsD has shown to be non-essential in production of cellulose, but absence of the protein results in decreased cellulose production, properly due to inappropriate crystallization of the polymer.
Other genera as E. coli excrete cellulose as a component of their biofilm. Even though cellulose production is intrinsic in E. coli, the in quantity the production is incomparable to cellulose production in G. xylinus. Indigenous E. coli is not capable of breaking down cellulose into a metabolisable energy source, but if the structural and water-holding polymer is enzymatically broken down into glucose residues, the cellulose polymer is a potent energy source. Read more here
Approach
After some research it was found that cellulose would be the perfect source of energy between the two bacteria in our project…. Imperial College London made the project Aqualose (link) in 2014, during which they produced excess amounts of bacterial cellulose.
The aim of this subpart of the project was to enhance cellulose production in the E. coli strain MG1655, to enhance the energy outcome of the entire system.
To enhance the cellulose production, parts containing the coding sequence of the Cellulose Synthase enzyme was transformed into E.coli strain MG1655. The original idea was to clone the entire cellulose synthase operon acsABCD under control of ptac. This was attempted many times, but with a total length over 9000bp the cloning was difficult, and unsuccessful. The plan was then to insert the cellulose synthase operon acsABCD into MG1655 on two plasmids, both controlled by the ptac promoter (http://parts.igem.org/Part:BBa_K864400). The catalytic domain, acsA, and the regulatory domain, acsB, both found in the part BBa_K1321334 (indsæt link), was attempted inserted into the vector psB1C3, carrying a chloramphenicol resistance cassette. Part K1321335 (indsæt link) containing acsC and acsD was inserted into the vector psB1A3, carrying an ampicillin resistance cassette. This was attempted many times, however, due to time constraints these clonings were also unsuccessful.
If the cloning of the cellulose synthase operon had been successful the cellulose production would have been tested using the fluorescent brightener 28... Read more here
Breakdown of Cellobiose to Glucose
Through evolutionary events, many organisms have developed the ability to express enzymes capable of breaking the β-linkage of cellobiose. E. coli is known to express periplasmic β-glucosidase (BglX), which is known to have said feature by hydrolysing the cellobiose β-linkage Link til Bglx . The Saccharophagus degradans express an alternate enzyme, which can efficiently cleave the β-linkage in cellobiose. This is the so called cellobiose phosphorylase (Cep94A), which phosphorylates the cellobiose β-linkage resulting in its breakdown to D-glucose and α-D-glucose-1-phosphate Sekar R, Shin HD, Chen R. Engineering Escherichia coli Cells for Cellobiose Assimilation through a
Phosphorolytic Mechanism. Applied and Environmental Microbiology.
2012;78(5):1611-4..
Approach
Cellulose to Cellobiose
In the pursue to make E. coli utilize cellulose as its only carbon source, we based our project on the Edinburgh 2008 iGEM team project, who developed two Biobricks containing the CenA and Cex genes. We then utilised the a-hemolysin transport system by creating HlyA tagged CenA and Cex, using a linker peptide. Once tagged with HlyA, the cellulases can be secreted to the extracellular fluid, where they actively cleave cellulose to cellobiose units. To implement this system in E. coli, it would require the heterogeneous expression of HlyB, HlyD, CenA-HlyA and Cex-HlyA.
To accomplish this we ordered DNA synthesis of CenA and Cex, each tagged with HlyA using a linker peptide. The genes encoding HlyB and HlyD was retrieved from the BBa_K1166002 by phusion PCR. Using the aforementioned parts, we composed the following construct for the degradation of cellulose to cellobiose:
Cellulose to Cellobiose
In the pursue to make E. coli utilize cellulose as its only carbon source, we based our project on the Edinburgh 2008 iGEM team project, who developed two Biobricks containing the CenA and Cex genes. We then utilised the a-hemolysin transport system by creating HlyA tagged CenA and Cex, using a linker peptide. Once tagged with HlyA, the cellulases can be secreted to the extracellular fluid, where they actively cleave cellulose to cellobiose units. To implement this system in E. coli, it would require the heterogeneous expression of HlyB, HlyD, CenA-HlyA and Cex-HlyA.
To accomplish this we ordered DNA synthesis of CenA and Cex, each tagged with HlyA using a linker peptide. The genes encoding HlyB and HlyD was retrieved from the BBa_K1166002 by phusion PCR. Using the aforementioned parts, we composed the following construct for the degradation of cellulose to cellobiose:
Extracellular Electron Transfer
Theory
Microbial Fuel Cell
Electrochemical devices such as batteries and fuel cells are broadly used in electronics to convert chemical energy into electrical energy. A Microbial Fuel Cell (MFC) is an open system electrochemical device, consisting of two chambers, an anode chamber and a cathode chamber, separated by a proton exchange membrane. Both the anode and the cathode in a MFC can use various forms of graphite as the base material. In the anode chamber of a MFC, microbes are utilised as catalysts to convert organic matter into metabolic products, protons and electrons Khanal YLaSK. Microbial Fuel Cells, Capter 19. In: Khanal. EbYLaSK, editor. Bioenergy: Principles and Applications. First Edition ed: Published 2017 by John Wiley & Sons, Inc.; 2016.. This is carried out through metabolic pathways such as glycolysis, to generate needed ATP to maintain cellular life. This metabolic pathway also generates a release of electrons, carried by NAD+ in its reduced form NADH.
insert figure
Under aerobic conditions, the generated NADH will deliver its electron as part of the electron transfer chain, to return to its oxidised form NAD+. Under anaerobic conditions the electron transport chain will not be able to continue, which will cause the generated NADH to accumulate. As a consequence of accumulated NADH, the concentration of available NAD+ for glycolysis will decrease. This will drive the cell to do other metabolic pathways, such as fermentation, in order to maintain its ATP levels. Instead the accumulating NADH generated under anaerobic conditions, can be utilised to drive an electrical current by depositing the retrieved electrons to an anode coupled with an appropriate cathode. The cathode catalyst in a MFC will usually catalyse the reaction of 4 H+ + 2 O2 à H2O. The transfer of electrons from NADH to the anode can be executed in three different ways; redox shuttles, direct contact electron transfer, and bacterial nanowires. Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, et al. Microbial fuel cells: methodology and technology. Environmental science & technology. 2006;40(17):5181-92.Khanal YLaSK. Microbial Fuel Cells, Capter 19. In: Khanal. EbYLaSK, editor. Bioenergy: Principles and Applications. First Edition ed: Published 2017 by John Wiley & Sons, Inc.; 2016.
insert figure
The redox shuttles use extracellular electron mediators which hold the advantage of not being limited by the surface area of the anode. However, it is restricted by the slow diffusion of the extracellular mediators. The direct contact electron transfer, in reverse to the redox shuttles, is strongly limited by the surface area of the anode, but the membrane bound cytochromes in direct contact with the anode, rapidly delivers the electrons. Bacterial nanowires are known to efficiently transfer electrons, much like the direct contact electron transfer. However, bacterial nanowires are not as strictly limited by the surface area of the anode as the direct contact electron transfer is. This is because bacterial nanowires are able to form complex networks of interacting nanowires in biofilm, to efficiently transfer electrons from distant microbes all the way to the anode using this network. Khanal YLaSK. Microbial Fuel Cells, Capter 19. In: Khanal. EbYLaSK, editor. Bioenergy: Principles and Applications. First Edition ed: Published 2017 by John Wiley & Sons, Inc.; 2016.
Originally, we wanted to implement bacterial nanowires from G. sulfurreducens into E. coli. Through extensive research, we came to a similar conclusion as the Bielefeld 2013 iGEM team did; that this task was too comprehensive to undertake in the limited time of an iGEM project. Postdoc Oona Snoeyenbos-West suggested us to use G. sulfurreducens as the model organism for our MFC.
We then decided to work on optimisation of the G. sulfurreducens by increasing the electrical conductivity of its endogenous nanowires. To achieve this, we ordered synthesis of the PilA genes from G. metallireducens, which was used to create a Biobrick. From this Biobrick, a PCR product was made containing the chloramphenicol resistance cassette of the pSB1C3 backbone for later selection of recombinant G. sulfurreducens. The PCR product was ligated with PCR products retrieved from the 500 bp upstream and downstream regions of the chromosomal PilA genes of the G. sulfurreducens PCA strain. This was used to create the following linear DNA fragment, intended for homologe recombination into G. sulfurreducens:
Demonstration and Results
results? never heard of it
Parts & Procedures
In this section, you will find all the needed information to replicate our approach and experiments. Both the parts, notebook, SOPs and protocols will show in a pop-window, from which you can obtain all the needed information, should you be interested. An essential part of going to the lab is risk and safety assessments. This you will find at the end of the section, so just go ahead and keep on scrolling.
Parts
Basic Parts
BBa_K2449000
Contain the genes for pilA-N found in G. Metallireducens.
BBa_K2449001
Contain the sequence for the PilA-C genes of G. Metallireducens.
BBa_K2449003
Contain the sequence for the Cep94A gene, an enzyme that breaks down cellobiose.
BBa_K2449008
Contain the sequence for the antitoxin RelB.
BBa_K2449010
Codes for a Ptac promoter regulating csoS2.
BBa_K2449011
Contain the sequence for CenA (Endoglucanase), encoding a cellulose degrading enzyme. It was optimised for E. coli.
BBa_K2449012
Contain the sequence for Cex (Exoglucanase), encoding a cellulose degrading enzyme. It was codon optimised for E. Coli.
BBa_K2449013
Contain the sequence for CenA (Endoglucanase) fusioned with HlyA using a G-Linker. Optimised for E. Coli.
BBa_K2449014
Contain the sequence for Cex (Exoglucanase) codon, together with G-Linker and HlyA.
BBa_K2449015
Contain the sequence for HlyB + HlyD, a system used for secretion of HlyA.
Composite Parts
BBa_K2449002
Contain a LacI promoter, RBS, pilA-C from G. Metallireducens, RBS, PilA-N from G. Metallireducens and a double terminator.
BBa_K2449004
Contain a LacI promoter, RBS, Cep94A and a double terminator.
BBa_K2449005
Contain a LacI promoter, RBS, BglX and a double terminator.
BBa_K2449006
Contain a promoter, RBS, BglX and a double terminator.
BBa_K2449009
Contain a LacI promoter, RBS, the gene sequence for RelB, controlled by a Lacl regulated lambda pL hybrid promoter and a double terminator.
BBa_K2449016
Contain a PenI promoter, HlyA tagged CenA.
BBa_K2449017
Contain PenI promoter, HlyA tagged Cex and a double terminator.
BBa_K2449018
Contain PenI promoter, HlyB, and HlyD.
BBa_K2449019
Contain HlyA tagged Cex, PenI promoter, HlyB, and HlyD.
BBa_K2449020
Contain a PenI promoter, HlyA tagged CenA, PenI promoter, HlyB, and HlyD.
BBa_K2449021
Contain a PenI promoter, HlyA tagged Cex, PenI promoter, double terminator, HlyB and HlyD.
BBa_K2449022
Contain a promoter, HlyA tagged Cex, HlyA tagged CenA, a double terminator, a promoter, HlyB and HlyD.
BBa_K2449023
Contain a PenI promoter, HlyB and HylD.
Notebook
Notebook
Week 8
The team meets for the first time on 22nd of february. As a team building excercise the team cooks and eats together.
Week 9
For the sake of future cooporation the team makes a cooperation contract. Thus the team has an agreement on time spent, what to expect from eachother, and what to do in case of conflict.
Biosafety and proper risk assessment are important aspects to consider before any handling of genetically modified organisms (GMOs). There are several concerns that must be properly addressed. The safety of the public as well as of the environment, is of the utmost importance, but the safety of the person in direct contact with the GMOs shouldn’t be compromised either. The risk associated with laboratorial work can be evaluated using the statement “Risk = Hazard x Probability” (link). To responsibly assess this inquiry, the entire team was given a mandatory lab safety course held by Lab Technician Simon Rose. In addition, we received a detailed handbook regarding lab safety. This ensured that all our team members were well equipped to work safely in the lab at all times. Throughout the project we have continuously been evaluating the safety of our work. These assessments can be found in the safety form (link).
Furthermore, our team participated in the 5th annual BioBrick workshop hosted by DTU BioBuilders. Here we engaged in a lab safety course before entering their lab. Both of these lab safety courses gave us the necessary knowledge to work safely with GMO, proper handling of waste and the according procedures in case of an emergency.
In the lab, we worked with several potentially harmful chemical agents such as DMSO (dimethyl sulfoxide), ethidium bromide, chloroform, phenol, Congo red, antibiotics and autoclaved glycerol. These chemical agents were handled using gloves at all times, and, whenever deemed necessary, handled in a fume hood. We used a UV board to visualize bands in agarose gels. UV rays are carcinogenic when exposed frequently and for longer periods of time. To reduce the amount of exposure, several precautions were made; gloves, long sleeves and a facial screen were worn at all times and the time spend at the UV board was no longer than the necessary. GMOs were always handled wearing gloves, and all team members wore clean lab coats restricted to the laboratorial areas.
Public and Environmental Risk Assessment
The chassis organisms containing the system is meant to be contained within a container, which should be incorporated into an urban environment. While this device would be a safely enclosed container, it still possess the risk of physical breakage from violent acts or environmental disturbances. It is for this reason, that we consulted a plastics expert, who advised us to use the plastic known as Polycarbonate. This plastic is remarkably durable, with the ability to ward off most physical traumas. As such the plastics expert believe that the container would last in an urban environment for at least 20 years, and most likely more than that. To illustrate the durability of the plastics, he notified us of several devices from the 1970ies made of the same plastic, that still stand strong today.
One of the biggest concerns would be the release of GMOs into nature. While the GMOs used aren’t pathogenetic, they would be able to share the plasmids containing antibiotic resistance selectors to other pathogenic bacteria. Antibiotic resistance in pathogenic bacteria, complicates the treatment of an infected individual, and could in tragic cases be the line between life and death. However small this scenario is, it should be addressed properly. Furthermore, antibiotic resistant E. Coli strains could outmatch some of their fellow E. Coli strains through natural selection. This could negatively affect the natural balance, that we are aiming to restore with the development of the PowerLeaf.
To safely avoid these risks, there should be implemented several kill switch mechanisms into the final device. This could be performed by implementation of a light sensing system into the energy converting unit, which would turn on the kill switch if exposed to light. This would of course mean, that the energy converting unit’s container, would need to block all sunlight. A task that could easily be carried out by adding Carbon Black to the required areas of the container. The energy storing unit, which requires light to actively function, could then have a kill switch which makes it completely dependant on presence of the container. This could be accomplished by having harmless molecules not naturally found in nature circulate in the system. Which should be required for the survival of the energy converting unit. A similar effect could be accomplished by making the energy converting and the energy storing units codependent on each other for their survival. The implementation of such kill switch mechanisms, would tremendously improve the biosafety of the device, by opposing hazards related to any kind of physical breakage.
Vectors
pSB1A2: An iGEM plasmid backbone carrying an ampicillin resistance gene
pSB1C3: An iGEM plasmid backbone carrying a chloramphenicol resistance gene
pSB1K3: An iGEM plasmid backbone carrying a kanamycin resistance gene
pSB3K3: An iGEM plasmid backbone carrying a kanamycin resistance gene
pSB4K5: An iGEM plasmid backbone carrying a kanamycin resistance gene
Bacteriophages
P1 phage, using its site-specific recombinase for transduction of E. Coli
Practices
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam consequat sodales nisl at blandit. Suspendisse nisl tortor, dignissim vel ultricies ut, tincidunt eget nisi. Proin nec viverra erat. Vivamus commodo metus neque, non feugiat dolor viverra vel. Nullam sit amet elit luctus, interdum nisl fringilla, vestibulum libero. Nullam iaculis, purus non imperdiet vulputate, mi augue gravida lacus, eu sollicitudin lacus orci a ipsum. Aenean maximus porttitor viverra. Praesent sed fringilla mauris. Duis eu molestie orci, id pellentesque lorem. Interdum et malesuada fames ac ante ipsum primis in faucibus. Sed orci elit, sodales vel nibh sed, rhoncus ultrices dolor.
Vestibulum tincidunt ac nisl at mattis. Sed eu mollis nisi. In pulvinar mi velit, dictum congue sapien ornare vel. Integer euismod varius velit ac euismod. Curabitur dapibus eget neque hendrerit sollicitudin. Etiam nec consequat diam, interdum egestas purus. Nullam ultricies et augue at vestibulum. Proin ac velit ac nibh rutrum varius at id metus. Morbi vitae auctor arcu, eget pulvinar mi. Suspendisse potenti. Fusce ornare nisi a volutpat malesuada. Donec sed augue nisl. Vivamus et dui orci. Suspendisse potenti. Ut luctus, nisl in ullamcorper facilisis, purus tortor eleifend odio, nec efficitur erat nisl vel massa. Suspendisse sed velit molestie, tincidunt nulla in, consectetur ligula.
Bioethics
ethics is forcing Neergaard drink phenol
Jonas can approve on this
Integrated Practices
“The best way to predict your future, is to create it”
Abraham Lincoln - (former) president of the United States of America
Not that we can claim to be anything like Abraham Lincoln, or even to be vampire hunters, but we do agree that to create the future we all hope for, we must contribute to finding a sustainable solution for a greener future. However, before we can tackle the arduous task of providing a sustainable future for the entire world, we must first look to our own local environment to better understand its vision for the future. Hopefully this approach will help future iGEM teams find a connection between global issues and local ones - as we believe that the best way to gain a better understanding of a global dilemma, is to examine how a local environment is affected by it, and how it could possibly be tackled in such a setting. This approach has helped us elucidate specific issues and to find sustainable solutions that can be implemented into our society with the help and endorsement of local agents.
integrate a pizza here
A Statement from the Mayor of Odense
We first decided to reach out to the mayor of Odense, to investigate the possibilities for iGEM to help in the government's endeavours to make Odense a CO2 neutral city, with a high quality of life.
“We face a series of challenges that we have to recognize, in the chase of a good and sustainable life in the city of Odense. Some of these concern local circumstances, while others contain national and even global issues. We as the municipality can only go so far on our own. So we are entirely dependant on the help of local agents. It makes me so happy, when the students of the city, have taken on the mantle of developing new green technologies, which global issues while also contributing to the city's high quality of life.”
Peter Rahbæk Juel - Mayor of Odense
The core philosophy of our integrated human practices has been to integrate local experts in the development of our project; in order to better comprehend how to use the knowledge gained in the laboratory to shape a product that would compliment Odenses (or beyond) green values. We have also made use of experts in other fields in order to better understand how to shape our project - and so our human practice has influenced everything from the design of our prototype(s), laboratory work to ethical considerations.
We will now walk you through our integrated human practices, so scroll on down to find out more about who we spoke with and how their input and advice came to influence our entire iGEM experience.
Meeting with Kristina Dienhart
For the purpose of a possible implementation of the PowerLeaf into the different areas of Odense city’s renewal, we decided to reach out to Kristina Dienhart. Kristina Dienhart was at this point in time project manager of Smart City Odense – a project within Odense Municipality that seeks to combine urban planning with new technologies and open-data, in order to create a smarter city. We decided to consult mrs. Dienhart, as Smart City Odense shares our core values; working transparently, openly and collaborative, while also sharing know-how. Mrs. Dienhart made us aware of the following necessities for Odense and its citizens - feedback that we have integrated in numerous areas of our overall project. It is important to note that at the time of our meeting with Mrs. Dienhart, our vision of the PowerLeaf was exclusively in the shape of a leaf; a leaf designed to be implemented on various buildings around Odense.
From Mrs. Dienhart’s point of view, one of the most advantageous attributes of our device, is the the potential for changeability in the size and shape of the PowerLeaf - as this means it could be shaped depending on what urban area we wish to integrate the PowerLeaf within. We had yet to consider the PowerLeaf as a device not limited by physical dimensions, and it’s perhaps the most significant element we took away from our meeting with Mrs. Dienhart. Changeability is a necessity to a city planner, as various laws and aesthetic aspects need to be taken into consideration, when altering or creating an urban environment.
Accessibility – the citizen will not use our device if it is not easily accessible. This means that the overall design of PowerLeaf – regardless of its aesthetic – always needs to be designed with a user in mind. Offering a mobile-charger in a city-space is only clever insofar that the citizen using the public space is aware of the device and how to easily access it. Reflecting on the advice of Mrs. Dienhart, we decided to reevaluate the means of implementation of our bacterial solar battery in the prototype, to ensure that the need for accessibility and user-comfort is met.
Mrs. Dienhart supported our notion that offering free and accessible energy within public space could help ensure that the ordinary citizen of Odense uses and stays in the public space for a longer amount of time. Something that is valuable not only to the individual citizen but also to the community as a whole, as it creates a sense of city-cohesion and hence a high quality of city-life.
Overall Mrs. Dienhart confirmed that our PowerLeaf could play a part in Odenses dream of developing into an even greener and more lively city. She also made us aware that not every neighbourhood in Odense will be desiring the same design, and that we ought to focus on the changeability aspect in the development of our prototype’s design.
Overall Mrs. Dienhart introduced us to several considerations that shaped large parts of our project. Her call for ‘the changeability aspect’ of the PowerLeaf has been used to reconsider the construction of the solar battery’s exterior and sustainability. We do not know the needs of every urban area in Odense; and consequently - with Mrs. Dienhart in mind – we have aimed to create a device that is changeable to a city in movement such as Odense. Mrs. Dienhart therefore challenged what we thought we wanted from a prototype - namely a fixed design - into the belief that we ought to create a prototype that can be shaped and reshaped depending on the requested necessities of the customer.
Furthermore the conversation with Mrs. Dienhart was also a source of inspiration in regards to our ethical and safety thoughts. The belief that while we ought to create a better more sustainable tomorrow for ourselves and future generations, we do not necessarily have to provide an exhaustive description of what that future should like, very much evolved from the changeability aspect, which was brought about by our conversation with Mrs. Dienhart.
Meeting with Rikke Falgreen Mortensen
Mrs. Dienhart also helped to establish contact with Rikke Falgreen Mortensen, manager of the Bolbro’s city-renewal project called MyBolbro. We arranged a meeting with Mrs. Mortensen with the intent of further investigating how the PowerLeaf could and should be integrated into an urban area of Odense - in this case the neighbourhood Bolbro.
Bolbro is an old neighbourhood in Odense historically known to be the home of the working-class, and while Bolbro provides a homely atmosphere known to the locals, it has had a hard time attracting new residents. However, this is subject to change as the neighbourhood in 2016 received a reservation of approximately 1,6 million us dollars to renew its city-space and create an even more appealing and vibrant neighbourhood. This will be achieved by including the locals, as Bolbro is characterized by having a strong, engaging civil society. Mrs. Mortensen is not only an expert in urban renewal but also in how to include local citizens in reshaping the public space in which they reside.
Mrs. Mortensen, as Mrs. Dienhart, also argued that a changeable design would be the optimal solution to fit the challenges, One faces in creating a vibrant, green city-ambience. As such a task depends on preferences, laws and needs. Instead a technology needs to be both flexible and accessible in order to successfully contribute to the process of creating a successful city environment. Furthermore we had a discussion with Mrs. Mortens about the creation of a prototype based on the wishes of Bolbro’s local citizens.
“Hauge’s square is a spot in Bolbro, which we aim to make a central place in Bolbro; a place that invites the citizen to meet and dwell. At the same time it must also be an orientations point, from where citizens and visitors can find their way to other places and attractions in Bolbro. Today the possibility for enjoying the outside consists of the space in Hauge’s square, which is made up by a bakery, a small local library, and a parking lot. However, we believe that the space contains better opportunities. In short, the space must be transformed from primarily being a parking spot to a recreational place with a much more aesthetic design. Your solution should be able to contribute to help citizens recharge their phones, ex. A solution could be implanting the PowerLeaf into a ‘living’ furniture, but where demands for the aesthetic design still remains”
“A part of the vision of this project is the concept of making a pop-up park with differently designed multi-furniture, preferably in wood and organic design, which are removable to the various areas where we are going to develop in the district. It is furniture that should be able to be used to relax in and at the same time also motivates children to move - and there should also be platforms that invite to activity ex. table tennis or a more screened seating for lovers, conversation or work. There is also a need for charging devices and it therefore demands that your solution is an integrated but still mobile solution, as the park will move physically over time”
“Finally, the church / playground is to be developed especially for the young audience, which is a major consumer of power for phones. The place must be a place where the youngsters hang out after school, still a green space where the solution should be integrated into the interior and could keep the target audience children and adolescents. The site is in a socially charged area, so it demands a robustness from of the solution, to help when faced with ex. vandalism”
The making of the furniture as a prototype called for a re-visit of our safety concerns, as children will be climbing and playing on the furniture, it is crucial that the material of the PowerLeaf will not break; a concern we discussed with Flemming Christiansen, which you will be able to read more about next. Just keep scrolling!
Flemming Christiansen
Criteria to the Prototype
Having decided that the exterior of the device would be made entirely from plastic, we set out to.
Plastic is thought of as an undesirable material, due to the difficulties in its disposal. This is due to plastic being of a xenobiotic nature, making it generally recalcitrant to microbial degradation. This predicament is complicated further by biodegradable plastics being of a compensatory nature; sacrificing form-stability and strength for biodegradability. Following these concepts, we can identify the following set of criteria for our material:
Solar exposure - The material covering the solar cell, must allow sunlight to pass through it to the bacteria.
UV resistance - As the material will be exposed to the sun, it should be resistant to the UV radiation.
Bacterial growth - The material must support, or not be toxic to the bacteria.
Easy to mold - As the device is only dependant on the insides, the outside could be molded depending on the co
Durability - material must be able to withstand hard conditions and heavy weight.
Temperature -The material must allow for appropriate temperature for the bacteria, despite the constant sun exposure.
Longevity - We would like for the material to have as long a durability as possible, as replacing the leaves often would prove cumbersome. In this regard we are aiming for at least twenty years.
Price - We are looking for a material that is as cheap as possible, without sacrificing the necessary criteria.
Environmentally friendly - Considering the goal of this project being the creation of an environmentally friendly energy source, the ideal material would be as environmentally friendly as possible.
Interview with Flemming Christiansen
For the purpose of finding the necessary materials for our prototype, we contacted one of the leading plastic experts in Denmark, Flemming Christiansen, who acts as the market development manager of SP Moulding. He has been acting as a plastics consultant, since his graduation as a master of science in Engineering with a speciality in plastics in the 1970ies. A meeting was quickly arranged, where we fleshed out the criteria, the technical design, the material and the possible price of creating the PowerLeaf.
In accordance with our established criteria, mr. Christiansen suggested that we use the plastic known as Polycarbonate, specifically Lexon 103R-III (kilde). The material, however, cannot fulfill the criteria on it’s own. Therefore, Mr. Christiansen suggested that we take a few liberties with it. In order to prevent the exposed part of the prototype from degradation by UV radiation, we will be adding certain additives to the surface of the exposed part. This doesn’t hinder the sunlight from entering the device and thus the bacteria, but just increases the UV-resistance of the material. During our consultations with Mr. Christiansen, we reached the topic of what to do in case of a breach. Should the container against all expectations be damaged, the GMOs inside would be exposed to the environment. The solution we came up with was the possible implementation of a kill-switch in the energy storage unit, making it vulnerable to light. Should the bacteria of said unit be exposed to sunlight, they would die, and since it’s counterpart in the solar cell unit would be dependent on the continued coexistence of the two units, the entire GMO system would be purged. With Mr. Christiansen’s help we designed the container for Cell 2 of the same material as Cell 1, albeit with an added compound. The container for Cell 2 would be covered with Carbon Black, which has the ability to absorb sunlight, thus leaving the compartment itself in darkness.
The process of constructing our device would be through an extensive use of Injection Moulding, which is considered pricey equipment. Next, one must purchase the required material, which at above 1 ton would cost around 4-5.5 USD per kg. As such it’s an expensive material compared to others, but it’s longevity and durability means one would not be required to replace the devices for a long time. Lastly, we discussed the reusability of Polycarbonate, which Mr. Christiansen assured us was of no concern, as the material could be reused and recycled with ease.
Meeting with Ann Zahle Andersen
During our iGEM experience we met with Business Developer Ann Zahle Andersen twice. Mrs. Andersen had arranged two workshops for us based on a business canvas. This helped us to understand our project in a larger perspective. She encouraged us to view our project as if it was supposed to be a startup business, and through this perspective we gained a better comprehension of society’s pull and pushes on a project like ours. In a time of crisis she discussed our project’s advantages and disadvantages from a business perspective. A perspective and talk that forced us as a team to get to the bottom of what we found important about our project. And to truly appreciate the advice we have been given throughout our human practice work, as if we were a business trying to understand the needs of a costumer.
Upcoming Meeting with Borgernes Hus
‘Borgernes Hus’ is a new initiative offered by the city’s central library. The name translates to ‘House of the Citizen’s’. The house aims to offer guidance and advice to projects such as our own. It is meant to aid Odense in its journey towards the status of a modern, danish city. Unfortunately, the building remains under construction until after our trip to Boston, meaning that they have been busy finishing said construction while our project was underway. It is for this reason, that we along with director Jens Winther Bang Petersen decided that a future collaboration would be the most suitable solution.
It is our hope, that a collaboration with Borgernes Hus will be of assistance to future iGEM SDU-Denmark teams as well as students from Odense. In extension of this, we hope that such a collaboration will help them see the benefits in collaborating with local agents.
Education & Public Engagement
hello my friend, wanna learn something? the wiki isn't done yet.
lets goo
Prospects
Our prospects section is aimed to expand on our visions regarding the PowerLeaf. A vision we would very much love to see become a reality. For this reason, we have concentrated on creating an overview of the project, for the benefit of future iGEM teams. Hopefully it can assist prospective teams on how to take the PowerLeaf to the next level. Lastly, we decided to list some of our project ideas to the teams wishing to create a completely new project. Perhaps some of these ideas can be used by prospective iGEM teams, or just help to kickstart their creative thinking.
Perspectives
Building a Product for a Better Future
The purpose of the PowerLeaf, is to provide a greener alternative to the currently available energy sources. An important aspect of such an undertaking, is to limit the use of depleting resources, such as silicon, in the construction of the device itself. This is accomplished through the use of the most common resources available. This will contribute to our dream of building a better future, where fear of reaching a critical shortage of natural resources has been eliminated. The production of the PowerLeaf itself is made easier too, as the device benefits from the bacteria's ability to self-replicate, if provided with essential nutrients.
As tools for genomic editing improves, the advancement of biological devices will conceivably become even more complex and independant. They will do so by introducing new metabolic pathways inspired from other organisms using genetic engineering. This could potentially allow the PowerLeaf to become completely independent through its self-replication, by producing their own essential nutrients directly from unwanted pollution in the environment. A process that would lead to cleaner cities, along with providing a natural solution to sustainable energy.
The PowerLeaf will be representing a natural leaf design, thus leading to a nature-in-city ambiance, which can have a soothing effect in the ever so stressful cities. Not only will the design represent a plant leaf, but some of the key functionality aspects of the device are inspired from those of a plant leaf. Hereby, we refer to photo synthesis and building cellulose as a biological product.
Genetic Code Expansions for Biological Engineering
Expanding beyond those technologies used in today's Synthetic Biology, many research groups are working on genetic code expansion. We had an interesting talk from post.doc Julius Fredens, about his work on genetic code expansion. Once a technology like this advances, it will completely revolutionize biological engineering, including that of the PowerLeaf. Genetic code expansion could be used for optimization of the systems in the PowerLeaf; optimization of nanowires, improvement of the light-sensing system and making the breakdown of cellulose inducible.
To Future iGEM Teams
Hello future iGEM’er and welcome to the section where you are the center of attention. First of all, congratulations on starting your iGEM journey, you are going to have a amazing summer with plenty of wonderful experiences and new friendships. In this section, there will be two main topics, improvement and further development of our project, the PowerLeaf, and some of our project ideas generated in the startup phase to use for your project or start your creative thinking.
Further Development of Our Project
For those of you, that found interest in our project this year and would like to continue on improving it; this is the section you were looking for. We have listed the systems and the related information on theses needed for the device we envisioned, however you should not be limited to those. You are more than welcome to contact any of us regarding questions to the project, you can find our email addresses to each of us in the Team section of the Credits.
Systems that did work:
Light sensing system, this is used by the energy storing unit to reduce metabolism during times of the day with low amounts of solar energy available for the energy production, i.e. night time. We had several failed attempts during the development and optimization of the system and have through this learned a lot about the system. Furthermore, the system was modelled to gain an even greater understanding about the regulation of its light sensitivity. You can read about the work we did regarding the light sensing system here.
Cellulose consumption, this was used by the energy converting unit to degrade cellulose to glucose from which electrons could be retrieved. This system is probably the most straightforward, but was also worked on very extensively. You can read about the work we did regarding cellulases here.
Optimisation of the nanowires, this system was heavily inspired by the following article (link). We did create the required BioBricks to make the system work, but still requires some extensive work to actually implement it. You can read more about the work regarding the nanowires here.
Systems that didn’t work:
CO2 fixation, we retrieved the parts from the Bielefeld 2014 iGEM team and worked on assembling their parts into one fully functional BioBrick. However, we had a lot of trouble assembling it, and it seems that Bielefeld 2014 didn’t succeed on combining all the components needed for CO2 fixation either. So be aware of this. It seems like a simple assembly, but has caused us lots of problems. Some of the larger BioBricks tend to do that when they reach a certain size. You can give it a go anyways, but make sure to have a backup-plan, or maybe even try to redo the CO2 fixation by using a system from a different organism. We essentially decided to let go of this system of the PowerLeaf to focus on some of the other components. You can still read about our work done regarding the CO2 fixation here.
Cellulose production and secretion from the fixated CO2. These parts were retrieved from the Imperial College London 2014 iGEM team, this, much like the CO2 fixation, gave us trouble when it came to the assembly of the large BioBricks. It did seem that Imperial College London 2014 made their system work, but in the end, they proved it to be very inefficient of producing cellulose. So, this part could be the very thing to improve. You can still read about our work regarding the cellulose production and secretion here.
Systems we didn’t work on, but should be implemented in the device:
ATP production from solar energy comes to mind as one of the most essential system needed for the PowerLeaf to actually work. We had to pick the some of the systems to work on, and at the end of the day, this was the project our supervisors recommended to cut, if we wanted to work on more than just one system. Instead, we had a great Skype call early in the project with the Australian Macquarie iGEM team, whom has been working for many years with the implementation of the photosynthetic systems in E. coli. You could always contact them regarding the photosynthetic systems, they are super nice.
Making the interaction between the cellulose and the cellulases a controllable element, so it could be controlled in the same way of an on/off switch. This is also a very crucial part of the PowerLeaf, since it would otherwise be generating an electrical current non-stop. Even when it is not needed, and thereby overthrow the potential for long term-storage of solar energy. We believe this can be solved either through precise gene circuit regulation or by physical compartmentalization, however there might be even more elegant ways to solve this issue.
Physical engineering of the hardware required to make the device work. It should be possible for the energy storing unit to convert CO2 to cellulose, which will produce O2, thus making its chamber aerobic. For the energy converting unit to effectively transfer retrieved electrons to an anode, it will need to be in an anaerobic chamber. This will be a very difficult obstacle to overcome and requires some out-of-the-box thinking, to come up with a novel idea without having to require more energy than produced by the system. Engineering of the hardware required, e.g. anode, chamber, circulation of important nutrients and use of the correct plastic, is really important to make a workable prototype of the PowerLeaf. We worked out the optimal type of plastic for the system with the help of local experts. You can read about our work regarding the plastic here.
Ideas from Our Idea Generation
List of ideas from our idea generation
Credits
Just like in movies, you get to meet the brilliant minds behind the project in the credits. Some might leave the cinema without reading the credits, but we hope you will continue to read ours, as it’s just as important and you will get to know us on a more personal level through this. We probably have more in common than you think. Behind every great team is a great amount of external attributions. The contributors have supported and inspired us, especially when things have been rough and deadlines near. Afterwards you can turn your attention to our collaborations, which was an amazing experience, this really shows of the true iGEM spirit.
Last but not least, don’t miss out on the ‘after-the-credits-clip’, which summarizes the fun we had during this wonderful iGEM experience. This is especially important, since you get the words ‘thank you for listening, we hope you enjoyed our wiki and project’ - we know you have been waiting impatiently to reach that part of the wiki.
Team
Welcome to the team page, here you get to know us on a more personal level. As a team, we are 12 students from 8 different majors. As friends, we experienced the most amazing summer together, filled with various fun activities, both in- and outside the lab. To mention a few; we had road trips, dinners, Game of Thrones night and we even celebrated Christmas in July! We shared all of this with our amazing supervisors, for which we are truly greatful.
Ellen Gammelmark
Study: Biochemistry and Molecular Biology
E-mail: elgam15@student.sdu.dk
Why, hello there! My name is Ellen, and I spend most of my waking hours either in the lab with a pipette in my hand, or just outside it with a computer on my lap. You know.. Learn iGEM, live iGEM, love iGEM!
Emil Bøgh Hansen
Study: Biology
E-mail: ehans15@student.sdu.dk
Howdy! I’m the first of many Emil’s, and the team's only biologist! I am a huge wolf enthusiast! This summer I put my boots in the closet, in order to put on a proper lab coat doing iGEM. Besides my time in the lab I’ve also looked into how GMOs can influence the environment.
Emil Søndergaard
Study: History
E-mail: emsoe09@student.sdu.dk
Ahoy thar! My name is Emil, and I want to be the next Indiana Jones. But before I can raid any tombs, I’ve decided to raid iGEM trophies. When I’m not cooking or travelling, I’m drawing on my background in history for communications and human practices.
Emil Vyff Jørgensen
Study: Physics
E-mail: ejoer15@student.sdu.dk
Mojn! I am yet another Emil! I might not be a model biochemist, so instead I am modelling biochemistry! My iGEM existence is a stochastic binary function between naps and extreme bursts of energy.
Felix Boel Pedersen
Study: Biochemistry and Molecular Biology
E-mail: feped15@student.sdu.dk
Aloha. My name is Felix and I bring joy to others by eating my daily ryebread with paté and wearing my magical red racer rain coat. Speaking of magic, I’m the team’s wiki lizard (get it?). I also do dry-lab and when the other miss me too much, I join them in the wet lab.
Frederik Bartholdy Flensmark Neergaard
Study: Biochemistry and Molecular Biology
E-mail: frnee15@student.sdu.dk
Hey yo! I’m Frederik and I have worked day and night on iGEM, mostly drinking beers at night time, but that should count as well. When I’m not working in lab or on the PC, I make fun with the other teammates and tell bad dad jokes. Also I make crazy ideas come true, like celebrating christmas in July.
Frederik Mark Højsager
Study: Medicine
E-mail: frhoe14@student.sdu.dk
Heyah! I’m the other Frederik. I’m a green, lean, coffee-machine. I’ve been the steady supplier, and consumer of coffee on the team. My main focus has been on how to build a sustainable iGEM-project. I’ve been planting trees, eating green and lowering our team's carbon-footprint. Oh, and did I also mention I starred in our commercial? You can get autographs later.
Jonas Borregaard Eriksen
Study: Pharmacy
E-mail: jerik15@student.sdu.dk
Hey sup? I’m Jonas and used to like sports, partying, eating cake, hanging out with friends and such things most people like to do. During iGEM these interest has changed… I have been enslaved into the lab, and has realised that the only purpose of my life is to be in the lab.
Lene Vest Munk Thomsen
Study: Philosophy
E-mail: letho11@student.sdu.dk
Hey, is it solipsistic in here, or is it just me? When not wondering whether or not there is an external world, I’ve been busy working out how to implement our solar battery into our local community and what to gain from doing so. Oh, and imposing metaethics on my team members, but I Kant go into detail with this just yet.
Malte Skovsager Andersen
Study: Biochemistry and Molecular Biology
E-mail: malta14@student.sdu.dk
Ey what up pimps, I’m Malte. I’ve mostly been working in the lab wrapped in the dankest of lab coats, doing the most exciting of experiments. All in the name of why the hell not. In the lab the utmost highest level of patience is needed, especially when tasked with testing if biobricks function as intended. This has, as seen in the image, caused me to pull out most of my hair.
Sarah Hyllekvist Jørgensen
Study: Biochemistry and Molecular Biology
E-mail: sajo415@student.sdu.dk
Despite my favorite occupation being going into depth with theory, my main attribution to our project has primarily been running around in the lab. Luckily, there is a clear link between wet- and dry-lab. I am the smallest member of the SDU iGEM team, but I have definitely risen to the occasion.
Sofie Mozart Mortensen
Study: Biomedicine
E-mail: sofmo15@student.sdu.dk
Hi there! My name is Sofie, and I am the team mama! I am the one who makes sure everyone gets their fair share of cake. When I’m not in the kitchen, busy making cakes for my teammates, you can find me in the lab, where I’m working on enhancing our systems cellulose production.
Project Synergism
We have all been working together in every aspect of our project. Nevertheless, some people have had to focus on some areas more than others. The main groups are listed as follows;
The group focusing on fixation of CO2, production of cellulose and light-sensing dormancy consisted of Sarah Hyllekvist Jørgensen, Ellen Gammelmark, Sofie Mozart Mortensen and Emil Bøgh Hansen.
The group focusing on the breakdown of cellulose to create an electrical current and optimisation of nanowires consisted of Felix Boel Pedersen, Frederik Bartholdy Flensmark Neergaard, Jonas Borregaard Eriksen and Malte Skovsager Andersen.
The group focusing on the implementation of the device in an urban environment, as well as our outreach consisted of Emil Søndergaard, Frederik Mark Højsager and Lene Vest Munk Thomsen.
The mathematical modelling of our project was single-handedly performed by Emil Vyff Jørgensen.
Coding and design of the wiki was performed by Felix Boel Pedersen and Frederik Mark Højsager.
Collaboration
"Alone we can do so little; together we can do so much"
The American author Helen Keller had it right! As an iGEM team, you can reach many goals, but as an entire community, we can aspire to achieve so much more. Thanks to all the people that made this iGEM experience so memorable, we truly enjoyed your companionship!
Danish ethics and wiki workshop at SDU
In the spirit of the iGEM community, we hosted a meetup in August for our fellow Danish iGEM teams: InCell from the University of Copenhagen (KU), and the Snakebite Detectives from the Technical University of Denmark (DTU). A total of seven members from these two teams joined us for breakfast and attended our meetup. This was the first ever iGEM meetup hosted by our university, so we decided to make it memorable. We decided to take advantage of our interdisciplinary team roster, and designed a wiki and ethics workshop to aid our fellow Danish teams.
We utilised the broad interdisciplinary profile of our team, to have Emil S. and Lene present the perception of science throughout the history and the bioethical aspects of GMO, respectively. Emil S. has a Bachelor of Arts in History, and Lene has a Bachelor of Arts in Philosophy. The ethical presentation was purposely turned into an ethical debate, where viewpoints of ethical conduct were exchanged and discussed. After the presentations and discussions on bioethics, it was time for the wiki workshop.
The SDU-Denmark iGEM teams have won the Best Wiki prize several times in the past. As such, we wanted to share the knowledge gained from our university's past. To facilitate this exchange of knowledge on wiki development, we recruited our current supervisor Thøger Jensen Krogh, to hold presentations on how to design a good wiki. He was qualified for this task through his role as the designer of the SDU iGEM 2013 and 2014 team wikis, which won the special prize on both occasions. During the presentation, Thøger had arranged several exercises where the attendees got to mingle, discuss and evaluate their wikis. This resulted in a steady flow of information and constructive feedback between all three teams.
After a long day of learning and discussing, we went for a tour around campus under the summer sun, which concluded in a visit to the roof terrace of the campus dormitory, followed by dinner. It was requested, by our fellow Danish teams, to make the SDU meetup a tradition. They suggested for all of us to meet again closer to the wiki deadline, to evaluate each team’s progress.
Attending meetups
Besides hosting our own meetup, we also attended several ones during our iGEM experience. The first of which, was the 5th Annual Biobrick Workshop in March, hosted by the Technical University of Denmark. This meetup not only gave us our first experience with Biobricks, but also worked as a foundation for friendships across the teams.
Our second meetup, the Nordic iGEM Conference, was hosted by the University of Copenhagen in June. The main focus of this meetup, was the traditional mini Jamboree. Participating in this gave us useful feedback from the judges, as well as from our fellow iGEM teams. This helped us greatly shape and develop our project for the better.
To celebrate the beginning of our iGEM summer, we went on a road trip to attend the European Meetup, hosted by the Delft University of Technology in the Netherlands. Here we discussed ideas regarding our project at a poster session, learned from all the other great iGEM projects, and made new friends from all over Europe.
Further collaboration
In our project, we have been in contact with the iGEM teams from Bielefeld and Imperial College, who helped us by sending crucial parts relevant to the execution of our project.
As our project revolves around global warming and green sustainable energy, we were thrilled to hear about the iGEM Goes Green initiative from the TU Dresden iGEM team. Following their guidelines, we have calculated the carbon footprint of our laboratory work and travelling. We have, in part, tried to make up for our carbon footprint, by changing our travelling and eating habits in our everyday lives. Furthermore, we have reduced our daily electricity consumption, our wiki became CO2 neutral and we made an effort to sort our waste. The full report can be scrutinized here.
We sought expertise from the Macquarie iGEM team, who has worked with the implementation of photosynthesis in E. coli since 2013. We had an interesting Skype call with their team, where we discussed the particular challenges the previous teams had experienced throughout their projects. During the skype conversation, we realised, that they could benefit from our knowledge on the electron transport pathways, that we used for our project.
We were also able to help the Stony Brook iGEM team by facilitating communication with members of the SDU iGEM team from 2016. Shortly after the European meetup, we received an email from the Cologne-Düsseldorf iGEM team regarding a postcard campaign, which we gave some feedback on.
During our project we received several questionnaires from fellow teams. We were delighted to help the teams by answering their questionnaires. The questionnaires were from:
Waterloo - regarding 3D printing of lab equipment
Dalhousie - regarding the common conception of science literature
University of Washington - regarding communication platforms used by teams
Vilnius-Lithuania - regarding cotransformation
Nanjing-China - regarding whole-cell sensor for formaldehyde
University of Sydney - regarding the use and accessibility of insulin
Nothing can be done alone, so please scroll further to read about the contributors, who helped make this project a reality.
Laboratory, Technical and General support
We would like to give a special thanks to our supervisors:
Assistant professor Mikkel Girke Jørgensen, for his general support and advice on the project, the laboratory, the fundraising and our team synergy.
Ph.D. student and former iGEM participant Patrick Rosendahl Andreassen, for his guidance and technical assistance in the laboratory.
Ph.D student and former iGEM participant Thøger Jensen Krogh, for his help in developing the wiki, as well as his laboratory guidance.
Cand.phil student and former iGEM participant Tim Munk, for his focus on team dynamics and advice for our human practices.
We would also like to thank:
Academic assistant Tina Kronborg, for her guidance in the lab, as well as for providing us with lab equipment.
Medical Laboratory Technician Simon Rose, for giving us a course in lab safety, risk assessment and general guidance in the lab.
Postdoc Oona Sneoyenbos-West, for providing us with Geobacter Sulfurreducens PCA and the necessary knowledge on how to grow this particular bacterial strain. Furthermore, she helped us greatly with helpful discussions regarding the advancement of our project. We would also like to thank her for lending us her laboratory, for the cultivation of Geobacter Sulfurreducens PCA.
Postdoc Satoshi Kawaichi, for his assistance in measuring the electrical conductivity of our nanowires, as well as providing us with knowledge on the Geobacter Sulfurreducens.
Business scout and PhD Ann Zahle Andersen, for presenting us with the necessary tools for the development of innovative business ideas.
Stud.scient Kristian Severin Rasmussen, for helping us use the oCelleScope for testing.
Stud.scient Brian Baltzar, for hosting a workshop regarding Adobe Illustrator, which has been a great help to the development of graphics for our wiki.
Ph.D student Richard Xavier Etienne Valli, for helpful discussions in the lab.
Software Developer Jonas Hartwig, for his help with some JQuery functionality on the wiki.
Stud.scient Birka Jensen, for general advice and suggestion on how to build an iGEM wiki.
Stud.med Ida Charlotte Hvam, for helpful discussions on the development of our wiki, helping with last minute figures to the wiki, as well as proof-reading of its content.
Ph.D student and current iGEM advisor of the team from Bielefeld, Boas Pucker, for providing us with BioBricks created by former iGEM teams from Bielefeld.
Our iGEM HQ Representative, Traci Haddock-Angelli, for her general guidance and assistance in registering our meetup to the official iGEM meetup page.
iGEM HQ Representative and Lab Technician, Abigail Sison, for her help in registering our meetup to the official iGEM meetup page.
Stud.polyt Oliver Klinggaard, for helpful discussions on the implementation of a pan-tilt system and for providing os with his project report on the subject.
DTU BioBuilders, for hosting their 5th Annual Biobrick Workshop. And for attending our meetup.
The UNIK Copenhagen iGEM team, for hosting the Nordic Meetup. And for attending our meetup.
The TU-Delft iGEM team, for hosting the European Meetup.
Mimo Antabi, for adding our adverts to the university info-screens preceding the Danish Research Festival.
Allan Haurballe Madsen, for helping us with our appearance at the Danish Science Festival.
Outreach Coordinator and PhD Lise Junker Nielsen, for for helping us with the Danish Science Festival as well as with the visit from the Academy for Talented Youth. We would also like to thank her for providing us with iPads for laboratory use.
The Danish Science Festival, for having us at their annual event. We would also like to thank all the visitors who attended our booth.
The high schools Odense Technical gymnasium, Mulernes Legatskole and Academy for Talented Youth, for letting us present our project.
The UNF Biotech Camp, for having us present our project to the attending students.
The elementary school, Odense Friskole, for letting us present our project for their 8th grade students.
All former iGEM participants from SDU, for attending our preliminary presentation and giving us feedback before the Giant Jamboree.
The following groups and associations, for helping us develop our human practices: SP-Moulding, Borgernes Hus, Kommunens bygninger, Bolbro - områdefornyelse, Odense Byudvikling.
Matlab user Nezar, for an easy implementation of the gillespie algorithm into matlab.
Sponsors
Thanks to:
The Faculty of Science at University Southern Denmark, for providing us with the fundamental funds required for our participation in the iGEM competition, and for providing us with lab benches and essential equipment.
The Faculty of Health Sciences at University of Southern Denmark, for their much needed funding of our project.
Integrated DNA Technologies, for providing us with 20 kilobases of gBlock gene fragments.
SnapGene, for providing our team with memberships to their software during the duration of the competition.
PentaBase, for sponsoring us with 10.000 DKK worth of oligos and a further 10% discount.
New England Biolabs, for providing our team with a BioBrick® Assembly Kit, a Q5® High-Fidelity 2X Master Mix and a Quick-Load® Purple 2-Log DNA Ladder.
CO2NeutralWebsite, for attributing to green energy in our name, and thereby eliminating the carbon footprint our wiki makes.
Piktochart, for extending their student-offer to our mail aswell, providing us with easy access to great graphics.
Litterature
Articles
Vestergaard P, Rejnmark L, Mosekilde L. Osteoporosis is markedly underdiagnosed: a nationwide study from Denmark. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2005;16(2):134-41.
Vestergaard P, Rejnmark L, Mosekilde L. Osteoporosis is markedly underdiagnosed: a nationwide study from Denmark. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2005;16(2):134-41.
Vestergaard P, Rejnmark L, Mosekilde L. Osteoporosis is markedly underdiagnosed: a nationwide study from Denmark. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2005;16(2):134-41.
Vestergaard P, Rejnmark L, Mosekilde L. Osteoporosis is markedly underdiagnosed: a nationwide study from Denmark. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2005;16(2):134-41.
Websites
Vestergaard P, Rejnmark L, Mosekilde L. Osteoporosis is markedly underdiagnosed: a nationwide study from Denmark. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2005;16(2):134-41.
Vestergaard P, Rejnmark L, Mosekilde L. Osteoporosis is markedly underdiagnosed: a nationwide study from Denmark. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2005;16(2):134-41.
Vestergaard P, Rejnmark L, Mosekilde L. Osteoporosis is markedly underdiagnosed: a nationwide study from Denmark. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2005;16(2):134-41.
Vestergaard P, Rejnmark L, Mosekilde L. Osteoporosis is markedly underdiagnosed: a nationwide study from Denmark. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2005;16(2):134-41.
Books
Vestergaard P, Rejnmark L, Mosekilde L. Osteoporosis is markedly underdiagnosed: a nationwide study from Denmark. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2005;16(2):134-41.
Vestergaard P, Rejnmark L, Mosekilde L. Osteoporosis is markedly underdiagnosed: a nationwide study from Denmark. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2005;16(2):134-41.
Vestergaard P, Rejnmark L, Mosekilde L. Osteoporosis is markedly underdiagnosed: a nationwide study from Denmark. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2005;16(2):134-41.
Vestergaard P, Rejnmark L, Mosekilde L. Osteoporosis is markedly underdiagnosed: a nationwide study from Denmark. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2005;16(2):134-41.
Final Words
‘Thank you for your time, we hope you enjoyed our wiki and project’. Now you can sit back, relax, and be proud of your hard work. While you do so, feel free to enjoy some of the less serious pictures and snippets of stories from our amazing iGEM summer.