Line 95: | Line 95: | ||
<td colspan = 6 align=center valign=center> | <td colspan = 6 align=center valign=center> | ||
<p class="introduction"> | <p class="introduction"> | ||
− | + | We envision a portable,fully automated, fluidic device that can process biological sample in the field. We need to consider that every part of our device that gets in contact with our sample needs to be disposable and replaceable. Therefore we designed an replaceable fluidic chip that is controlled via an external device We want to use electrically controlled quake valves to precisely move fluids. We therefore need an supply of high pressure which can be providet by an bicycle wheel. | |
+ | |||
</p> | </p> | ||
+ | <p> | ||
+ | To control fluid flow in our final device we constructed pneumatic controlled water valves. We use electric powered air valves to control these so-called quake valves and build a circuit to control the air valves with a microcontroller. This enables us to precisely move fluids on our final device via a software interface. We constructed macroscopic quake valves with 3D printed negatives out of PDMS via soft lithography. The valves can be scaled down and are require now special equipment for their manufacture. A detailed protocol for manufacturing macroscopic fluidic chips with 3D Printed negatives can be found <a class="myLink" href="https://2017.igem.org/Team:Munich/Protocols">here</a> at the subitem "Soft lithography". | ||
+ | </p> | ||
<p> | <p> | ||
The valve is made of three PDMS layers. The lower layer carries the water channel with a sinus shaped dome at the valve position. The middle layer is just a thin and therefore elastic PDMS film. The upper layer carries the air channel which as a cylindric air reservoir at the valve position. The three layers are shown in the explosive drawing below. | The valve is made of three PDMS layers. The lower layer carries the water channel with a sinus shaped dome at the valve position. The middle layer is just a thin and therefore elastic PDMS film. The upper layer carries the air channel which as a cylindric air reservoir at the valve position. The three layers are shown in the explosive drawing below. |
Revision as of 14:37, 28 October 2017
| |||||||||||||||||||||||||||||||||||||||||||||
|