(Created page with " {{INSA-UPS_France/Links_new}} {{INSA-UPS_France/Style_new}} {{INSA-UPS_France/Header_new}} <html> <style> .main_title{ height:300px; font: 700 4em/1.5 'Quicksand', sans-...") |
|||
Line 1,486: | Line 1,486: | ||
<h1>Protein production<i class="fa fa-caret-down"></i><i class="fa fa-caret-up"></i></h1> | <h1>Protein production<i class="fa fa-caret-down"></i><i class="fa fa-caret-up"></i></h1> | ||
<div class="prot-inside"> | <div class="prot-inside"> | ||
− | <h2> | + | <h2>C8-CAI-1 production</h2> |
<p> | <p> | ||
− | + | <ol> | |
− | + | <li> Precultures LB: Inoculation on the morning of E. coli K-12 MG1655 - VhCqsA and E. coli K-12 MG1655 - pSB1C3 (no insert, used as negative control) on liquid culture LB (10 mL) with Cmp, at 37°C, 160 RPM.</li> | |
− | <h2> | + | <li> Culture on M9: On the morning, inoculation at OD(600nm) = 0.1 into 50 mL of M9 after 2 washing step (centrifuged 4000 g twice, resuspension of pellet in M9) with the glucose as carbon source (20 g/L) at 37°C, 160 RPM </li> |
+ | <li>At OD= 0.9, IPTG induction (0.5 mM). Growth overnight at 30 °C, 160 RPM</li> | ||
+ | <li> Samples are collected after a night of production. </li> | ||
+ | </ol> | ||
+ | </p> | ||
+ | <h2> Diacetyl production </h2> | ||
<p> | <p> | ||
− | + | <ol> | |
− | + | <li> Precultures LB: Inoculation on the morning of E. coli K-12 MG1655 - als and E. coli K-12 MG1655 - pSB1C3 (no insert, used as negative control) on liquid culture LB (10 mL) with Cmp, at 37°C, 160 RPM.</li> | |
− | < | + | <li> Precultures M9: On the evening, inoculation at OD(600nm) = 0.1 into 50 mL of M9 with the xylose as carbon source (30 mM) and previously prewarmed at 37°C. Growth overnight at 37°C, 160 RPM.</li> |
− | + | <li> Culture M9: Pyruvate is added to the medium (30 nM), and 50 mL flasks with or without citrate (2.2 g/L) were prepared. On the morning, precultures M9 were inoculated into 50 mL flasks with or without citrate at OD(600nm) = 0.1. Growth at 30°C, 160 RPM.</li> | |
− | + | <li> Culture M9: The culture is followed during two days. Samples are collected at the end of exponential growth phase (OD(600nm) between 1.4 and 1.9 depending on the culture)</li> | |
− | + | </ol> | |
+ | </p> | ||
</div> | </div> | ||
</section> | </section> | ||
</div> | </div> | ||
+ | |||
Revision as of 16:44, 29 October 2017
Protocols
Here are listed antibiotics concentration and media recipe used during the experiments.
For solid medium, add 15 g/L of agar.
Medium need to be autoclaved before use.
For solid medium, add 15 g/L of agar.
Medium need to be autoclaved before use.
EDTA and ZnSO4 are dissolved in 80 mL of mQ water and pH is adjusted to 6. Other compound are added and pH is maintained to 6. Once all compounds are dissolved, water is adjusted to 100 mL and pH to 4. Solution is filtered on 0.2 µm and stored at -4 ° C
pH is adjusted to 2 with HCl, solution is filtered (0.2 µm) and stored at -4 ° C. this product is light sensitive.
For 1 L of M9 media, all the following recipe are mixed together under sterile condition.
For solid medium, add 15 g/L of agar.
Medium need to be autoclaved before use. Glucose is added after autoclave.
For CMM 2X
For CMM glutamine:
Antibiotics are prepared as stock solution of 1000X to facilitate further utilization.
Materials
Procedure :
Unless specified, E.coli K12 MG 1655 was grown at 37°C at 160 rpm and 37 °C for solid media
Unless specified, V. harveyi BB120 and JMH626 were grown at 30°C and 160 RPM for liquid media and 30 °C for solid media.
Unless specified, P. pastoris was grown at 30°C and 160 RPM for liquid media and 30 °C for solid media
We used the Thermo Scientific Phusion High-Fidelity DNA Polymerase. Amplification of templates with high GC content, high secondary structure, low template concentrations or long amplicons may require further optimization.
All components should be mixed and centrifuged prior to use. It is important to add Phusion DNA Polymerase last in order to prevent any primer degradation caused by the 3´→ 5´ exonuclease activity.
Phusion DNA Polymerase may be diluted in 1X HF or GC Buffer just prior to use in order to reduce pipetting errors.
Use of high quality, purified DNA templates greatly enhances the success of PCR.
This protocol was extracted from Invitrogen PureLink® PCR Purification Kit. Refer to this protocol for troubleshooting. Use the PureLink® PCR Purification Kit to efficiently remove primers, dNTPs, enzymes, and salts from PCR products in less than 15 minutes. Use the kit with Binding Buffer High-Cutoff (B3) to remove primer dimers or short spurious PCR products. The purified PCR product is suitable for automated fluorescent DNA sequencing, restriction enzyme digestion, and cloning.
/!\ The PureLink® PCR Purification Kit buffers contain guanidine hydrochloride and isopropanol. Always wear a laboratory coat, disposable gloves, and eye protection when handling buffers. /!\ Do not add bleach or acidic solutions directly to solutions containing guanidine hydrochloride or sample preparation waste because it forms reactive compounds and toxic gases when mixed with bleach or acids.
Follow the recommendations below to obtain the best results:
This protocol was elaborated thanks to the help of Anthony Henras.
10 μL of 0.02N NaOH / 1 PCR
Please, before doing your preparative gel, use one sample to make an analityc one !
This protocol is the classical one used for electrophoresis. - You can adapt the concentration of agar according to the length of your fragment 1% agar if the DNA fragments are big 2% agar if the DNA fragments are small (the bigger fragment are sticked together) - Adapt the volume of the gel 15 to 30 mL for small gels and 150 to 200 mL for big gels
This protocol was taken from the ThermoScientific GeneJET Plasmid Miniprep Kit. Safety: Both the Lysis Solution and the Neutralization Solution contain irritants. Wear gloves when handling these solutions.
Please see the NEB website for supporting information on this protocol.
Note: T4 DNA Ligase should be added last. The table shows a ligation using a molar ratio of 1:3 vector to insert for the indicated DNA sizes. Use NEB calculator to calculate molar ratios.
This protocol was given by Stéphanie. The aim is to make yourself Top10 competent cells.
This protocol was extracted from the protocol from NEB website.
Protocol from Lin-Cereghino, J., Wong, W., Xiong, S., Giang, W., Luong, L., Vu, J., Johnson, S. and Lin-Cereghino, G. (2005). Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris. BioTechniques, 38(1), pp.44-48.
This protocol is used to quantify C8-CAI-1 production by NMR spectroscopy.
Supernatant obtained by centrifugation of 50mL of total broth are freeze-dried, resuspended in 500µL of CDCl3, and spiked with 100 µL of TSP-d4 (1mM, in D2O) used as internal standard for quantification and as reference for chemical shifts. The resulting samples are analyzed at 280K by 1D 1H NMR on an Avance 800 MHz spectrometer (Bruker, Rheinstetten, Germany) equipped with a 5-mm z-gradient TPI probe, using a zgpr sequence with a 90° pulse of 7µs and a relaxation delay between scans of 5 s. A total of 64 scans were accumulated (128k data points with a spectral width of 10 ppm) after 4 dummy scans. All the spectra were acquired and processed on TopSpin 3.2 (Bruker).
This protocol is used to quantify diacetyl production by NMR spectroscopy.
Supernatant (500µL) obtained by filtration of total broth (Sartolon polyamide 0.2µm, Sartorius) are spiked with 100 µL of TSP-d4 (1mM, in D2O) used as internal standard for quantification and as reference for chemical shifts. The resulting samples are analyzed at 280K by 1D 1H NMR on an Avance 500 MHz spectrometer (Bruker, Rheinstetten, Germany) equipped with a 5-mm z-gradient BBI probe, using a zgpr sequence for water suppression with a 90° pulse of 7µs and a relaxation delay between scans of 5 s. A total of 64 scans were accumulated (128k data points with a spectral width of 10 ppm) after 4 dummy scans. All the spectra were acquired and processed on TopSpin 3.2 (Bruker).
This protocol is based on the Experimental Procedure provided in the following publication:
Ng W-L, Perez LJ, Wei Y, Kraml C, Semmelhack MF & Bassler BL (2011). “Signal production and detection specificity in Vibrio CqsA/CqsS quorum-sensing systems: Vibrio quorum-sensing systems.” Molecular Microbiology 79 1407–1417. https://www.ncbi.nlm.nih.gov/pubmed/21219472
1st day.
Liquid precultures of E. coli
Liquid precultures of V. harveyi
2nd day.
Expression cultures of E. coli
Expression culture of V. harveyi BB120
Expression culture of V. harveyi JMH626
3rd day
4 days of experimentations: start the culture in liquid media on monday ! The construction you want to conjugate must be into the conjugative plasmid.
Plates
Strains
Other
Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
RT reactions using total RNAs extracted from Pichia pastoris cells transformed with plasmids pPIC-DNY15 or pPIC (empty vector).
Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
Medium and antibiotics
Introduction
LB medium
Tryptone
10 g/L
Yeast extract
5 g/L
NaCl
10 g/L
Water
Up to 1 L
LM medium
Tryptone
10 g/L
Yeast extract
5 g/L
NaCl
20 g/L
Water
Up to 1 L
M9 medium
5X Salts
For 1 L of final solution
[Final] in M9
Na2, H2PO4, 12 H2O
90 g
18 g/L
KH2PO4
15.65 g
3.03 g/L
NaCl
2.5 g
0.5 g/L
NH4Cl
10.55 g
2.11 g/L
MgSO4 1M
For 50 mL of final solution
[Final] in M9
MgSO4
12.3 g
0.49 g/L
CaCl2 0.01M
For 50 ùL of final solution
[Final] in M9
CaCl2
0.073 g
4.38 mg/L
1000X Salts
For 100 mL of final solution
[Final] in M9
Na2EDTA, 2 H2O
1.5 g
15 mg/L
ZnSO4, 7 H2O
0.45 g
4.5 mg/L
CoCl2, 6 H2O
0.03 g
0.3 mg/L
MnCl2, 4 H2O
1 g
10 mg/L
H3BO H3
0.1 g
1 mg/L
Na2MoO H4, 2 H2O
0.04 g
0.4 mg/L
FeSO4, 7 H2O
0.3 g
3 mg/L
CuSO4, 5 H2O
0.03 g
0.3 mg/L
100X thiamine
For 10 mL of final solution
[Final] in M9
Hypochloride thiamine>
0.1 g
0.1 g/L
Solution
Sterilisation
Volume
5X salts
autoclave
200 mL
MgSO4 1M
autoclave
2 mL
CaCl2 0.01M
autoclave
3 mL
1000X Salts
filtration (0.2 µm)
1 mL
100X thiamine
filtration (0.2 µm)
10 mL
Carbon source 40X
filtration (0.2 µm)
25 mL
Water
autoclave
759 mL
YPB medium
Baceriological peptone
20 g/L
Yeast extract
10 g/L
Glucose
20 g/L
Water
Up to 1 L
Complete Minimal Medium + glutamine
YNB without amino acid
50 mL
Glucose 10%
100 mL
Adenine 1 mg/mL
10 mL
Histidine 10 mg/mL
1 mL
Leucine 10 mg/mL
1 lL
Isoleucine 10 mg/mL
1 mL
Lysine 10 mg/mL
1.5 mL
Methionine 10 mg/mL
1 mL
Phenylalanine 10 mg/mL
2.5 mL
Tryptophane 5 mg/mL
2 mL
Tyrosine 0.5 mg/mL
30 mL
Uracile 2 mg/mL
5 mL
Water
45 mL
CMM 2X
75 mL
Glutamine 2%
15 mL
Water
60 mL
Antibiotics
Antibiotic
Abbreviation
Solvent
[1000X stock]
[Culture]
Ampicillin
Amp
water
50 mg/mL
50 µg/mL
Chloramphenicol
Cm
ethanol
25 mg/mL
25 µg/mL
Kanamycin
Kan
water
50 mg/mL
50 µg/mL
Streptomycin
Sm
water
50 mg/mL
50 µg/mL
Tetracycline
Tet
ethanol
50 mg/mL
50 µg/mL
Zeocin
Zeo
water
25 mg/mL
50 µg/mL
Cultivation conditions
E.coli
V. harveyi
P. pastoris
DNA manipulation
PCR
Materials
Procedure
Notes: Gently mix the reaction. Collect all liquid to the bottom of the tube by a quick spin if necessary
Component
50 μL
final concentration
Nuclease-free water
qs 50 μL
Buffer Phusion HF (5X)
10μL
1X
10 mM dNTPs
1 μL
200 μM
10 μM Forward primer
2.5 μL
0.5 μM
10 μM Reverse Primer
2.5 μL
0.5 μM
DNA template (10 ng/μL)
1 μL
10ng
Phusion DNA Polymerase
0.5 μL
1.0 U/0.5 μL of reaction
Step
Temperature
Time
Initial denaturation
98°C
45 sec
30 cycles
98°C
15 sec
55°C
30 sec
72°C
30 sec/kb
Final extension
72°C
5 min
Hold
4°C
hold
Parts
Length
Time of extension
pGAP-cOT2 / pGAP-DNY15 / pGAP-Leucro / YFP / DsRed
1 kb
30 sec
harveyi 1 / 2 / 3 / Vc and Vh
2 kb
60 sec
Odr10-cOT2
3 kb
90 sec
PCR purification
Introduction
Materials
Procedure
Buffer
Cat. no. K3100-01
Binding Buffer (B2)
10mL 100% isopropranol
Binding Buffer HC (B3)
2.3mL 100% isopropranol
Wash Bufer (W1)
64mL 96-100% isopropranol
Colony PCR
Introduction
Materials
Procedure
NOTE: mix on ice and put on the thermocycler directly after mixing
Component
Volume (μL)
Previous cell extract
2
Taq Pol Buffer
10
Forward oligo 100 10 μM
0.5
Reverse oligo 100 10 μM
0.5
dNTP
1
H2O
35.6
Taq DNA polymerase
0.4
95°C
5 min
35 cycles
95°C
30 sec
55°C
1 min
72°C
3 min
72°C
10 min
22°C
∞
Gel extraction of DNA
Procedure
Gel
Tube
Buffer L3 Volume
≤2% agarose
1.7 mL polypropylene
3:1 (i.e., 1.2 mL Buffer L3: 400 mg gel piece)
>2% agarose
5 mL polypropylene
6:1 (i.e., 2.4 mL Buffer L3: 400 mg gel piece)
Migration on agarose gel.
Introduction
Procedure
Miniprep.
Introduction
Procedure
Ligation
Introduction
Materials
Procedure
Component
Volume (µL)
10X T4 DNA Ligase Buffer
2
Vector DNA: 50 ng (0.020 pmol)
Insert DNA: 37.5 ng (0.060 pmol)
Nuclease-free water
17
T4 DNA Ligase
1
Total
20
Chemical transformation (RbCl method)
Introduction
Materials
Procedure
Media and Solutions
Preparation of Competent Cells
Transformation of competent cells
Add to 15 mL plastic round bottom tube on ice:
Testing competent cells
Enzymatic digestion of DNA.
Introduction
Materials
Procedure
Electroporation of P. pastoris.
Introduction
Materials
Procedure
NMR analysis
C8-CAI-1 analysis
Diacetyl analysis
Solid Bioluminescence assay
Introduction
Materials
Procedure
Triparental conjugation
Introduction
Materials
Procedure
Fluorescence microscopy
Introduction
Materials
Procedure
Protein production
C8-CAI-1 production
Diacetyl production
Plate reader
Introduction
Materials
Procedure
Semi quantitative RT PCR
RNA extraction
Culture of P.pastoris SMD1168H
Reverse transcriptions
qPCR reactions
On plate toxicity assay
Introduction
Materials
Procedure
Freeze drying
Introduction
Materials
Procedure