Line 99: | Line 99: | ||
<p> | <p> | ||
− | To achieve this we build so called Quake valves <sup><a class="myLink" href="#ref_1">1</a></sup> that are controlled via externally applied air pressure. To pump fluids we use an air balloon which is a super cheap supply for low pressure. To control our Quake valves we use a bicycle tube as a cheap and refillable supply for air pressure up to 5 bar. We use electrically powered air valves to control the Quake valves and build an electric circuit to control the air valves with a microcontroller. The valves can be easily downscaled and require no special equipment for their manufacture. We constructed the Quake valves by using 3D printed negative via soft lithography. A detailed protocol for manufacturing macroscopic fluidic chips with 3D Printed negatives can be found <a class="myLink" href="https://2017.igem.org/Team:Munich/Protocols">here</a> at the subitem "Soft lithography". | + | To achieve this we build so called Quake valves<sup><a class="myLink" href="#ref_1">1</a></sup> that are controlled via externally applied air pressure. To pump fluids we use an air balloon which is a super cheap supply for low pressure. To control our Quake valves we use a bicycle tube as a cheap and refillable supply for air pressure up to 5 bar. We use electrically powered air valves to control the Quake valves and build an electric circuit to control the air valves with a microcontroller. The valves can be easily downscaled and require no special equipment for their manufacture. We constructed the Quake valves by using 3D printed negative via soft lithography. A detailed protocol for manufacturing macroscopic fluidic chips with 3D Printed negatives can be found <a class="myLink" href="https://2017.igem.org/Team:Munich/Protocols">here</a> at the subitem "Soft lithography". |
</p> | </p> | ||
<h3>Function and Composition of a Quake Valve</h3> | <h3>Function and Composition of a Quake Valve</h3> |
Revision as of 21:53, 29 October 2017
| |||||||||||||||||||||||||||||||||||||||||||||||||||
|