Difference between revisions of "Team:XJTLU-CHINA/PeptideProduction"

(Created page with "{{XJTLU-CHINA}} <html> <head> <title>Peptide Production</title> <style type="text/css"> .title { background-image: linear-gradient(-225deg, #5D9FF...")
 
Line 16: Line 16:
 
             padding-bottom: 20px;
 
             padding-bottom: 20px;
 
             padding-top: 20px;
 
             padding-top: 20px;
 +
        }
 +
 +
        .fig>figure>figcaption {
 +
            color: grey;
 +
            font: bold;
 
         }
 
         }
 
     </style>
 
     </style>
Line 26: Line 31:
  
 
     <div class="container">
 
     <div class="container">
 +
        <div class="para">
 +
            <h1>Anti-Microbial Peptide</h1>
 +
            <p style="font-size:20px">
 +
                Anti-microbial peptide (AMP) is a part of the innate immune system of most multi-cellular organisms to counter microbial
 +
                infections (Margitta and Torsten, 1999). The cationic and amphipathic α-helix structure is the most wildly
 +
                conformation in those peptides but some hydrophobic α-helical peptides which possess antimicrobial activity.
 +
                This year we choose three different cationic antimicrobial peptides which encompass α-helical conformation
 +
                in our project.
 +
            </p>
 +
            <p style="font-size:20px">
 +
                Figure 1 shows the molecular mechanism of cationic AMPs α-helical structure. Most of cationic AMPs associate with lipid group
 +
                of bacteria membrane. The α-helical structure disrupt the packing of lipid molecules such that the membrane
 +
                becomes leaky (Rocca et al., 1999).
 +
            </p>
 +
        </div>
 +
 +
        <div class="fig" align="center">
 +
            <figure>
 +
                <img width="650px" src="https://static.igem.org/mediawiki/2017/9/99/Peptide_Production_1.png">
 +
                <figcaption>Figure 1: The interaction mechanism of cationic α-helical structure of Anti-microbial peptides. The α-helical
 +
                    structure insert into the bacteria Lipid bilayer in aqueous solution. Following insertion of the peptide,
 +
                    the bilayer membrane permeability may be varied.</figcaption>
 +
            </figure>
 +
        </div>
 +
 +
        <div class="para">
 +
            <h1>LL-37</h1>
 +
            <p style="font-size:20px">
 +
                LL-37 is the only cathelicidin-derived antimicrobial peptide found in humans (Dürr, Sudheendra and Ramamoorthy, 2006). Mature
 +
                LL-37 has 37 amino acid residues starting with two leucines (NH2-LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES-COOH).
 +
                The peptide is cleaved from a larger protein, hCAP-18 by extracellular proteolysis of proteinase 3 from the
 +
                C-terminal end of hCAP18 (Patricia, 2010; Ramos, Domingues, and Gama, 2011). The peptide composed of two
 +
                mainly parts: from residue Leu2 to Leu31 is α-helical structure (Fig 2b) and 6 residues form loop structure
 +
                (Fig 2a).
 +
            </p>
 +
            <p style="font-size:20px">
 +
                Ramos, Domingues, and Gama (2011) also reported that LL-37 has additional roles such as regulating the inflammatory response
 +
                to wound or infection sites, binding and neutralizing LPS, and wound closure apart from anti-microbial property
 +
                (Figure 2c).
 +
            </p>
 +
        </div>
 +
 +
        <div class="fig" align="center">
 +
            <figure>
 +
                <img width="650px" src="https://static.igem.org/mediawiki/2017/d/de/Peptide_Production_2a.png">
 +
                <figcaption>Figure 2a: LL-37 structure and residues(PDB 2K6O)</figcaption>
 +
            </figure>
 +
            <figure>
 +
                <img width="650px" src="https://static.igem.org/mediawiki/2017/2/29/Peptide_Production_2b.png">
 +
                <figcaption>Figure 2b: LL-37 secondary structure prediction (predicted by http://www.compbio.dundee.ac.uk/jpred/index.html
 +
                    ).
 +
                </figcaption>
 +
            </figure>
 +
            <figure>
 +
                    <img width="650px" src="https://static.igem.org/mediawiki/2017/3/3b/Peptide_Production_2c.png">
 +
                    <figcaption>Figure 2c: Biological functions of LL-37 (Ramos, Domingues, and Gama, 2011)</figcaption>
 +
                </figure>
 +
        </div>
 
     </div>
 
     </div>
 
</body>
 
</body>
  
 
</html>
 
</html>

Revision as of 08:57, 30 October 2017

Peptide Production

Peptide Production

Anti-Microbial Peptide

Anti-microbial peptide (AMP) is a part of the innate immune system of most multi-cellular organisms to counter microbial infections (Margitta and Torsten, 1999). The cationic and amphipathic α-helix structure is the most wildly conformation in those peptides but some hydrophobic α-helical peptides which possess antimicrobial activity. This year we choose three different cationic antimicrobial peptides which encompass α-helical conformation in our project.

Figure 1 shows the molecular mechanism of cationic AMPs α-helical structure. Most of cationic AMPs associate with lipid group of bacteria membrane. The α-helical structure disrupt the packing of lipid molecules such that the membrane becomes leaky (Rocca et al., 1999).

Figure 1: The interaction mechanism of cationic α-helical structure of Anti-microbial peptides. The α-helical structure insert into the bacteria Lipid bilayer in aqueous solution. Following insertion of the peptide, the bilayer membrane permeability may be varied.

LL-37

LL-37 is the only cathelicidin-derived antimicrobial peptide found in humans (Dürr, Sudheendra and Ramamoorthy, 2006). Mature LL-37 has 37 amino acid residues starting with two leucines (NH2-LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES-COOH). The peptide is cleaved from a larger protein, hCAP-18 by extracellular proteolysis of proteinase 3 from the C-terminal end of hCAP18 (Patricia, 2010; Ramos, Domingues, and Gama, 2011). The peptide composed of two mainly parts: from residue Leu2 to Leu31 is α-helical structure (Fig 2b) and 6 residues form loop structure (Fig 2a).

Ramos, Domingues, and Gama (2011) also reported that LL-37 has additional roles such as regulating the inflammatory response to wound or infection sites, binding and neutralizing LPS, and wound closure apart from anti-microbial property (Figure 2c).

Figure 2a: LL-37 structure and residues(PDB 2K6O)
Figure 2b: LL-37 secondary structure prediction (predicted by http://www.compbio.dundee.ac.uk/jpred/index.html ).
Figure 2c: Biological functions of LL-37 (Ramos, Domingues, and Gama, 2011)