Difference between revisions of "Team:XJTLU-CHINA/PeptideProduction"

Line 20: Line 20:
 
         .fig>figure>figcaption {
 
         .fig>figure>figcaption {
 
             color: grey;
 
             color: grey;
            font: bold;
 
 
             padding-left: 60px;
 
             padding-left: 60px;
 
             padding-right: 60px;
 
             padding-right: 60px;
Line 56: Line 55:
 
             <figure>
 
             <figure>
 
                 <img width="650px" src="https://static.igem.org/mediawiki/2017/9/99/Peptide_Production_1.png">
 
                 <img width="650px" src="https://static.igem.org/mediawiki/2017/9/99/Peptide_Production_1.png">
                 <figcaption>Figure 1: The interaction mechanism of cationic α-helical structure of Anti-microbial peptides. The α-helical
+
                 <figcaption><strong> 1: The interaction mechanism of cationic α-helical structure of Anti-microbial peptides. The α-helical
 
                     structure insert into the bacteria Lipid bilayer in aqueous solution. Following insertion of the peptide,
 
                     structure insert into the bacteria Lipid bilayer in aqueous solution. Following insertion of the peptide,
                     the bilayer membrane permeability may be varied.</figcaption>
+
                     the bilayer membrane permeability may be varied.</strong></figcaption>
 
             </figure>
 
             </figure>
 
         </div>
 
         </div>
Line 82: Line 81:
 
             <figure>
 
             <figure>
 
                 <img width="650px" src="https://static.igem.org/mediawiki/2017/d/de/Peptide_Production_2a.png">
 
                 <img width="650px" src="https://static.igem.org/mediawiki/2017/d/de/Peptide_Production_2a.png">
                 <figcaption>Figure 2a: LL-37 structure and residues(PDB 2K6O)</figcaption>
+
                 <figcaption><strong> 2a: LL-37 structure and residues(PDB 2K6O)</strong></figcaption>
 
             </figure>
 
             </figure>
 
             <figure>
 
             <figure>
 
                 <img width="650px" src="https://static.igem.org/mediawiki/2017/2/29/Peptide_Production_2b.png">
 
                 <img width="650px" src="https://static.igem.org/mediawiki/2017/2/29/Peptide_Production_2b.png">
                 <figcaption>Figure 2b: LL-37 secondary structure prediction (predicted by http://www.compbio.dundee.ac.uk/jpred/index.html
+
                 <figcaption><strong>Figure 2b: LL-37 secondary structure prediction (predicted by http://www.compbio.dundee.ac.uk/jpred/index.html
 
                     ).
 
                     ).
                 </figcaption>
+
                 </strong></figcaption>
 
             </figure>
 
             </figure>
 
             <figure>
 
             <figure>
 
                     <img width="650px" src="https://static.igem.org/mediawiki/2017/3/3b/Peptide_Production_2c.png">
 
                     <img width="650px" src="https://static.igem.org/mediawiki/2017/3/3b/Peptide_Production_2c.png">
                     <figcaption>Figure 2c: Biological functions of LL-37 (Ramos, Domingues, and Gama, 2011)</figcaption>
+
                     <figcaption><strong> 2c: Biological functions of LL-37 (Ramos, Domingues, and Gama, 2011)</strong></figcaption>
 
                 </figure>
 
                 </figure>
 
         </div>
 
         </div>

Revision as of 09:01, 30 October 2017

Peptide Production

Peptide Production

Anti-Microbial Peptide

Anti-microbial peptide (AMP) is a part of the innate immune system of most multi-cellular organisms to counter microbial infections (Margitta and Torsten, 1999). The cationic and amphipathic α-helix structure is the most wildly conformation in those peptides but some hydrophobic α-helical peptides which possess antimicrobial activity. This year we choose three different cationic antimicrobial peptides which encompass α-helical conformation in our project.

Figure 1 shows the molecular mechanism of cationic AMPs α-helical structure. Most of cationic AMPs associate with lipid group of bacteria membrane. The α-helical structure disrupt the packing of lipid molecules such that the membrane becomes leaky (Rocca et al., 1999).

1: The interaction mechanism of cationic α-helical structure of Anti-microbial peptides. The α-helical structure insert into the bacteria Lipid bilayer in aqueous solution. Following insertion of the peptide, the bilayer membrane permeability may be varied.

LL-37

LL-37 is the only cathelicidin-derived antimicrobial peptide found in humans (Dürr, Sudheendra and Ramamoorthy, 2006). Mature LL-37 has 37 amino acid residues starting with two leucines (NH2-LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES-COOH). The peptide is cleaved from a larger protein, hCAP-18 by extracellular proteolysis of proteinase 3 from the C-terminal end of hCAP18 (Patricia, 2010; Ramos, Domingues, and Gama, 2011). The peptide composed of two mainly parts: from residue Leu2 to Leu31 is α-helical structure (Fig 2b) and 6 residues form loop structure (Fig 2a).

Ramos, Domingues, and Gama (2011) also reported that LL-37 has additional roles such as regulating the inflammatory response to wound or infection sites, binding and neutralizing LPS, and wound closure apart from anti-microbial property (Figure 2c).

2a: LL-37 structure and residues(PDB 2K6O)
Figure 2b: LL-37 secondary structure prediction (predicted by http://www.compbio.dundee.ac.uk/jpred/index.html ).
2c: Biological functions of LL-37 (Ramos, Domingues, and Gama, 2011)