Zhiling Zhou (Talk | contribs) |
Zhiling Zhou (Talk | contribs) |
||
Line 1: | Line 1: | ||
+ | |||
<html lang="zh-CN"> | <html lang="zh-CN"> | ||
− | <head> | + | <head> |
+ | |||
+ | |||
+ | <link href="https://2017.igem.org/Zju/css/bootstrap?action=raw&ctype=text/css" rel="stylesheet" media="screen" /> | ||
+ | <link href="https://2017.igem.org/Zju/css/bootstraptheme?action=raw&ctype=text/css" rel="stylesheet" id="bs-theme-stylesheet"> | ||
+ | <link href='https://2017.igem.org/Team:ZJU-China/cs/font?action=raw&ctype=text/css' rel='stylesheet' type='text/css'> | ||
+ | <link href="https://2017.igem.org/Zju/css/docs/min?action=raw&ctype=text/css" rel="stylesheet" type="text/css"/> | ||
+ | <link href="https://2017.igem.org/Zju/css/doc-style?action=raw&ctype=text/css" rel="stylesheet"> | ||
+ | <link href="https://2017.igem.org/Zju/css/responsive/min?action=raw&ctype=text/css" rel="stylesheet"> | ||
− | + | <script> | |
− | + | var _hmt = _hmt || []; | |
− | + | </script> | |
− | + | <link rel="stylesheet" href="../css/doc-style.css"> | |
− | + | </head> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | </head> | + | |
<style> | <style> | ||
− | + | /*Override default CSS*/ | |
− | + | #sideMenu, #top_title {display:none;} | |
− | + | #content { padding:0px; width:100%; margin-top:-7px; margin-left:0px;background-color: transparent;} | |
− | + | /* set all basic objects to neutral formatting*/ | |
− | + | html, body, div, span, applet, object, iframe, h1, h2, h3, h4, h5, h6, p, blockquote, pre, a, abbr, acronym, address, big, cite, code, del, dfn, em, font, img, ins, kbd, q, s, samp, small, strike, strong, sub, sup, tt, var, b, u, i, center, dl, dt, dd, ol, ul, li, fieldset, form, label, legend, caption { | |
− | + | margin: 0; | |
− | + | padding: 0; | |
− | + | border: 0; | |
− | + | outline: 0; | |
− | + | font-size: 100%; | |
− | + | vertical-align: baseline; | |
− | + | background: transparent; | |
− | + | } | |
− | + | #globalWrapper { | |
− | + | margin: 0; | |
− | + | padding: 0; | |
− | + | border: 0; | |
− | + | outline: 0; | |
− | + | font-size: 100%; | |
− | + | vertical-align: baseline; | |
− | + | background: transparent; | |
− | + | } | |
− | + | /* set page to fill window*/ | |
− | + | html{ | |
− | + | height: 100%; | |
− | + | } | |
− | + | body { | |
− | + | min-height: 100%; | |
− | + | background-color: #FFFFFF; | |
− | + | } | |
− | + | #content_wrapper { | |
− | + | position: relative; | |
− | + | top: 0px; | |
− | + | left: 0px; | |
− | + | margin: 0px; | |
− | + | width: 100%; | |
− | + | height: 100%; | |
− | + | text-align:center; | |
− | + | background-color: #FFFFFF; | |
− | + | } | |
− | + | #content_wrapper p { | |
− | + | font-family: 'Tempus Sans ITC',Tahoma, Geneva, sans-serif; | |
− | + | } | |
− | + | #content_wrapper a { | |
− | + | color:#004789; | |
− | + | } | |
− | + | #footer { | |
− | + | position:absolute; | |
− | + | bottom: 0px; | |
− | + | left: 0px; | |
− | + | width: 100%; | |
− | + | margin-top: 0px; | |
− | + | margin-bottom: 20px; | |
− | + | background-color: #FFFFFF; | |
− | + | text-align: center; | |
− | + | } | |
− | + | .center { | |
− | + | width: 60%; | |
− | + | margin-top: 16px; | |
− | + | min-width: 500px; | |
− | + | padding-bottom:32px; | |
− | + | display: inline-block; | |
− | + | } | |
− | + | .TextContent { | |
− | + | text-align: left; | |
− | + | vertical-align: baseline; | |
− | + | font-size: 0.875em; | |
− | + | font-family:'Tempus Sans ITC', verdana, sans-serif; | |
− | + | } | |
− | + | .TextContent h1{ | |
− | + | text-align: center; | |
− | + | font-size: 1.5rem; | |
− | + | margin-bottom: 1em; | |
− | + | margin-top: 0.2em; | |
− | + | color: #3399ff; | |
− | + | font-family:'Tempus Sans ITC', verdana, sans-serif; | |
− | + | } | |
− | + | .TextContent h2{ | |
− | + | line-height: 1.6; | |
− | + | margin-bottom: 0em; | |
− | + | margin-top: 1em; | |
− | + | text-align: left; | |
− | + | font-family:'Tempus Sans ITC', verdana, sans-serif; | |
− | + | } | |
− | + | .TextContent p{ | |
− | + | margin-bottom: 1.2em; | |
− | + | font-family:'Tempus Sans ITC', verdana, sans-serif; | |
− | + | } | |
− | + | .Page_Wide { | |
− | + | width:100%; | |
− | + | } | |
− | + | .Quarter_Image { | |
− | + | width:25%; | |
− | + | max-height:250px; | |
− | + | float:left; | |
− | + | } | |
− | + | .Quarter_Image img { | |
− | + | display:block; | |
− | + | margin:auto; | |
− | + | max-height: 250px; | |
− | + | width: auto; | |
− | + | } | |
− | + | .SocialMediaIconWrapper { | |
− | + | width:100%; | |
− | + | } | |
− | + | .SocialMediaIcon { | |
− | + | width:4%; | |
− | + | height:auto; | |
− | + | margin-left:20px; | |
− | + | display: inline-block; | |
− | + | float:left; | |
− | + | } | |
− | + | .SocialMediaIcon img{ | |
− | + | max-width:100%; | |
− | + | height:auto | |
− | + | } | |
− | + | .TeamImage { | |
− | + | width:100%; | |
− | + | } | |
− | + | .TeamImage img { | |
− | + | max-width:100%; | |
− | + | height:auto | |
− | + | } | |
− | + | .sponsors { | |
− | + | width: 100%; | |
− | + | } | |
− | + | .sponsor_row { | |
− | + | width: 100%; | |
− | + | } | |
− | + | .sponsor_img { | |
− | + | width: 16.6666667%; | |
− | + | float:left; | |
− | + | } | |
− | + | .sponsor_img img{ | |
− | + | max-width:100%; | |
− | + | height:auto | |
− | + | } | |
− | + | .clear { | |
− | + | clear:both; | |
− | + | } | |
− | + | .clear.extra_space { | |
− | + | height: 20px; | |
− | + | } | |
− | + | .line_divider { | |
− | + | border-top: 1px solid #d3d3d3; | |
− | + | width: 98%; | |
− | + | margin: auto; | |
− | + | } | |
− | + | .copyright{ | |
− | + | color: #888888; | |
− | + | font-size: 13px; | |
− | + | text-align: center !important; | |
− | + | } | |
− | + | .copyright a{ | |
− | + | color: #d2ebe3; | |
− | + | border-bottom: dotted 1px #a5d8c7; | |
− | + | } | |
+ | .PP { | ||
+ | font-family: georgia; | ||
+ | font-size: 20px; | ||
+ | font-weight: 100; | ||
+ | text-align: left; | ||
+ | } | ||
− | + | /*文中自定义*/ | |
− | + | .CuteButton:active { | |
− | + | -webkit-box-shadow: 0px 3px 0px rgba(0,52,63,1), 0px 3px 6px rgba(0,0,0,.9); | |
− | + | -moz-box-shadow: 0px 3px 0px rgba(0,52,63,1), 0px 3px 6px rgba(0,0,0,.9); | |
− | + | box-shadow: 0px 3px 0px rgba(0,52,63,1), 0px 3px 6px rgba(0,0,0,.9); | |
− | + | position: relative; | |
− | + | top: 6px; | |
− | + | } | |
− | + | ||
− | + | .YellowCB { | |
− | + | background-color: rgba(254,196,62,1); | |
− | + | -webkit-box-shadow: 0px 9px 0px rgba(245,253,202,1), 0px 9px 25px rgba(0,0,0,.7); | |
− | + | -moz-box-shadow: 0px 9px 0px rgba(245,253,202,1), 0px 9px 25px rgba(0,0,0,.7); | |
− | + | box-shadow: 0px 9px 0px rgba(245,253,202,1), 0px 9px 25px rgba(0,0,0,.7); | |
− | + | } | |
− | + | ||
− | + | ||
− | + | .GreenCB { | |
− | + | background-color: rgba(25,148,117,1); | |
− | + | -webkit-box-shadow: 0px 9px 0px rgba(4,77,34,1), 0px 9px 25px rgba(0,0,0,.7); | |
− | + | -moz-box-shadow: 0px 9px 0px rgba(4,77,34,1), 0px 9px 25px rgba(0,0,0,.7); | |
− | + | box-shadow: 0px 9px 0px rgba(4,77,34,1), 0px 9px 25px rgba(0,0,0,.7); | |
− | + | } | |
− | + | .SmallCB { | |
− | + | font-size: 1.5em; | |
− | + | margin-left: 2px; | |
− | + | padding: 2px 10px ; | |
− | + | width: 100px; | |
− | + | } | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | .ArticleHead{ | ||
+ | font-family: 'Tempus Sans ITC',georgia !important; | ||
+ | font-size: 40px !important; | ||
+ | font-weight: 800 !important; | ||
+ | color: #56A36C !important; | ||
+ | text-align: center !important; | ||
+ | margin-bottom: 0 !important; | ||
+ | /*margin-top: .6em !important;*/ | ||
+ | } | ||
+ | .H3Head{ | ||
+ | font-family: 'Tempus Sans ITC',georgia !important; | ||
+ | color: #FEC43E !important; | ||
+ | font-size: 25px !important; | ||
+ | font-weight: 400 !important; | ||
+ | text-align: left !important; | ||
+ | margin-bottom: 0 !important; | ||
+ | margin-top:.6em !important; | ||
+ | } | ||
− | + | .PP{ | |
− | + | font-family:Tahoma, Geneva, sans-serif !important; | |
− | + | font-size: 20px !important; | |
− | + | font-weight: 100 !important; | |
− | + | text-align: left !important; | |
− | + | } | |
− | + | ||
− | + | ||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | .Retract{ | |
− | + | padding-left: 50px; | |
− | + | } | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
+ | .GreenAH{ | ||
+ | color: #56A36C; | ||
+ | } | ||
− | + | .YellowAH{ | |
− | + | color: #FEC43E; | |
− | + | } | |
− | + | .contentLi{ | |
− | + | margin:0; | |
− | + | font-size:17px; | |
+ | line-height: 27px; | ||
+ | padding-bottom: 20px; | ||
+ | color: #111111; | ||
+ | } | ||
− | + | .grayTable | |
− | + | { | |
− | + | background-color: #979797; | |
+ | } | ||
− | + | .yellowTable | |
− | + | { | |
− | + | background-color: #CD9B1D; | |
− | + | color: #000; | |
− | + | } | |
− | + | ||
− | + | ||
− | + | h2{ | |
− | + | font-family: 'Tempus Sans ITC'; | |
− | + | font-weight: 500; | |
− | + | font-size: 35px; | |
+ | text-align: left; | ||
+ | } | ||
− | + | h3{ | |
− | + | font-family: 'Tempus Sans ITC'; | |
− | + | font-weight: 500; | |
− | + | font-size: 32px; | |
− | + | text-align: left; | |
+ | } | ||
− | + | h4{ | |
− | + | font-family: 'Tempus Sans ITC'; | |
− | + | font-weight: 500; | |
− | + | font-size: 28px; | |
− | + | text-align: left; | |
− | + | } | |
− | + | h5{ | |
− | + | font-family: 'Tempus Sans ITC'; | |
− | + | font-weight: 500; | |
− | + | font-size: 25px; | |
− | + | text-align: left; | |
− | + | } | |
− | + | p{ | |
− | + | margin:0; | |
− | + | font-size:17px; | |
− | + | line-height: 30px; | |
− | + | /*padding-bottom: 20px;*/ | |
− | + | color: #111111; | |
+ | } | ||
− | + | .bs-docs-sidenav | |
− | + | { | |
− | + | font-family:Tahoma, Geneva, sans-serif !important; | |
− | + | font-size: 20px !important; | |
− | + | font-weight: 100 !important; | |
− | + | text-align: left !important; | |
+ | } | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | .textli li{ | |
− | + | font-family:Tahoma, Geneva, sans-serif !important; | |
− | + | font-size: 20px !important; | |
− | + | font-weight: 100 !important; | |
− | + | text-align: left !important; | |
− | + | } | |
− | + | ||
+ | .nonStyleTable | ||
+ | { | ||
+ | background: transparent !important; | ||
+ | border:none !important; | ||
+ | } | ||
− | + | .textimg{ | |
− | + | /*width:50%;*/ | |
− | + | /*margin-top: 20px;*/ | |
− | + | /*padding-bottom: 20px;*/ | |
− | + | text-align: center; | |
− | + | } | |
− | |||
− | |||
− | |||
− | |||
− | + | ||
− | + | /*老姜要好看一点的表格*/ | |
− | + | .tableNice thead, .tableNice tr { | |
− | + | text-align: center; | |
− | + | border-top-width: 1px; | |
− | + | border-top-style: solid; | |
− | } | + | border-top-color: #b1c6d9; |
− | /*文中自定义*/ | + | } |
+ | .tableNice { | ||
+ | width: auto; | ||
+ | margin-left: 30%; | ||
+ | border-bottom-width: 1px; | ||
+ | border-bottom-style: solid; | ||
+ | border-bottom-color: #D0E9FF; | ||
+ | } | ||
+ | |||
+ | /* Padding and font style */ | ||
+ | .tableNice td, .tableNice th { | ||
+ | padding: 5px 10px; | ||
+ | font-size: 12px; | ||
+ | |||
+ | color: #00343F; | ||
+ | } | ||
+ | |||
+ | /* Alternating background colors */ | ||
+ | .tableNice tr:nth-child(even) { | ||
+ | background: transparent; | ||
+ | |||
+ | } | ||
+ | .tableNice tr:nth-child(odd) { | ||
+ | background: #EBFFFF; | ||
+ | } | ||
+ | |||
+ | .tableOuter | ||
+ | { | ||
+ | align: center; | ||
+ | text-align: left; | ||
+ | } | ||
+ | /*老姜要好看一点的表格止*/ | ||
+ | /*文中自定义*/ | ||
</style> | </style> | ||
− | <body id="page-top" data-spy="scroll" data-target=".navbar-fixed-top"> | + | <body id="page-top" data-spy="scroll" data-target=".navbar-fixed-top"> |
− | <div class="page-loader"></div> | + | <div class="page-loader"></div> |
− | <!-- Docs master nav --> | + | <!-- Docs master nav --> |
− | <!-- <h1><a class="navbar-brand" href="index.html">MuMei Lab</a></h1> --> | + | <!-- <h1><a class="navbar-brand" href="index.html">MuMei Lab</a></h1> --> |
− | + | ||
+ | <div class="container"> | ||
<!-- header --> | <!-- header --> | ||
<div class="header-w3layouts"> | <div class="header-w3layouts"> | ||
Line 501: | Line 537: | ||
</div> | </div> | ||
− | <p | + | <p></p> |
− | + | <div style="margin-top:0;padding-top:0"> | |
− | + | <img src="https://static.igem.org/mediawiki/2017/6/61/ZJU_China_interlab_header.jpg" width="100%"> | |
− | <!-- | + | <!-- <img src="images/HP_temp/banner.jpg" width="100%"> --> |
− | + | </div> | |
− | + | ||
− | + | ||
<div style="width: 100%" class="container zjuContent"> | <div style="width: 100%" class="container zjuContent"> | ||
− | + | <div class="col-md-3"></div> | |
<div class="col-md-9" role="main"> | <div class="col-md-9" role="main"> | ||
− | + | <div class="bs-docs-section"> | |
+ | <h1 id="voc" class="ArticleHead GreenAH">VOC sensor</h1> | ||
− | + | <h2 id="overview" class="H2Head">Overview</h2> | |
− | + | <p class="PP">In our project, we are exploring a new way to sense the healthy condition of the crops which will further give this information(healthy or not) to bothhuman and <em>T.atroviride</em>, in order to take actions on time and achieve the goal of prevention in advance.Meanwhile,this method must can be conveniently used in varieties of plants.We finally built up the e-nose(electronic nose) system to sense the VOC(volatile organic compounds) emitted by the plants or related microorganisms.Afterwards,by machine learning method, we achieved a high accuracy rate of sensing the tobaccos that infected by <em>P.nicotianae</em>, namely, our device successfully smelled whether the plants were ill.</p> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | <h2 id="background" class="H2Head">Background</h2> | |
− | + | <p class="PP">Plants will release varieties of volatile organic compounds (VOC) to resist infected phytopathogens, which lead to a change of VOC around the plants<sup>[1]</sup>. Firstly, we verified the VOC differences between healthy tobaccos and <em>P.nicotianae</em> infected tobaccos by GC-MS.</p> | |
− | + | ||
− | + | <div class="imgdiv"><img class="textimg" style="width: 60% !important;" src="https://static.igem.org/mediawiki/2017/7/70/ZJU_China_VOCsensor_1.png"></div> | |
+ | <p class="capture">Fig.1: +title(Thanks for Hunan tobaccos bureau for providing this data)</p> | ||
+ | <p class="PP">We decided to use ten highly sensitive CMOS(Complementary Metal Oxide Semiconductor) gas detector to catch the VOC information(Adding an extra one afterwards), and every detector is sensitive to one kind or type of gas. It is important to note that e-nose can’t sense a specific VOC like mass spectrometers did, instead, it catch the overall characteristics of VOC as a "fingerprint".</p> | ||
− | + | <div class="imgdiv"><img class="textimg" style="width: 60% !important;" src="https://static.igem.org/mediawiki/2017/1/1c/ZJU_China_VOCsensor_2.jpg"></div> | |
+ | <p class="capture">Fig.2</p> | ||
− | + | <h2 id="exp" class="H2Head">Experimental Design</h2> | |
− | + | <p class="PP">1.e-nose build-up and gas path design</p> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | <table class="table"> | |
− | + | <tr> | |
− | + | <th class="yellowTable">Number</th> | |
− | + | <th class="yellowTable">Sensor Type</th> | |
− | + | <th class="yellowTable">Performance characteristics</th> | |
− | + | <th class="yellowTable">Minimum detection limit of related gas</th> | |
− | + | </tr> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
+ | <tr> | ||
+ | <th class="grayTable">a</th> | ||
+ | <td>IST-8000</td> | ||
+ | <td>Highly sensitive to all types of VOC</td> | ||
+ | <td>1 ppm</td> | ||
+ | </tr> | ||
− | + | <tr> | |
− | + | <th class="grayTable">b</th> | |
− | + | <td>TGS2600</td> | |
− | + | <td>Sensitive to cigarette smoke and cooking odors</td> | |
+ | <td>1 ppm</td> | ||
+ | </tr> | ||
− | + | <tr> | |
+ | <th class="grayTable">c</th> | ||
+ | <td>TGS2610</td> | ||
+ | <td>Sensitive to alkanes such as liquid gas propane butane, low sensitivity to alcohol</td> | ||
+ | <td>10 ppm</td> | ||
+ | </tr> | ||
− | + | <tr> | |
+ | <th class="grayTable">d</th> | ||
+ | <td>TGS2603</td> | ||
+ | <td>Sensitive to ammonia and sulfide gas</td> | ||
+ | <td>1 ppm</td> | ||
+ | </tr> | ||
− | + | <tr> | |
− | + | <th class="grayTable">e</th> | |
− | + | <td>MS1100</td> | |
− | + | <td>Highly Sensitive to aldehydes, toluene and organic solvents</td> | |
+ | <td>1 ppm</td> | ||
+ | </tr> | ||
− | + | <tr> | |
− | + | <th class="grayTable">f</th> | |
− | + | <td>TGS2611</td> | |
+ | <td>Sensitive to methane</td> | ||
+ | <td>10 ppm</td> | ||
+ | </tr> | ||
− | + | <tr> | |
+ | <th class="grayTable">g</th> | ||
+ | <td>TGS2602</td> | ||
+ | <td>Highly sensitive to all types of VOC</td> | ||
+ | <td>1 ppm</td> | ||
+ | </tr> | ||
− | + | <tr> | |
− | + | <th class="grayTable">h</th> | |
− | + | <td>MQ-7</td> | |
− | + | <td>Sensitive to carbon monoxide and other gases</td> | |
+ | <td>10 ppm</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <th class="grayTable">i</th> | ||
+ | <td>MQ-135</td> | ||
+ | <td>Sensitive to ammonia,sulfide and benzene vapor, or harmful smokes</td> | ||
+ | <td>10 ppm</td> | ||
+ | </tr> | ||
− | + | <tr> | |
− | + | <th class="grayTable">j</th> | |
+ | <td>TGS822</td> | ||
+ | <td>Sensitive to alcohol and organic solvents</td> | ||
+ | <td>50 ppm</td> | ||
+ | </tr> | ||
+ | |||
+ | <tr> | ||
+ | <th class="grayTable">k(substitute b later)</th> | ||
+ | <td>iAQ-core</td> | ||
+ | <td>Extremely high sensitivity to all types of VOC and can output the equivalent concentration directly</td> | ||
+ | <td>125 ppb</td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | <p class="capture">Table1: Highly sensitive CMOS gas detectors we used(All of these detectors have long-term stability)</p> | ||
+ | |||
+ | <div class="imgdiv col-md-6 col-sm-6"><img class="textimg" style="height: 250px !important; width: auto !important;" src="https://static.igem.org/mediawiki/2017/e/ec/ZJU_China_VOCsensor_3.png"></div> | ||
+ | <div class="imgdiv col-md-6 col-sm-6"><img class="textimg" style="height: 250px !important; width: auto !important;" src="https://static.igem.org/mediawiki/2017/9/90/ZJU_China_VOCsensor_30.png"></div> | ||
+ | <p class="capture">Fig.3</p> | ||
+ | <p class="PP">See more details about the device in the <a class="cite" href="https://2017.igem.org/Team:ZJU-China/Hardware">Hardware page.</a></p> | ||
+ | |||
+ | |||
+ | <h2 id="fullauto" class="H2Head">Full automatic headspace sampling and standardized testing</h2> | ||
+ | <p class="PP">We employed full automatic headspace sampling to detect the VOC:Taking six basins of tobaccos infected by <em>P.nicotianae</em> for 5 days and another six basins of healthy tobaccos as a control, put them into a box and sealed it. Started to measure the VOC after 30 minutes.In addition, the device is controlled by Arduino Single Chip Microcomputer(SCM), in order to achieve full automatic measure. We standardized the testing steps for later comparison between every group data.Click here to see more information about the device.</p> | ||
+ | |||
+ | 图:测量流程 | ||
+ | <div class="imgdiv"><img class="textimg" style="width: 60% !important;" src=" "></div> | ||
+ | <p class="capture">Fig.4 The standardized measuring steps</p> | ||
+ | |||
+ | <p class="PP">There is median filter algorithm in SCM to remove the extremums. We firstly preprocessed the data: identified and removed the base line values, after that,read the response value on 1min, 2 min, and the average value and maximum value of the response curve. We have measured 17 groups data for healthy tobaccos and 18 groups for infected ones.Click here to see our raw data and preprocessed data.</p> | ||
+ | |||
+ | 图:响应曲线 | ||
+ | <div class="imgdiv"><img class="textimg" style="width: 60% !important;" src="https://static.igem.org/mediawiki/2017/d/de/ZJU_China_VOCsensor_5.png"></div> | ||
+ | <p class="capture">Fig.5</p> | ||
+ | |||
+ | <p class="PP">After collecting the data from every detector, we applied algorithm to do data classification. We employed Decision Tree, Multi-Layer Perception algorithm, and Leaner Model, to achieve more than 85% accuracy rate of sensing the intruding <em>P.nicotianae</em> on tobaccos. Moreover based on the result of the modeling, four CMOS detectors were enough to make a judgement for tobaccos healthy condition, which means we can further reduce the cost of our device.Click here to see the details of our modeling process.</p> | ||
+ | |||
+ | <h2 id="conclusions" class="H2Head">Conclusions</h2> | ||
+ | <p class="PP">Our method achieved more than 85% accuracy rate of sensing the infected tobaccos, and only four detectors were necessary for our devices making such judgments. Moreover, the VOC device can link to the main engine which will send the data to PC port. We also built the corresponding web app to receive these data to achieve the real time monitoring, in the future we plan to make the web app possible for showing the healthy condition of plants real time.</p> | ||
+ | <p class="PP">On the other hand, the sensitivity of our device is still limited in real application, it can’t fit different field conditions. Therefore, we came up with a plan to solve this problem, <a class="cite" href="https://2017.igem.org/Team:ZJU-China/Hardware/Improvements">click here to this improvement</a>.</p> | ||
+ | |||
+ | <h2 id="ref" class="H2Head">Reference</h2> | ||
+ | <p class="ref">[1]Dicke M, Loon J J A V, Soler R. Chemical complexity of volatiles from plants induced by multiple attack[J]. Nature Chemical Biology, 2009, 5(5):317-324.</p> | ||
</div> | </div> | ||
+ | |||
+ | |||
+ | |||
+ | <!-- 右侧监听开始 --> | ||
+ | <div class="col-md-3 disappear-on-top" role="complementary"> | ||
+ | <nav style="position: fixed; top: 100px ; left:50px; " class="bs-docs-sidebar hidden-print hidden-xs hidden-sm"> | ||
+ | <ul class="nav bs-docs-sidenav shorterli"> | ||
+ | <li><a href="#introduction">Introduction</a></li> | ||
+ | <li><a href="#background">Background</a></li> | ||
+ | <li><a href="#exp">Experimental Design</a></li> | ||
+ | <li><a href="#fullauto">Sample and Test</a></li> | ||
+ | <li><a href="#conclusions">Conclusions</a></li> | ||
+ | <li><a href="#ref">Reference</a></li> | ||
+ | </ul> | ||
+ | |||
+ | <a class="back-to-top" href="#top"> | ||
+ | <!-- <i class="fa fa-arrow-up nav_icon"></i> --> | ||
+ | <img style="width: 50px;" src="https://static.igem.org/mediawiki/2017/d/da/ZJU_China_UP.png"> | ||
+ | </a> | ||
+ | |||
+ | |||
+ | </nav> | ||
+ | </div> | ||
+ | |||
+ | </div> | ||
</div> | </div> | ||
<!-- 右侧监听结束 --> | <!-- 右侧监听结束 --> | ||
<!-- footer开始 --> | <!-- footer开始 --> | ||
<div class="footer" style="background-color: #000000"> | <div class="footer" style="background-color: #000000"> | ||
− | + | <div class="copyright container text-center"> | |
− | + | <p><br></p> | |
− | + | <p class="copyright">Copyright © 2017 ZJU-IGEM | <a href="http://www.zju.edu.cn/">Zhejiang University</a> |</p> | |
− | + | <p><br></p> | |
− | + | </div> | |
</div> | </div> | ||
<!-- footer结束 --> | <!-- footer结束 --> | ||
Line 615: | Line 723: | ||
<script src="https://code.jquery.com/jquery-2.1.4.min.js"></script> | <script src="https://code.jquery.com/jquery-2.1.4.min.js"></script> | ||
− | <!--script src="js/bootstrap.min.js"></script--> | + | <!--script src="js/bootstrap.min.js"></script--> |
− | <script src="https://static.igem.org/mediawiki/2017/8/85/ZJUChina_js_docsmin.txt"></script> | + | <script src="https://static.igem.org/mediawiki/2017/8/85/ZJUChina_js_docsmin.txt"></script> |
− | <!--script src="js/button.js"></script--> | + | <!--script src="js/button.js"></script--> |
− | <script src="https://static.igem.org/mediawiki/2017/2/22/ZJUChina_bootstrap.min.txt"></script> | + | <script src="https://static.igem.org/mediawiki/2017/2/22/ZJUChina_bootstrap.min.txt"></script> |
− | <script src="https://static.igem.org/mediawiki/2017/3/32/ZJUChina_docs.min.txt"></script> | + | <script src="https://static.igem.org/mediawiki/2017/3/32/ZJUChina_docs.min.txt"></script> |
− | <script src="https://static.igem.org/mediawiki/2017/e/e0/ZJUChina_button.txt"></script> | + | <script src="https://static.igem.org/mediawiki/2017/e/e0/ZJUChina_button.txt"></script> |
− | <script src=" | + | <!--<script src="js/scrolling-nav.js"></script>--> |
− | + | <script src="https://2017.igem.org/Zju/js/scrollingnav?action=raw&ctype=text/javascript"></script> | |
− | <script src="https://static.igem.org/mediawiki/2017/c/c0/ZJUChina_txtSmoothScroll.min.txt"></script> | + | <script src="https://static.igem.org/mediawiki/2017/c/c0/ZJUChina_txtSmoothScroll.min.txt"></script> |
− | </body> | + | </body> |
</html> | </html> |
Revision as of 17:45, 30 October 2017
VOC sensor
Overview
In our project, we are exploring a new way to sense the healthy condition of the crops which will further give this information(healthy or not) to bothhuman and T.atroviride, in order to take actions on time and achieve the goal of prevention in advance.Meanwhile,this method must can be conveniently used in varieties of plants.We finally built up the e-nose(electronic nose) system to sense the VOC(volatile organic compounds) emitted by the plants or related microorganisms.Afterwards,by machine learning method, we achieved a high accuracy rate of sensing the tobaccos that infected by P.nicotianae, namely, our device successfully smelled whether the plants were ill.
Background
Plants will release varieties of volatile organic compounds (VOC) to resist infected phytopathogens, which lead to a change of VOC around the plants[1]. Firstly, we verified the VOC differences between healthy tobaccos and P.nicotianae infected tobaccos by GC-MS.
Fig.1: +title(Thanks for Hunan tobaccos bureau for providing this data)
We decided to use ten highly sensitive CMOS(Complementary Metal Oxide Semiconductor) gas detector to catch the VOC information(Adding an extra one afterwards), and every detector is sensitive to one kind or type of gas. It is important to note that e-nose can’t sense a specific VOC like mass spectrometers did, instead, it catch the overall characteristics of VOC as a "fingerprint".
Fig.2
Experimental Design
1.e-nose build-up and gas path design
Number | Sensor Type | Performance characteristics | Minimum detection limit of related gas |
---|---|---|---|
a | IST-8000 | Highly sensitive to all types of VOC | 1 ppm |
b | TGS2600 | Sensitive to cigarette smoke and cooking odors | 1 ppm |
c | TGS2610 | Sensitive to alkanes such as liquid gas propane butane, low sensitivity to alcohol | 10 ppm |
d | TGS2603 | Sensitive to ammonia and sulfide gas | 1 ppm |
e | MS1100 | Highly Sensitive to aldehydes, toluene and organic solvents | 1 ppm |
f | TGS2611 | Sensitive to methane | 10 ppm |
g | TGS2602 | Highly sensitive to all types of VOC | 1 ppm |
h | MQ-7 | Sensitive to carbon monoxide and other gases | 10 ppm |
i | MQ-135 | Sensitive to ammonia,sulfide and benzene vapor, or harmful smokes | 10 ppm |
j | TGS822 | Sensitive to alcohol and organic solvents | 50 ppm |
k(substitute b later) | iAQ-core | Extremely high sensitivity to all types of VOC and can output the equivalent concentration directly | 125 ppb |
Table1: Highly sensitive CMOS gas detectors we used(All of these detectors have long-term stability)
Fig.3
See more details about the device in the Hardware page.
Full automatic headspace sampling and standardized testing
We employed full automatic headspace sampling to detect the VOC:Taking six basins of tobaccos infected by P.nicotianae for 5 days and another six basins of healthy tobaccos as a control, put them into a box and sealed it. Started to measure the VOC after 30 minutes.In addition, the device is controlled by Arduino Single Chip Microcomputer(SCM), in order to achieve full automatic measure. We standardized the testing steps for later comparison between every group data.Click here to see more information about the device.
图:测量流程Fig.4 The standardized measuring steps
There is median filter algorithm in SCM to remove the extremums. We firstly preprocessed the data: identified and removed the base line values, after that,read the response value on 1min, 2 min, and the average value and maximum value of the response curve. We have measured 17 groups data for healthy tobaccos and 18 groups for infected ones.Click here to see our raw data and preprocessed data.
图:响应曲线Fig.5
After collecting the data from every detector, we applied algorithm to do data classification. We employed Decision Tree, Multi-Layer Perception algorithm, and Leaner Model, to achieve more than 85% accuracy rate of sensing the intruding P.nicotianae on tobaccos. Moreover based on the result of the modeling, four CMOS detectors were enough to make a judgement for tobaccos healthy condition, which means we can further reduce the cost of our device.Click here to see the details of our modeling process.
Conclusions
Our method achieved more than 85% accuracy rate of sensing the infected tobaccos, and only four detectors were necessary for our devices making such judgments. Moreover, the VOC device can link to the main engine which will send the data to PC port. We also built the corresponding web app to receive these data to achieve the real time monitoring, in the future we plan to make the web app possible for showing the healthy condition of plants real time.
On the other hand, the sensitivity of our device is still limited in real application, it can’t fit different field conditions. Therefore, we came up with a plan to solve this problem, click here to this improvement.
Reference
[1]Dicke M, Loon J J A V, Soler R. Chemical complexity of volatiles from plants induced by multiple attack[J]. Nature Chemical Biology, 2009, 5(5):317-324.