Ryancoates (Talk | contribs) |
|||
Line 15: | Line 15: | ||
<br> | <br> | ||
− | <p align="left" style="background-color:#ffffff"> <br><br> The <b> Cardiff Wales 2017 iGEM team</b> had two main goals:</br><br>> To develop new tools in the <a href="https://2016.igem.org/Resources/Plant_Synthetic_Biology/PhytoBricks">Phytobrick</a> standard that can be used for future studies using plant gene expression. </br><br>> To use the <i> Nicotiana benthamiana </i> leaf expression system to generate high levels of a protein that might be used as a therapeutic for <a href="https://en.wikipedia.org/wiki/Graves'_disease">Graves' disease,</a> which is a major human autoimmune disease affecting thyroid function. </br> | + | <p align="left" style="background-color:#ffffff"> <br><br> The <b> Cardiff Wales 2017 iGEM team</b> had two main goals:</br><br>> To develop new tools in the <a href="https://2016.igem.org/Resources/Plant_Synthetic_Biology/PhytoBricks">Phytobrick</a> standard that can be used for future studies using plant gene expression. </br><br>> To use the <i> Nicotiana benthamiana </i> leaf expression system to generate high levels of a protein that might be used as a therapeutic for <a href="https://en.wikipedia.org/wiki/Graves'_disease">Graves' disease,</a>which is a major human autoimmune disease affecting thyroid function. </br> |
<br> The Phytobrick standard uses the golden gate cloning system so we incorporated a set of previously-characterised plant promotors into this cloning system. Our promoters are designed to respond to several different hormone or environmental stimuli and are taken from the model plant <i> Arabidopsis thaliana</i>. <br><br> In order to test the function of these promotors we aimed to quantify their expression levels using luciferase transcriptional units and also use them to generate a thyroid stimulating hormone antagonist that might have the potential to treat Graves' disease.</br> <br>Consequently, we have added several parts to the phytobrick registry. In addition we generated a <a href="http://parts.igem.org/Part:BBa_K2404013">Phytobrick level 1 construct</a> that includes a luciferase gene that in future will provide a method that allows iGEM teams to simply evaluate whether their tobacco leaf transformations have been successful.<br> <br>More details about the project can be found on our <a href="https://2017.igem.org/Team:Cardiff_Wales/projectdescription">project description page</a>. | <br> The Phytobrick standard uses the golden gate cloning system so we incorporated a set of previously-characterised plant promotors into this cloning system. Our promoters are designed to respond to several different hormone or environmental stimuli and are taken from the model plant <i> Arabidopsis thaliana</i>. <br><br> In order to test the function of these promotors we aimed to quantify their expression levels using luciferase transcriptional units and also use them to generate a thyroid stimulating hormone antagonist that might have the potential to treat Graves' disease.</br> <br>Consequently, we have added several parts to the phytobrick registry. In addition we generated a <a href="http://parts.igem.org/Part:BBa_K2404013">Phytobrick level 1 construct</a> that includes a luciferase gene that in future will provide a method that allows iGEM teams to simply evaluate whether their tobacco leaf transformations have been successful.<br> <br>More details about the project can be found on our <a href="https://2017.igem.org/Team:Cardiff_Wales/projectdescription">project description page</a>. |
Revision as of 21:56, 30 October 2017