<p class="body-type mainwrap indented">In August, we visited <a href="#" style="text-indent:0pt;">Ginkgo Bioworks</a> in Boston's Seaport District. We toured their lab facilities, and were impressed by their automated workflow. We were shown some projects relating to synthetic fragrances and toured the workbench of <a href="#" style="text-indent:0pt;">Natzai Audrey Chieza</a>, Ginkgo's current artist-in-residence, who uses bacteria to dye fabrics. Afterwards, we had a discussion with Ginkgo's creative director Christina Agapakis about Ginkgo Bioworks' interfaces of art and synthetic biology, and her experiences collaborating with artists and creating topical art herself. Our discussion inspired us to approach art that interfaced with the future of synthetic biology as the mainstay of our human practices project.</p>
+
<p class="body-type mainwrap indented">In August, we visited <a href="Gingko biowork" style="text-indent:0pt;">Ginkgo Bioworks</a> in Boston's Seaport District. We toured their lab facilities, and were impressed by their automated workflow. We were shown some projects relating to synthetic fragrances and toured the workbench of <a href="#" style="text-indent:0pt;">Natzai Audrey Chieza</a>, Ginkgo's current artist-in-residence, who uses bacteria to dye fabrics. Afterwards, we had a discussion with Ginkgo's creative director Christina Agapakis about Ginkgo Bioworks' interfaces of art and synthetic biology, and her experiences collaborating with artists and creating topical art herself. Our discussion inspired us to approach art that interfaced with the future of synthetic biology as the mainstay of our human practices project.</p>
<p class="body-type mainwrap indented">We also visited the <a href="#" style="text-indent:0pt;">Fraunhofer Center for Manufacturing Innovation</a> with BostonU_Hardware to inform our collaboration towards a microfluidic platform for RNA detection. They provided us with a wealth of knowledge about the considerations needed to translate a biological protocol to a microfluidic device at scale. More information about this collaboration can be found <a href="#" style="text-indent:0pt;">here</a>.</p>
<p class="body-type mainwrap indented">We also visited the <a href="#" style="text-indent:0pt;">Fraunhofer Center for Manufacturing Innovation</a> with BostonU_Hardware to inform our collaboration towards a microfluidic platform for RNA detection. They provided us with a wealth of knowledge about the considerations needed to translate a biological protocol to a microfluidic device at scale. More information about this collaboration can be found <a href="#" style="text-indent:0pt;">here</a>.</p>
This painted triptych is an exploration of circadian rhythms in organisms. The first half of the project takes place on Earth with naturally occurring organisms fit to the 24 hour day. The second half of the project takes place on Mars with organisms synthetically modified organisms who have had their circadian rhythms optimized to a Martian 25 hour day. The aim of this project is to display it in areas of Boston with various groups of people with different ideas and knowledge of synthetic biology. We want to get their opinions of the art anonymously to understand how far people are comfortable with the usage of synthetic modification in unusual situations.
/ 3
Outreach: Summer Pathways
In June, we partnered with STEM Pathways and the BostonU Hardware team to host Summer Pathways, a synthetic biology Workshop for high school girls interested in STEM fields. We organized and led four interactive activities to introduce them to synthetic biology.
Our activities included a bioethics forum, a plasmid design activity, gel electrophoresis with food coloring, and a microfluidic design activity. The bioethics forum was led by Steve, Sophia, and Manu. They held a fishbowl discussion about controversial issues in synthetic biology such as CRISPR and germline gene editing. The forum allowed us to hear opinions about synbio from those outside the field.
Thomas and Jason, a member of STEM Pathways, led a plasmid design activity in which they introduced the girls to plasmids, primers, and restriction enzymes. After the participants constructed plasmids using construction paper and scissors, Thomas and Jason demoed Benchling, the software we use to design plasmids in our lab.
The third station, gel electrophoresis with food dye, was adapted from William and Mary's 2013 Synthetic Biology K-12 curriculum. In this activity, Abbey, Sai, and Madeline discussed the basic biology and protocol of gel electrophoresis. Each participant then loaded a sample of food dye into a gel with a disposable pipette. The final activity, microfluidic design, was led by the BostonU Hardware team. The team first gave a basic overview of what microfluidics are and what applications they have in synbio. The participants were then given a basic protocol for E. coli transformation and challenged to design their own microfluidic chip on cardboard to perform the procedure.
/ 5
Industry Visits
In August, we visited Ginkgo Bioworks in Boston's Seaport District. We toured their lab facilities, and were impressed by their automated workflow. We were shown some projects relating to synthetic fragrances and toured the workbench of Natzai Audrey Chieza, Ginkgo's current artist-in-residence, who uses bacteria to dye fabrics. Afterwards, we had a discussion with Ginkgo's creative director Christina Agapakis about Ginkgo Bioworks' interfaces of art and synthetic biology, and her experiences collaborating with artists and creating topical art herself. Our discussion inspired us to approach art that interfaced with the future of synthetic biology as the mainstay of our human practices project.
We also visited the Fraunhofer Center for Manufacturing Innovation with BostonU_Hardware to inform our collaboration towards a microfluidic platform for RNA detection. They provided us with a wealth of knowledge about the considerations needed to translate a biological protocol to a microfluidic device at scale. More information about this collaboration can be found here.
/ 2
Critically-Acclaimed JoVE Video
While making our cellfree transcription-translation system we used a modified version of the Noireaux Lab TX-TL protocol. Their JoVE video supplemented our understanding of the protocol. After utilizing the JoVE protocol video throughout the process of making our own TX-TL system, we realized the utility of step-by-step protocol videos that are easily accessible. In order to add to the JoVE video collection focused on the TX-TL system, we decided to enter the JoVE Film your research contest. In our video, we detail how we test our constructs in the TX-TL system and provide a theoretical understanding of how the TX-TL system works on a molecular level. Our video was ranked among the top 15 Critically Acclaimed, and our video was one of only two undergraduate produced videos to be recognized in the competition.