Difference between revisions of "Team:Cornell/Experiments"

 
(15 intermediate revisions by 3 users not shown)
Line 57: Line 57:
 
   margin: 0;
 
   margin: 0;
 
   padding: 0;
 
   padding: 0;
 +
}
 +
 +
.center-it {
 +
    text-align: center;
 +
    margin-left: auto;
 +
    margin-right: auto;
 
}
 
}
  
Line 63: Line 69:
 
       <meta charset="UTF-8">
 
       <meta charset="UTF-8">
 
       <meta http-equiv="X-UA-Compatible" content="IE=edge">
 
       <meta http-equiv="X-UA-Compatible" content="IE=edge">
       <title>Bios</title>
+
       <title>Wet Lab</title>
 
       <meta name="description" content="Bios">
 
       <meta name="description" content="Bios">
 
       <meta name="viewport" content="width=device-width, initial-scale=1">
 
       <meta name="viewport" content="width=device-width, initial-scale=1">
Line 81: Line 87:
  
 
   <!------------------------NAV BAR------------------------>
 
   <!------------------------NAV BAR------------------------>
    <body class="ex-layout">
+
  <body class="ex-layout">
    <div class="main-nav-wrapper nav-wrapper-1-creative">
+
  <div class="main-nav-wrapper nav-wrapper-1-creative">
      <nav>
+
    <nav>
        <div class="main-nav main-nav-1 creative-page nav-content-toggle">
+
      <div class="main-nav main-nav-1 creative-page nav-content-toggle">
          <div class="container">
+
        <div class="container">
            <div class="nav-logo">
+
          <div class="nav-logo">
                <a href="https://2017.igem.org/Team:Cornell"><img src="https://static.igem.org/mediawiki/2017/1/1d/CornellOxyponicsLogo.png" alt="Oxyponics"></a>
+
              <a href="https://2017.igem.org/Team:Cornell"><img src="https://static.igem.org/mediawiki/2017/1/1d/CornellOxyponicsLogo.png" alt="Oxyponics"></a>
            </div>
+
          </div> <!--nav-logo-->
            <ul class="nav-main-menu nav-content-item">
+
          <ul class="nav-main-menu nav-content-item">
              <li><a href="https://2017.igem.org/Team:Cornell">HOME</a></li>
+
            <li><a href="https://2017.igem.org/Team:Cornell">HOME</a></li>
              <li><a href="https://2017.igem.org/Team:Cornell/Description">ABOUT</a></li>
+
            <li><a href="https://2017.igem.org/Team:Cornell/Description">ABOUT</a></li>
              <li class="mega-menu menu-5-col"><a href="#">TOOLKIT</a>
+
            <li class="mega-menu menu-5-col"><a href="#">TOOLKIT</a>
                <ul class="mega-menu-content">
+
              <ul class="mega-menu-content">
                  <li class="menu-title"><a href="#">WET LAB</a>
+
                <li class="menu-title"><a href="#">WET LAB</a>
                    <ul>
+
                  <ul>
                      <li><a href="https://2017.igem.org/Team:Cornell/Experiments">HYDROSENSE</a></li>
+
                    <li><a href="https://2017.igem.org/Team:Cornell/Experiments">FOUNDATIONS</a></li>
                      <li><a href="https://2017.igem.org/Team:Cornell/Contribution">CONTRIBUTION</a></li>
+
                    <li><a href="https://2017.igem.org/Team:Cornell/Demonstrate">DEMONSTRATE</a></li>
                      <li><a href="https://2017.igem.org/Team:Cornell/Parts">PARTS</a></li>
+
                    <li><a href="https://2017.igem.org/Team:Cornell/Contribution">CONTRIBUTION</a></li>
                      <li><a href="https://2017.igem.org/Team:Cornell/Composite_Part">COMPOSITE PARTS</a></li>
+
                    <li><a href="https://2017.igem.org/Team:Cornell/Parts">PARTS</a></li>
                      <li><a href="https://2017.igem.org/Team:Cornell/Protocol">PROTOCOLS</a></li>
+
                     <li><a href="https://2017.igem.org/Team:Cornell/Basic_Part">BASIC PARTS</a></li>
                     </ul>
+
                     <li><a href="https://2017.igem.org/Team:Cornell/Protocol">PROTOCOLS</a></li>
                  </li>
+
                  <li class="menu-title"><a href="#">PRODUCT DEVELOPMENT</a>
+
                    <ul>
+
                      <li><a href="https://2017.igem.org/Team:Cornell/Design">DESIGN PROCESS</a></li>
+
                      <li><a href="https://2017.igem.org/Team:Cornell/Applied_Design">APPLIED DESIGN</a></li>
+
                      <li><a href="https://2017.igem.org/Team:Cornell/Software">DASHBOARD</a></li>
+
                      <li><a href="https://2017.igem.org/Team:Cornell/Model">MODEL</a></li>
+
                     </ul>
+
                  </li>
+
                  <li class="menu-title"><a href="#">DOCUMENTATION</a>
+
                    <ul>
+
                      <li><a href="https://2017.igem.org/Team:Cornell/Notebook">NOTEBOOK</a></li>
+
                      <li><a href="https://2017.igem.org/Team:Cornell/Safety">SAFETY</a></li>
+
                    </ul>
+
                  </li>
+
                </ul>
+
              </li>
+
              <li><a href="#">HUMAN CENTERED DESIGN</a>
+
                <ul>
+
                  <li><a href="https://2017.igem.org/Team:Cornell/HP/Gold_Integrated">PRACTICES</a></li>
+
                  <li><a href="https://2017.igem.org/Team:Cornell/Policies">POLICIES</a></li>
+
                  <li><a href="https://2017.igem.org/Team:Cornell/Entrepreneurship">ENTREPRENEURSHIP</a></li>
+
 
                   </ul>
 
                   </ul>
              </li>
+
                </li>
              <li><a href="#">OUTREACH</a>
+
                <li class="menu-title"><a href="#">PRODUCT DEVELOPMENT</a>
                <ul>
+
                  <ul>
                  <li><a href="https://2017.igem.org/Team:Cornell/Collaborations">COLLABORATIONS</a></li>
+
                    <li><a href="https://2017.igem.org/Team:Cornell/Design">DESIGN PROCESS</a></li>
                  <li><a href="https://2017.igem.org/Team:Cornell/Engagement">PUBLIC ENGAGEMENT</a></li>
+
                    <li><a href="https://2017.igem.org/Team:Cornell/Applied_Design">APPLIED DESIGN</a></li>
                </ul>
+
                    <li><a href="https://2017.igem.org/Team:Cornell/Software">SOFTWARE</a></li>
              </li>
+
                    <li><a href="https://2017.igem.org/Team:Cornell/Model">MODELING</a></li>
              <li><a href="#">TEAM</a>
+
                <ul id="bios">
+
                  <li><a href="https://2017.igem.org/Team:Cornell/Team">BIOS</a></li>
+
                  <li><a href="https://2017.igem.org/Team:Cornell/Sponsors">SPONSORS</a></li>
+
                  <li><a href="https://2017.igem.org/Team:Cornell/Attributions">ATTRIBUTIONS</a></li>
+
 
                   </ul>
 
                   </ul>
               </li>
+
                </li>
             </ul>
+
                <li class="menu-title"><a href="#">DOCUMENTATION</a>
           </div>
+
                  <ul>
         </div>
+
                    <li><a href="https://2017.igem.org/Team:Cornell/Notebook">NOTEBOOK</a></li>
       </nav>
+
                    <li><a href="https://2017.igem.org/Team:Cornell/Safety">SAFETY</a></li>
     </div>
+
                  </ul>
    <main>
+
                </li>
  <!------------------------END NAV BAR------------------------>
+
               </ul>
 +
            </li>
 +
             <li><a href="#">HUMAN CENTERED DESIGN</a>
 +
              <ul>
 +
                <li><a href="https://2017.igem.org/Team:Cornell/HP/Gold_Integrated">PRACTICES</a></li>
 +
                <li><a href="https://2017.igem.org/Team:Cornell/Policies">POLICIES</a></li>
 +
                <li><a href="https://2017.igem.org/Team:Cornell/Entrepreneurship">ENTREPRENEURSHIP</a></li>
 +
                </ul>
 +
            </li>
 +
            <li><a href="#">OUTREACH</a>
 +
              <ul>
 +
                <li><a href="https://2017.igem.org/Team:Cornell/Collaborations">COLLABORATIONS</a></li>
 +
                <li><a href="https://2017.igem.org/Team:Cornell/Engagement">PUBLIC ENGAGEMENT</a></li>
 +
              </ul>
 +
            </li>
 +
            <li><a href="#">TEAM</a>
 +
              <ul>
 +
                <li><a href="https://2017.igem.org/Team:Cornell/Team">BIOS</a></li>
 +
                <li><a href="https://2017.igem.org/Team:Cornell/Sponsors">SPONSORS</a></li>
 +
                <li><a href="https://2017.igem.org/Team:Cornell/Attributions">ATTRIBUTIONS</a></li>
 +
                </ul>
 +
            </li>
 +
           </ul> <!--nav-content-item-->
 +
         </div> <!--nav bar container-->
 +
       </div> <!--main-nav-->
 +
     </nav>
 +
  </div> <!--main-nav-wrapper-->
 +
  <main>
 +
<!------------------------END NAV BAR------------------------>
 
       <!------------------------BANNER------------------------>
 
       <!------------------------BANNER------------------------>
 
       <header class="container-fluid banner-wrapper banner-photo-wetlab">
 
       <header class="container-fluid banner-wrapper banner-photo-wetlab">
Line 161: Line 168:
 
                 <ul class="sidebar-wrapper">
 
                 <ul class="sidebar-wrapper">
 
                     <li><a href="#overview">OVERVIEW</a></li>
 
                     <li><a href="#overview">OVERVIEW</a></li>
                     <li><a href="#rfp">REDOX FLUORESCENT PROTEINS</a></li>
+
                     <li><a href="#rfp">REDOX SENSITIVE FLUORESCENT PROTEINS</a></li>
 
                     <li><a href="#geneticcircuits">LIGHT SENSITIVE GENETIC CIRCUITS</a></li>
 
                     <li><a href="#geneticcircuits">LIGHT SENSITIVE GENETIC CIRCUITS</a></li>
 
                     <li><a href="#futurework">FUTURE WORK</a></li>
 
                     <li><a href="#futurework">FUTURE WORK</a></li>
Line 173: Line 180:
 
                           <p>To tackle the problem of inconsistent yields in hydroponic farming, we decided to develop a system that would optimize oxidative stress conditions in the growth tanks. Since conventional methods of monitoring and responding to high levels of reactive oxygen species (ROS) are expensive and inefficient, we wanted to design a ROS-level controlling biocircuit centered around a genetically engineered cell that would facilitate detection and response to varying oxidative stress levels in solution. Our solution was an E. coli cell engineered with two novel components: a redox-sensitive fluorescent protein and light-controlled expression of antioxidant proteins. The fluorescent protein’s output signal varies with the ROS concentration in the bacteria’s environment, so the fluorescence can be read and interpreted to determine the oxidative conditions of the growth tank. The light-sensitive promoter can be turned on or off as needed in a non-invasive way to closely control the expression of antioxidant proteins and thus the tank ROS levels. Our bacteria are at the heart of an integrated system that will help farmers monitor and control for a parameter that has not been manipulated to date and which may prove to increase yields across the hydroponics industry.
 
                           <p>To tackle the problem of inconsistent yields in hydroponic farming, we decided to develop a system that would optimize oxidative stress conditions in the growth tanks. Since conventional methods of monitoring and responding to high levels of reactive oxygen species (ROS) are expensive and inefficient, we wanted to design a ROS-level controlling biocircuit centered around a genetically engineered cell that would facilitate detection and response to varying oxidative stress levels in solution. Our solution was an E. coli cell engineered with two novel components: a redox-sensitive fluorescent protein and light-controlled expression of antioxidant proteins. The fluorescent protein’s output signal varies with the ROS concentration in the bacteria’s environment, so the fluorescence can be read and interpreted to determine the oxidative conditions of the growth tank. The light-sensitive promoter can be turned on or off as needed in a non-invasive way to closely control the expression of antioxidant proteins and thus the tank ROS levels. Our bacteria are at the heart of an integrated system that will help farmers monitor and control for a parameter that has not been manipulated to date and which may prove to increase yields across the hydroponics industry.
 
                           </p>
 
                           </p>
                       <div class="content-title"><a id="rfp">REDOX FLUORESCENT PROTEINS</a></div>
+
                       <div class="content-title"><a id="rfp">REDOX SENSITIVE FLUORESCENT PROTEINS</a></div>
 
                       <div class="content-subtitle">Introduction</div>
 
                       <div class="content-subtitle">Introduction</div>
 
                         <p>The redox environment of a cell is the balance of reductive and oxidative species in the cell. Fluorescent redox probes like roGFP have been developed in order to obtain an accurate real-time measurement. The oxidation of a disulfide bond in roGFP causes a shift in the peak excitation wavelength, producing a ratiometric reading by comparing emission from excitation at the fully-oxidized and fully-reduced peak wavelengths [1].  Ratiometric results allow the signal to be independent of the amount of probe present and are essential in obtaining an accurate, quantitative reading.
 
                         <p>The redox environment of a cell is the balance of reductive and oxidative species in the cell. Fluorescent redox probes like roGFP have been developed in order to obtain an accurate real-time measurement. The oxidation of a disulfide bond in roGFP causes a shift in the peak excitation wavelength, producing a ratiometric reading by comparing emission from excitation at the fully-oxidized and fully-reduced peak wavelengths [1].  Ratiometric results allow the signal to be independent of the amount of probe present and are essential in obtaining an accurate, quantitative reading.
Line 179: Line 186:
 
                         <p>In order to have an accompanying variation in signal to a change in redox status, the probe must be partially oxidized and partially reduced in the basal environmental state, somewhat analogous to a pH buffer. For cytosolic and mitochondrial readings, the roGFP-Orp1 fusion protein satisfies this requirement.  The addition of Orp1, a reactive oxygen species (ROS) scavenger, also greatly improves the sensitivity of the probe [2,3].  Other fusions with ROS scavengers exist, such as roGFP(iL)-Grx1 which has a higher reducing potential, and roGFP-Tsa2 which has even higher sensitivity than roGFP-Orp1.  Our project introduces roGFP2 a variation of roGFP, and rxRFP a redox-sensitive RFP that behaves similarly to roGFP.
 
                         <p>In order to have an accompanying variation in signal to a change in redox status, the probe must be partially oxidized and partially reduced in the basal environmental state, somewhat analogous to a pH buffer. For cytosolic and mitochondrial readings, the roGFP-Orp1 fusion protein satisfies this requirement.  The addition of Orp1, a reactive oxygen species (ROS) scavenger, also greatly improves the sensitivity of the probe [2,3].  Other fusions with ROS scavengers exist, such as roGFP(iL)-Grx1 which has a higher reducing potential, and roGFP-Tsa2 which has even higher sensitivity than roGFP-Orp1.  Our project introduces roGFP2 a variation of roGFP, and rxRFP a redox-sensitive RFP that behaves similarly to roGFP.
 
                         </p>
 
                         </p>
                         <img src="https://static.igem.org/mediawiki/2017/c/cc/T--Cornell--WetLab_roGFP_oxidized.png" alt="dna demonstration" style="float: left; width: 46%; margin-right: 2%; margin-bottom: 0.5em"/>
+
                         <div class="image-wrapper-grid">
                        <img src="https://static.igem.org/mediawiki/2017/a/af/T--Cornell--WetLab_roGFP_reduced.png" alt="presenting" style="float: left; width: 46%; margin-right: 1%; margin-bottom: 0.5em"/>
+
                          <div class="row">
 +
                            <div class="col-md-6 center"><img class="img-responsive" src="https://static.igem.org/mediawiki/2017/c/cc/T--Cornell--WetLab_roGFP_oxidized.png" alt="roGFP oxidized"/></div>
 +
                            <div class="col-md-6 center"><img class="img-responsive" src="https://static.igem.org/mediawiki/2017/a/af/T--Cornell--WetLab_roGFP_reduced.png" alt="roGFP reduced"/></div>
 +
                          </div> <!--end row-->
 +
                        </div> <!--end image-wrapper-grid-->
 
                         <p>Redox-sensitive green fluorescent protein (roGFP) is a mutant GFP with two cysteine residues introduced by mutagenesis into the beta-barrel structure. The two cysteines (red) are redox sensors that form a disulfide bridge under oxidizing conditions (left, PDB 1JC1). This leads to a subtle change in the barrel structure and its absorption spectrum compared to the reduced form (right, PDB 1JC0).
 
                         <p>Redox-sensitive green fluorescent protein (roGFP) is a mutant GFP with two cysteine residues introduced by mutagenesis into the beta-barrel structure. The two cysteines (red) are redox sensors that form a disulfide bridge under oxidizing conditions (left, PDB 1JC1). This leads to a subtle change in the barrel structure and its absorption spectrum compared to the reduced form (right, PDB 1JC0).
 
                         </p>
 
                         </p>
 
                       <div class="content-subtitle">Associated BioBricks</div>
 
                       <div class="content-subtitle">Associated BioBricks</div>
                           <p>Our initial approach to accessing cellular redox processes was to use roGFP2 as a reporter for the external optics system. roGFP2 is a redox-sensitive green fluorescent protein that displays characterizable peaks at 400 nm and 488 nm in its excitation spectra, whose intensities change between the oxidized and reduced states. The external LED system was then used to signal optogenetic plasmids, pDawn and pDusk, which control for gene expression. The complication with this approach is that the pDawn and pDusk are regulated by light of wavelength 470 nm. Due to overlap in the excitation spectra of roGFP2 and those of pDawn and pDusk, we opted for an alternative fluorescent protein. rxRFP is a red, redox-sensitive fluorescent protein which has excitation spectra with peaks at higher wavelengths for both oxidized and reduced states [4,5].  
+
                           <p>Our initial approach to accessing cellular redox processes was to use roGFP2 as a reporter for the external optics system. roGFP2 is a redox-sensitive green fluorescent protein that displays characterizable peaks at 400 nm and 488 nm in its excitation spectra, whose intensities change between the oxidized and reduced states. The external LED system was then used to signal optogenetic plasmids, pDawn and pDusk, which control for gene expression. The complication with this approach is that the pDawn and pDusk are regulated by light of wavelength 470 nm. Due to overlap in the excitation spectra of roGFP2 and those of pDawn and pDusk, we opted for an alternative fluorescent protein. rxRFP is a red, redox-sensitive fluorescent protein which has excitation spectra with peaks at higher wavelengths for both oxidized and reduced states [4,5].
 
                         </p>
 
                         </p>
 
                         <p>Our fluorescent protein constructs were fused to yeast peroxidases to enhance sensitivity. The yeast peroxidase Orp1, in response to oxidative stress, activates the YAP1 transcription factor to promote the expression of stress response pathways. A peroxidatic cysteine acts as the sensor, while the resolving cysteine acts to form a disulfide bridge [6,7]. The Tsa2 yeast peroxidase functions similarly to Orp1, but the resolving cysteine has been deleted to promote the transfer of sulfenic acid to the fluorescent protein. Similarly, we mutated the resolving cysteine of Orp1 to serine for the same purpose.
 
                         <p>Our fluorescent protein constructs were fused to yeast peroxidases to enhance sensitivity. The yeast peroxidase Orp1, in response to oxidative stress, activates the YAP1 transcription factor to promote the expression of stress response pathways. A peroxidatic cysteine acts as the sensor, while the resolving cysteine acts to form a disulfide bridge [6,7]. The Tsa2 yeast peroxidase functions similarly to Orp1, but the resolving cysteine has been deleted to promote the transfer of sulfenic acid to the fluorescent protein. Similarly, we mutated the resolving cysteine of Orp1 to serine for the same purpose.
 
                         </p>
 
                         </p>
 
                         <div class="image-wrapper">
 
                         <div class="image-wrapper">
                           <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/2/27/T--Cornell--WetLab_Tsa2.png" alt="graphs"/>
+
                           <img class="img-responsive center" src="https://static.igem.org/mediawiki/2017/2/27/T--Cornell--WetLab_Tsa2.png" alt="Tsa2"/>
                         <p>The yeast peroxidase Tsa2 has two cysteine residues (red) that respond to reactive oxygen species in the environment (PDB 5DVB).  
+
                         <p>The yeast peroxidase Tsa2 has two cysteine residues (red) that respond to reactive oxygen species in the environment (PDB 5DVB).
 
                         </p>
 
                         </p>
                        <div class="image-wrapper">
+
                           <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/9/95/T--Cornell--WetLab_Peroxidase_Mutation.png" alt="Peroxidase Mutation"/>
                           <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/9/95/T--Cornell--WetLab_Peroxidase_Mutation.png" alt="graphs"/>
+
                      </div> <!--end image-wrapper-->
 
                       <div class="content-title"><a id="geneticcircuits">LIGHT SENSITIVE GENETIC CIRCUITS</a></div>
 
                       <div class="content-title"><a id="geneticcircuits">LIGHT SENSITIVE GENETIC CIRCUITS</a></div>
 
                         <div class="content-subtitle">Introduction</div>
 
                         <div class="content-subtitle">Introduction</div>
Line 203: Line 214:
 
                         <p>In order to target the optimal level of oxidative stress for plant growth, our platform uses redox-sensitive fluorescent proteins as a reporter to couple an external optics system to an intracellular optogenetic transcriptional circuit. Our team assembled two plasmids that allow for light-sensitive gene expression. The pDusk construct allows for transcription in the absence of light.
 
                         <p>In order to target the optimal level of oxidative stress for plant growth, our platform uses redox-sensitive fluorescent proteins as a reporter to couple an external optics system to an intracellular optogenetic transcriptional circuit. Our team assembled two plasmids that allow for light-sensitive gene expression. The pDusk construct allows for transcription in the absence of light.
 
                         </p>
 
                         </p>
                         <p>This system takes advantage of the YF1 and FixJ. YF1 is a histidine kinase that, in the absence of blue light, phosphorylates the regulator FixJ, which proceeds to enhance the expression of genes downstream of the FixK2 promoter.  
+
                         <p>This system takes advantage of the YF1 and FixJ. YF1 is a histidine kinase that, in the absence of blue light, phosphorylates the regulator FixJ, which proceeds to enhance the expression of genes downstream of the FixK2 promoter.
 
                         </p>
 
                         </p>
 
                       <div class="image-wrapper">
 
                       <div class="image-wrapper">
                           <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/e/e5/PDawn.png" alt="graphs"/>
+
                           <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/e/e5/PDawn.png" alt="PDawn"/>
 
                         <p>The pDawn system adds onto the pDusk system by incorporating the lambda repressor downstream of the FixK2 promoter. This repressor exerts an inhibitory effect on the transcription of genes downstream of the pR promoter.
 
                         <p>The pDawn system adds onto the pDusk system by incorporating the lambda repressor downstream of the FixK2 promoter. This repressor exerts an inhibitory effect on the transcription of genes downstream of the pR promoter.
 
                         </p>
 
                         </p>
                      <div class="image-wrapper">
+
                           <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/f/f6/PDUSK.png" alt="PDUSK"/>
                           <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/f/f6/PDUSK.png" alt="graphs"/>
+
                         <p>We have a panel of FLAG-tagged enzymes whose expressions are regulated by pDawn and pDusk. These enzymes include superoxide dismutase, 2-nitropropane dioxygenase, glutathione-independent formaldehyde dehydrogenase, hydrazinase, L-asparaginase 2, and NADPH-dehydrogenase. These enzymes break down many of the harmful chemicals that trigger the formation of reactive oxygen species [10,11].
                         <p>We have a panel of FLAG-tagged enzymes whose expressions are regulated by pDawn and pDusk. These enzymes include superoxide dismutase, 2-nitropropane dioxygenase, glutathione-independent formaldehyde dehydrogenase, hydrazinase, L-asparaginase 2, and NADPH-dehydrogenase. These enzymes break down many of the harmful chemicals that trigger the formation of reactive oxygen species [10,11].  
+
 
                         </p>
 
                         </p>
 +
                      </div> <!--end image-wrapper-->
 
                       <div class="content-subtitle">Results</div>
 
                       <div class="content-subtitle">Results</div>
 
                         <p>We can characterize pDawn and pDusk by Western blot. By growing E. coli under different intensities of visible light, we can compare the relative expression levels of a FLAG-tagged superoxide dismutase under optogenetic control.
 
                         <p>We can characterize pDawn and pDusk by Western blot. By growing E. coli under different intensities of visible light, we can compare the relative expression levels of a FLAG-tagged superoxide dismutase under optogenetic control.
 
                         </p>
 
                         </p>
                         <p>We first inserted superoxide dismutase into the pDusk circuit. We then proceeded to incorporate a cI repressor (BBa_K2296045) and a pR promoter into the pDusk system followed by insertion of superoxide dismutase to create a light-inducible pDawn circuit.  
+
                         <p>We first inserted superoxide dismutase into the pDusk circuit. We then proceeded to incorporate a cI repressor (BBa_K2296045) and a pR promoter into the pDusk system followed by insertion of superoxide dismutase to create a light-inducible pDawn circuit.
 
                         </p>
 
                         </p>
 
                         <p>We assessed the transcriptional activity of pDawn and pDusk in response to three different levels of light intensity from a standard laboratory fluorescent light:
 
                         <p>We assessed the transcriptional activity of pDawn and pDusk in response to three different levels of light intensity from a standard laboratory fluorescent light:
 
                         </p>
 
                         </p>
 
                       <div class="image-wrapper">
 
                       <div class="image-wrapper">
                           <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/3/31/T--Cornell--WetLab_DoseResponse.png" alt="graphs"/>
+
                           <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/3/31/T--Cornell--WetLab_DoseResponse.png" alt="DoseResponse"/>
 
                         <p>Our initial characterization revealed a dose-dependence of pDusk. However, pDawn did not display a dose-dependent response in response to stimulation from fluorescent light. We suspect this to be the result of low light intensity.
 
                         <p>Our initial characterization revealed a dose-dependence of pDusk. However, pDawn did not display a dose-dependent response in response to stimulation from fluorescent light. We suspect this to be the result of low light intensity.
 
                         </p>
 
                         </p>
 
                         <p>Our subsequent characterization uses a significantly greater intensity of LED light:
 
                         <p>Our subsequent characterization uses a significantly greater intensity of LED light:
 
                         </p>
 
                         </p>
                      <div class="image-wrapper">
+
 
                          <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/5/59/T--Cornell--WetLab_pDawnpDuskExpression.png" alt="graphs"/>
+
                        <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/5/59/T--Cornell--WetLab_pDawnpDuskExpression.png" alt="pDawnpDuskExpression"/>
 
                         <p>Our results suggest a light-intensity dependence of pDusk and pDawn. Our results also show that our cI repressor biobrick successfully converted the light-repressible pDusk into a light-inducible pDawn.
 
                         <p>Our results suggest a light-intensity dependence of pDusk and pDawn. Our results also show that our cI repressor biobrick successfully converted the light-repressible pDusk into a light-inducible pDawn.
 
                         </p>
 
                         </p>
 
                         <p>In addition to dose-dependent characterization, we also conducted time-dependence characterization of pDawn following stimulation by 470 nm LED light (LTL3H3TBPADS1) with the following emission spectrum [12]:
 
                         <p>In addition to dose-dependent characterization, we also conducted time-dependence characterization of pDawn following stimulation by 470 nm LED light (LTL3H3TBPADS1) with the following emission spectrum [12]:
 
                         </p>
 
                         </p>
                      <div class="image-wrapper">
+
                      </div> <!--end image-wrapper-->
                           <img class="img-responsive" src="https://2017.igem.org/File:470LEDAbsSpec.png" alt="graphs"/>
+
 
 +
                      <div class="image-wrapper">
 +
                           <img class="img-responsive center-it" width="50%" src="https://static.igem.org/mediawiki/2017/6/6e/470LEDAbsSpec.png" alt="470LEDAbsSpec"/>
 +
                      </div> <!--end image-wrapper-->
 
                         <p>Our initial characterization was conducted with 1 second pulses and revealed a significant lag between initial exposure and translational response:
 
                         <p>Our initial characterization was conducted with 1 second pulses and revealed a significant lag between initial exposure and translational response:
 
                         </p>
 
                         </p>
                          <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/a/a3/T--Cornell--WetLab_pDawnTimeDependence.png" alt="graphs"/>
+
 
 +
                      <div class="image-wrapper">
 +
                        <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/a/a3/T--Cornell--WetLab_pDawnTimeDependence.png" alt="pDawnTimeDependence"/>
 
                         <p>For our subsequent characterization, we increased the intensity and pulse duration of the LED to parse out more subtle effects at earlier time points:
 
                         <p>For our subsequent characterization, we increased the intensity and pulse duration of the LED to parse out more subtle effects at earlier time points:
 
                         </p>
 
                         </p>
                          <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/0/03/T--Cornell--WetLab_pDawnTimeDependenceGraph.png" alt="graphs"/>
+
 
                         <p>Our results suggest a light intensity and time-dependence of the pDawn and pDusk optogenetic circuit.  
+
                        <img class="img-responsive center" src="https://static.igem.org/mediawiki/2017/0/03/T--Cornell--WetLab_pDawnTimeDependenceGraph.png" alt="pDawnTimeDependenceGraph"/>
 +
                         <p>Our results suggest a light intensity and time-dependence of the pDawn and pDusk optogenetic circuit.
 
                         </p>
 
                         </p>
 +
                      </div> <!--end image-wrapper-->
 
                       <div class="content-title"><a id="futurework">FUTURE WORK</a></div>
 
                       <div class="content-title"><a id="futurework">FUTURE WORK</a></div>
                         <p>Our system was designed with the future in mind. The pDawn/pDusk system gives researchers the power to arbitrarily modify any environmental parameter. Our initial brainstorming session also indicated that our system could be applied to water improvement, soil quality, and remediation, as heavy metals can induce oxidative stress in bacteria.  
+
                         <p>Our system was designed with the future in mind. The pDawn/pDusk system gives researchers the power to arbitrarily modify any environmental parameter. Our initial brainstorming session also indicated that our system could be applied to water improvement, soil quality, and remediation, as heavy metals can induce oxidative stress in bacteria[13].
 
                         </p>
 
                         </p>
                         <p>Although our hydroponic system is safe and there are mechanisms to contain the E. coli, some of the farmers we spoke with mentioned concerns over the use of bacteria. Therefore, another key area for future development, specifically within the scope of hydroponics and agriculture, would be to adapt our fluorescent protein genetic constructs into different expression systems, such as those for yeast (S. cerevisiae) or other naturally-occurring symbiotic bacteria that lack the stigma associated with E. coli in food production. Furthermore, we found that there exist potential applications of an oxidative stress sensor in brewing, to which yeast that can report on the environmental redox state can prove to be extremely useful and acceptable.  
+
                         <p>Although our hydroponic system is safe and there are mechanisms to contain the E. coli, some of the farmers we spoke with mentioned concerns over the use of bacteria. Therefore, another key area for future development, specifically within the scope of hydroponics and agriculture, would be to adapt our fluorescent protein genetic constructs into different expression systems, such as those for yeast (S. cerevisiae) or other naturally-occurring symbiotic bacteria that lack the stigma associated with E. coli in food production. Furthermore, we found that there exist potential applications of an oxidative stress sensor in brewing, to which yeast that can report on the environmental redox state can prove to be extremely useful and acceptable.
 
                         </p>
 
                         </p>
 
                         <p>Fundamentally, our construct can be used to make hardier bacteria for both aerobic and anaerobic cultures. As a result, engineered bacterial circuits can allow bacteria to survive in unprecedented high-stress laboratory conditions. Our construct will also be foundational to modifying plant and other eukaryotic cells to be more resistant to oxidative stress.
 
                         <p>Fundamentally, our construct can be used to make hardier bacteria for both aerobic and anaerobic cultures. As a result, engineered bacterial circuits can allow bacteria to survive in unprecedented high-stress laboratory conditions. Our construct will also be foundational to modifying plant and other eukaryotic cells to be more resistant to oxidative stress.
 
                         </p>
 
                         </p>
                     
+
                    <div class="content-title"><a id="references">REFERENCES</a></div>
 +
                        <ol id="references">
 +
                        <li>Cannon, M. B., & Remington, S. J. (2006). Re-engineering redox-sensitive green fluorescent protein for improved response rate.<span class = "italic"> Protein Science, 15</span>(1), 45-57. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2242357/.
 +
                        </li>
 +
                        <li>Delaunay, A., Pflieger, D., Barrault, M., Vinh, J., Toledano, M.B. (2002). A Thiol Peroxidase is an H2O2 Receptor and Redox-Transducer in Gene Activation. <span class="italic">Cell, 111: </span>471- 481.
 +
                        </li>
 +
                        <li>Ma, L., Takanishi, C. L., & Wood, M. J. (2007). Molecular Mechanism of Oxidative Stress Perception by the Orp1 Protein.<span class="italic"> Journal of Biological Chemistry, 282</span>.(43), 31429-31436. Retrieved from http://www.jbc.org/content/282/43/31429.long
 +
                        </li>
 +
                        <li>Fan, Y., Chen, Z., & Ai, H. (2015, February 10). Monitoring Redox Dynamics in Living Cells with a Redox-Sensitive Red Fluorescent Protein. Anal. Chem., 2015, <span class="italic">87</span> (5), pp 2802–2810. Retrieved from http://pubs.acs.org/doi/abs/10.1021/ac5041988
 +
                        </li>
 +
                        <li>Ren, W., Ai, H. (2013). Genetically Encoded Fluorescent Redox Probes. Sensors, 13: 15422-15433.
 +
                        </li>
 +
                        <li>Gutscher, M., Sobotta, M. C., Wabnitz, G. H., Ballikaya, S., Meyer, A. J., Samstag, Y., & Dick, T. P. (2009). Proximity-based Protein Thiol Oxidation by H2O2-scavenging Peroxidases.<span class="italic"> Journal of Biological Chemistry,284</span>(46), 31532-31540. Retrieved from http://www.jbc.org/content/284/46/31532.long
 +
                        </li>
 +
                        <li>Morgan, B., Van Laer, K., Owusu, T.N.E., Ezerina, D., Pastor-Flores, D., Amponsah, P.S., Tursch, A., Dick, T.P. (2016). Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes. <span class="italic">Nature Chemical Biology 12: </span>437-445</li>
 +
                        <li>Tabor, J.J., Levskaya, A., Voigt, C.A. (2011). Multichromatic control of gene expression in <span class="italic">Escherichia coli. J Mol Biol </span>405(2): 315-324.
 +
                        </li>
 +
                        <li>Ohlendorf, R., Vidavski, R. R., Eldar, A., Moffat, K., & Moglich, A. (2012). From Dusk till Dawn: One-Plasmid Systems for Light-Regulated Gene Expression. <span class="italic">Journal of Molecular Biology, 416, </span> 534-542.
 +
                        </li>
 +
                        <li>Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., Kalayci, O. (2012). Oxidative Stress and Antioxidant Defense. <span class="italic">WAO Journal, </span> 9-19.
 +
                        </li>
 +
                        <li>Mukhopadhyay, S., Schellhorn, H.E. (1997). Identification and Characterization of Hydrogen Peroxide-Sensitive Mutants of Escherichia coli: Genes That Require OxyR for Expression. <span class="italic">Journal of Bacteriology, </span> 179(2): 330-338.
 +
                        </li>
 +
                        <li>Lite-On Technology Corporation. Information Data Sheet for LED Lamp LTL3H3TBPADS1-132A. Retrieved from http://www.mouser.com/ds/2/239/Lite-On_LTL3H3TBPADS1-132A-Ver.A-341105.pdf
 +
                        </li>
 +
                        </ol>
 
                   </div>
 
                   </div>
 +
                 
  
 
                 <div class="col-xs-1"></div>
 
                 <div class="col-xs-1"></div>
               </div>
+
               </div> <!--end standard-content-->
            </div>
+
            </div> <!--container-fluid-->
  
 
             <!------------------------FOOTER------------------------>
 
             <!------------------------FOOTER------------------------>

Latest revision as of 04:18, 31 October 2017

<!DOCTYPE html> Wet Lab