Difference between revisions of "Team:Cornell/Experiments"

 
(3 intermediate revisions by 2 users not shown)
Line 87: Line 87:
  
 
   <!------------------------NAV BAR------------------------>
 
   <!------------------------NAV BAR------------------------>
    <body class="ex-layout">
+
  <body class="ex-layout">
    <div class="main-nav-wrapper nav-wrapper-1-creative">
+
  <div class="main-nav-wrapper nav-wrapper-1-creative">
      <nav>
+
    <nav>
        <div class="main-nav main-nav-1 creative-page nav-content-toggle">
+
      <div class="main-nav main-nav-1 creative-page nav-content-toggle">
          <div class="container">
+
        <div class="container">
            <div class="nav-logo">
+
          <div class="nav-logo">
                <a href="https://2017.igem.org/Team:Cornell"><img src="https://static.igem.org/mediawiki/2017/1/1d/CornellOxyponicsLogo.png" alt="Oxyponics"></a>
+
              <a href="https://2017.igem.org/Team:Cornell"><img src="https://static.igem.org/mediawiki/2017/1/1d/CornellOxyponicsLogo.png" alt="Oxyponics"></a>
            </div>
+
          </div> <!--nav-logo-->
            <ul class="nav-main-menu nav-content-item">
+
          <ul class="nav-main-menu nav-content-item">
              <li><a href="https://2017.igem.org/Team:Cornell">HOME</a></li>
+
            <li><a href="https://2017.igem.org/Team:Cornell">HOME</a></li>
              <li><a href="https://2017.igem.org/Team:Cornell/Description">ABOUT</a></li>
+
            <li><a href="https://2017.igem.org/Team:Cornell/Description">ABOUT</a></li>
              <li class="mega-menu menu-5-col"><a href="#">TOOLKIT</a>
+
            <li class="mega-menu menu-5-col"><a href="#">TOOLKIT</a>
                <ul class="mega-menu-content">
+
              <ul class="mega-menu-content">
                  <li class="menu-title"><a href="#">WET LAB</a>
+
                <li class="menu-title"><a href="#">WET LAB</a>
                    <ul>
+
                  <ul>
                      <li><a href="https://2017.igem.org/Team:Cornell/Experiments">HYDROSENSE</a></li>
+
                    <li><a href="https://2017.igem.org/Team:Cornell/Experiments">FOUNDATIONS</a></li>
                      <li><a href="https://2017.igem.org/Team:Cornell/Contribution">CONTRIBUTION</a></li>
+
                    <li><a href="https://2017.igem.org/Team:Cornell/Demonstrate">DEMONSTRATE</a></li>
                      <li><a href="https://2017.igem.org/Team:Cornell/Parts">PARTS</a></li>
+
                    <li><a href="https://2017.igem.org/Team:Cornell/Contribution">CONTRIBUTION</a></li>
                      <li><a href="https://2017.igem.org/Team:Cornell/Composite_Part">COMPOSITE PARTS</a></li>
+
                    <li><a href="https://2017.igem.org/Team:Cornell/Parts">PARTS</a></li>
                      <li><a href="https://2017.igem.org/Team:Cornell/Protocol">PROTOCOLS</a></li>
+
                     <li><a href="https://2017.igem.org/Team:Cornell/Basic_Part">BASIC PARTS</a></li>
                     </ul>
+
                     <li><a href="https://2017.igem.org/Team:Cornell/Protocol">PROTOCOLS</a></li>
                  </li>
+
                  <li class="menu-title"><a href="#">PRODUCT DEVELOPMENT</a>
+
                    <ul>
+
                      <li><a href="https://2017.igem.org/Team:Cornell/Design">DESIGN PROCESS</a></li>
+
                      <li><a href="https://2017.igem.org/Team:Cornell/Applied_Design">APPLIED DESIGN</a></li>
+
                      <li><a href="https://2017.igem.org/Team:Cornell/Software">DASHBOARD</a></li>
+
                      <li><a href="https://2017.igem.org/Team:Cornell/Model">MODEL</a></li>
+
                     </ul>
+
                  </li>
+
                  <li class="menu-title"><a href="#">DOCUMENTATION</a>
+
                    <ul>
+
                      <li><a href="https://2017.igem.org/Team:Cornell/Notebook">NOTEBOOK</a></li>
+
                      <li><a href="https://2017.igem.org/Team:Cornell/Safety">SAFETY</a></li>
+
                    </ul>
+
                  </li>
+
                </ul>
+
              </li>
+
              <li><a href="#">HUMAN CENTERED DESIGN</a>
+
                <ul>
+
                  <li><a href="https://2017.igem.org/Team:Cornell/HP/Gold_Integrated">PRACTICES</a></li>
+
                  <li><a href="https://2017.igem.org/Team:Cornell/Policies">POLICIES</a></li>
+
                  <li><a href="https://2017.igem.org/Team:Cornell/Entrepreneurship">ENTREPRENEURSHIP</a></li>
+
 
                   </ul>
 
                   </ul>
              </li>
+
                </li>
              <li><a href="#">OUTREACH</a>
+
                <li class="menu-title"><a href="#">PRODUCT DEVELOPMENT</a>
                <ul>
+
                  <ul>
                  <li><a href="https://2017.igem.org/Team:Cornell/Collaborations">COLLABORATIONS</a></li>
+
                    <li><a href="https://2017.igem.org/Team:Cornell/Design">DESIGN PROCESS</a></li>
                  <li><a href="https://2017.igem.org/Team:Cornell/Engagement">PUBLIC ENGAGEMENT</a></li>
+
                    <li><a href="https://2017.igem.org/Team:Cornell/Applied_Design">APPLIED DESIGN</a></li>
                </ul>
+
                    <li><a href="https://2017.igem.org/Team:Cornell/Software">SOFTWARE</a></li>
              </li>
+
                    <li><a href="https://2017.igem.org/Team:Cornell/Model">MODELING</a></li>
              <li><a href="#">TEAM</a>
+
                <ul id="bios">
+
                  <li><a href="https://2017.igem.org/Team:Cornell/Team">BIOS</a></li>
+
                  <li><a href="https://2017.igem.org/Team:Cornell/Sponsors">SPONSORS</a></li>
+
                  <li><a href="https://2017.igem.org/Team:Cornell/Attributions">ATTRIBUTIONS</a></li>
+
 
                   </ul>
 
                   </ul>
               </li>
+
                </li>
             </ul>
+
                <li class="menu-title"><a href="#">DOCUMENTATION</a>
           </div>
+
                  <ul>
         </div>
+
                    <li><a href="https://2017.igem.org/Team:Cornell/Notebook">NOTEBOOK</a></li>
       </nav>
+
                    <li><a href="https://2017.igem.org/Team:Cornell/Safety">SAFETY</a></li>
     </div>
+
                  </ul>
    <main>
+
                </li>
  <!------------------------END NAV BAR------------------------>
+
               </ul>
 +
            </li>
 +
             <li><a href="#">HUMAN CENTERED DESIGN</a>
 +
              <ul>
 +
                <li><a href="https://2017.igem.org/Team:Cornell/HP/Gold_Integrated">PRACTICES</a></li>
 +
                <li><a href="https://2017.igem.org/Team:Cornell/Policies">POLICIES</a></li>
 +
                <li><a href="https://2017.igem.org/Team:Cornell/Entrepreneurship">ENTREPRENEURSHIP</a></li>
 +
                </ul>
 +
            </li>
 +
            <li><a href="#">OUTREACH</a>
 +
              <ul>
 +
                <li><a href="https://2017.igem.org/Team:Cornell/Collaborations">COLLABORATIONS</a></li>
 +
                <li><a href="https://2017.igem.org/Team:Cornell/Engagement">PUBLIC ENGAGEMENT</a></li>
 +
              </ul>
 +
            </li>
 +
            <li><a href="#">TEAM</a>
 +
              <ul>
 +
                <li><a href="https://2017.igem.org/Team:Cornell/Team">BIOS</a></li>
 +
                <li><a href="https://2017.igem.org/Team:Cornell/Sponsors">SPONSORS</a></li>
 +
                <li><a href="https://2017.igem.org/Team:Cornell/Attributions">ATTRIBUTIONS</a></li>
 +
                </ul>
 +
            </li>
 +
           </ul> <!--nav-content-item-->
 +
         </div> <!--nav bar container-->
 +
       </div> <!--main-nav-->
 +
     </nav>
 +
  </div> <!--main-nav-wrapper-->
 +
  <main>
 +
<!------------------------END NAV BAR------------------------>
 
       <!------------------------BANNER------------------------>
 
       <!------------------------BANNER------------------------>
 
       <header class="container-fluid banner-wrapper banner-photo-wetlab">
 
       <header class="container-fluid banner-wrapper banner-photo-wetlab">
Line 167: Line 168:
 
                 <ul class="sidebar-wrapper">
 
                 <ul class="sidebar-wrapper">
 
                     <li><a href="#overview">OVERVIEW</a></li>
 
                     <li><a href="#overview">OVERVIEW</a></li>
                     <li><a href="#rfp">REDOX-SENSITIVE FLUORESCENT PROTEINS</a></li>
+
                     <li><a href="#rfp">REDOX SENSITIVE FLUORESCENT PROTEINS</a></li>
                     <li><a href="#geneticcircuits">LIGHT-SENSITIVE GENETIC CIRCUITS</a></li>
+
                     <li><a href="#geneticcircuits">LIGHT SENSITIVE GENETIC CIRCUITS</a></li>
 
                     <li><a href="#futurework">FUTURE WORK</a></li>
 
                     <li><a href="#futurework">FUTURE WORK</a></li>
 
                     <li><a href="#references">REFERENCES</a></li>
 
                     <li><a href="#references">REFERENCES</a></li>
Line 179: Line 180:
 
                           <p>To tackle the problem of inconsistent yields in hydroponic farming, we decided to develop a system that would optimize oxidative stress conditions in the growth tanks. Since conventional methods of monitoring and responding to high levels of reactive oxygen species (ROS) are expensive and inefficient, we wanted to design a ROS-level controlling biocircuit centered around a genetically engineered cell that would facilitate detection and response to varying oxidative stress levels in solution. Our solution was an E. coli cell engineered with two novel components: a redox-sensitive fluorescent protein and light-controlled expression of antioxidant proteins. The fluorescent protein’s output signal varies with the ROS concentration in the bacteria’s environment, so the fluorescence can be read and interpreted to determine the oxidative conditions of the growth tank. The light-sensitive promoter can be turned on or off as needed in a non-invasive way to closely control the expression of antioxidant proteins and thus the tank ROS levels. Our bacteria are at the heart of an integrated system that will help farmers monitor and control for a parameter that has not been manipulated to date and which may prove to increase yields across the hydroponics industry.
 
                           <p>To tackle the problem of inconsistent yields in hydroponic farming, we decided to develop a system that would optimize oxidative stress conditions in the growth tanks. Since conventional methods of monitoring and responding to high levels of reactive oxygen species (ROS) are expensive and inefficient, we wanted to design a ROS-level controlling biocircuit centered around a genetically engineered cell that would facilitate detection and response to varying oxidative stress levels in solution. Our solution was an E. coli cell engineered with two novel components: a redox-sensitive fluorescent protein and light-controlled expression of antioxidant proteins. The fluorescent protein’s output signal varies with the ROS concentration in the bacteria’s environment, so the fluorescence can be read and interpreted to determine the oxidative conditions of the growth tank. The light-sensitive promoter can be turned on or off as needed in a non-invasive way to closely control the expression of antioxidant proteins and thus the tank ROS levels. Our bacteria are at the heart of an integrated system that will help farmers monitor and control for a parameter that has not been manipulated to date and which may prove to increase yields across the hydroponics industry.
 
                           </p>
 
                           </p>
                       <div class="content-title"><a id="rfp">REDOX-SENSITIVE FLUORESCENT PROTEINS</a></div>
+
                       <div class="content-title"><a id="rfp">REDOX SENSITIVE FLUORESCENT PROTEINS</a></div>
 
                       <div class="content-subtitle">Introduction</div>
 
                       <div class="content-subtitle">Introduction</div>
 
                         <p>The redox environment of a cell is the balance of reductive and oxidative species in the cell. Fluorescent redox probes like roGFP have been developed in order to obtain an accurate real-time measurement. The oxidation of a disulfide bond in roGFP causes a shift in the peak excitation wavelength, producing a ratiometric reading by comparing emission from excitation at the fully-oxidized and fully-reduced peak wavelengths [1].  Ratiometric results allow the signal to be independent of the amount of probe present and are essential in obtaining an accurate, quantitative reading.
 
                         <p>The redox environment of a cell is the balance of reductive and oxidative species in the cell. Fluorescent redox probes like roGFP have been developed in order to obtain an accurate real-time measurement. The oxidation of a disulfide bond in roGFP causes a shift in the peak excitation wavelength, producing a ratiometric reading by comparing emission from excitation at the fully-oxidized and fully-reduced peak wavelengths [1].  Ratiometric results allow the signal to be independent of the amount of probe present and are essential in obtaining an accurate, quantitative reading.
Line 204: Line 205:
 
                           <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/9/95/T--Cornell--WetLab_Peroxidase_Mutation.png" alt="Peroxidase Mutation"/>
 
                           <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/9/95/T--Cornell--WetLab_Peroxidase_Mutation.png" alt="Peroxidase Mutation"/>
 
                       </div> <!--end image-wrapper-->
 
                       </div> <!--end image-wrapper-->
                       <div class="content-title"><a id="geneticcircuits">LIGHT-SENSITIVE GENETIC CIRCUITS</a></div>
+
                       <div class="content-title"><a id="geneticcircuits">LIGHT SENSITIVE GENETIC CIRCUITS</a></div>
 
                         <div class="content-subtitle">Introduction</div>
 
                         <div class="content-subtitle">Introduction</div>
 
                         <p>Optogenetics is a biological technique utilizing light to control cells, typically by genetic regulation. In many organisms, particularly plants, the response to light is crucial for an energetic reaction such as photosynthesis. Phytochromes are proteins central to the plant sensing and response to light and are involved in plant growth and development. Besides phytochromes, plants have a myriad of light-sensitive proteins, many of which can be harnessed with synthetic biology to create optogenetic (light-regulated) circuits [8]. Gene expression that is responsive to light is a versatile effector in the genetic toolkit. In particular, the pDawn/pDusk light activated promoter system features low background noise, ease of use, and reversibility in control of gene expression [9].
 
                         <p>Optogenetics is a biological technique utilizing light to control cells, typically by genetic regulation. In many organisms, particularly plants, the response to light is crucial for an energetic reaction such as photosynthesis. Phytochromes are proteins central to the plant sensing and response to light and are involved in plant growth and development. Besides phytochromes, plants have a myriad of light-sensitive proteins, many of which can be harnessed with synthetic biology to create optogenetic (light-regulated) circuits [8]. Gene expression that is responsive to light is a versatile effector in the genetic toolkit. In particular, the pDawn/pDusk light activated promoter system features low background noise, ease of use, and reversibility in control of gene expression [9].
Line 260: Line 261:
 
                       </div> <!--end image-wrapper-->
 
                       </div> <!--end image-wrapper-->
 
                       <div class="content-title"><a id="futurework">FUTURE WORK</a></div>
 
                       <div class="content-title"><a id="futurework">FUTURE WORK</a></div>
                         <p>Our system was designed with the future in mind. The pDawn/pDusk system gives researchers the power to arbitrarily modify any environmental parameter. Our initial brainstorming session also indicated that our system could be applied to water improvement, soil quality, and remediation, as heavy metals can induce oxidative stress in bacteria.
+
                         <p>Our system was designed with the future in mind. The pDawn/pDusk system gives researchers the power to arbitrarily modify any environmental parameter. Our initial brainstorming session also indicated that our system could be applied to water improvement, soil quality, and remediation, as heavy metals can induce oxidative stress in bacteria[13].
 
                         </p>
 
                         </p>
 
                         <p>Although our hydroponic system is safe and there are mechanisms to contain the E. coli, some of the farmers we spoke with mentioned concerns over the use of bacteria. Therefore, another key area for future development, specifically within the scope of hydroponics and agriculture, would be to adapt our fluorescent protein genetic constructs into different expression systems, such as those for yeast (S. cerevisiae) or other naturally-occurring symbiotic bacteria that lack the stigma associated with E. coli in food production. Furthermore, we found that there exist potential applications of an oxidative stress sensor in brewing, to which yeast that can report on the environmental redox state can prove to be extremely useful and acceptable.
 
                         <p>Although our hydroponic system is safe and there are mechanisms to contain the E. coli, some of the farmers we spoke with mentioned concerns over the use of bacteria. Therefore, another key area for future development, specifically within the scope of hydroponics and agriculture, would be to adapt our fluorescent protein genetic constructs into different expression systems, such as those for yeast (S. cerevisiae) or other naturally-occurring symbiotic bacteria that lack the stigma associated with E. coli in food production. Furthermore, we found that there exist potential applications of an oxidative stress sensor in brewing, to which yeast that can report on the environmental redox state can prove to be extremely useful and acceptable.
Line 293: Line 294:
 
                         </ol>
 
                         </ol>
 
                   </div>
 
                   </div>
                   </div>
+
                    
  
 
                 <div class="col-xs-1"></div>
 
                 <div class="col-xs-1"></div>

Latest revision as of 04:18, 31 October 2017

<!DOCTYPE html> Wet Lab