Difference between revisions of "Team:Linkoping Sweden/Description"

 
(32 intermediate revisions by 5 users not shown)
Line 3: Line 3:
  
 
<html>
 
<html>
     
+
       
    <div class="content">
+
<body>
           
+
           
+
           
+
 
+
<div id="flex-wrapper">
            <h3>Our Workplan</h3>
+
<div class="flex-container">  
            <!--<h3>Project design</h3>-->
+
            <!--Problemställning och hur man tänker att man ska lösa det problemet.
+
<!--  
            Vilka construct vi använder osv.-->
+
Här läggs all content! content (p h2 img a osv.) ska placeras i dessa: flex-text-__ och flex-img-__ .
           
+
Om content ska placeras brevid varandra läggs föregående taggar i dessa: flex-sidebyside(-reverse), flex-flipper .
            <p>
+
Läs mer om vad dessa gör på drive i dokumentet: igem2017/hemsida/betasidan/variabelnamn.
                The overview of the project is summarized in figure 1 below. As can be seen in the figure, chaperones and conditions will be tested with various experiments, with the purpose to find the best setup for further detailed studies. The detailed studies will involve modeling with systems biology, where the modeling team will give suggestions on what the laboratory team shall do to achieve the desired task. The flow of data between the laboratory and the modeling team will eventually result in the final data, with is the optimized setup for the expression of our peptides.</p>
+
-->
                <br>
+
            <img class="content_image" src="https://static.igem.org/mediawiki/2017/5/5c/T--Linkoping_Sweden--Updated_detailed_flow-chart.png" alt="Figure 1. Detaield flow chart of the project." width = 600px/>
+
<Article class="flex-text-100">
            <center><i>Figure 1. Detailed design of the project.</i></center>
+
<h1> Project Description</h1>
           
+
<hr>
           
+
</article>
           
+
           
+
<div class="flex-flipper">
            <!-- <h1>Experiments</h1> -->
+
<article class="flex-text-70">
            <!--År 2016 var det skrivet vad som gjordes under respektive labbdag.-->
+
<p>
           
+
Amyloid-Beta and Tau are proteins which are known to be linked to the development of Alzheimer's disease, though the cause of the disease is still unknown [1]. They are both found in the brain in and around our neurons, and during Alzheimer's disease they accumulate to form plaques and tangles [2, 3]. The study of these aggregates are often done by staining them(4), which in turn demands an amount of the plaques great enough for staining. To instead study the early development of the aggregates a new method has to be developed. This could be studied by fusing a fluorescent markers like Green Fluorescent Protein (GFP) with the aggregation prone proteins. The problem is that when these marker are combined with the aggregation prone protein they become hard to express in Escherichia coli [5]. <u>Therefore this year’s project is to optimize the expression the fusion proteins containing a fluorescent marker and amyloid-beta or tau in E. Coli. </u>
          <!--  <h1>Protocols</h1> -->
+
</br></br>
            <!--Verkar enligt LiU iGEM 2016 vara vilka metoder och lösnignar mm. man använt.-->
+
To optimize the expression of the proteins we will be using overexpressed chaperones. Chaperones are proteins that can help other proteins to fold into their native three-dimensional shape, for example by dissolving aggregates and guiding both unfolded and misfolded proteins to their correctly folded form [6]. During our project we will be using four different chaperones and we will see how different combinations of these affect the expression of Amyloid-beta and Tau respectively.
           
+
</p>
            <!-- <h1>Results</h1> -->
+
</article>
            <!--Slutgiltiga reultat av labbandet.-->
+
<article class="flex-text-30" style = "border: solid 2px #019667; border-radius: 4px; padding: 0.8% 0.8%;">
           
+
<h4>Quick facts about Alzheimer's disease:</h4>
            <!-- <h1>Safety</h1> -->
+
            <!--Relevant att ha med, t ex säkerhet kring organismer och kemikalier, se LiU iGEM 2016-->
+
           
+
            <!-- <h1>Notebook</h1> -->
+
            <!--Tidslinje av projektet, från starten i mars till Boston -->
+
           
+
            <!-- <h1>Economic viability</h1> -->
+
            <!--Mer anpassat till å 2016-->
+
           
+
            <hr>
+
            <h4>Sources</h4>
+
<p>1. Alzheimerfonden. Alzheimers sjukdom [Internet]. Cited 2017-06-15. Available from: http://www.alzheimerfonden.se/om_demens/alzheimers_sjukdom [in swedish]
+
<br>2. Alzheimer´s Disease International. Dementia statistics [Internet]. Cited 2017-06-27. Available from: https://www.alz.co.uk/research/statistics
+
<br>3. Alzheimerfonden. Lexikon för Alzheimers sjukdom och andra demenssjukdomar [Internet]. Cited 2017-06-15. Available from: http://www.alzheimerfonden.se/om_demens/lexikon [in swedish]
+
<br>4. Bloom GS. Amyloid-β and TauThe Trigger and Bullet in Alzheimer Disease Pathogenesis. JAMA Neurol. 2014;71(4):505-508. doi:10.1001/jamaneurol.2013.5847
+
 
<br>
 
<br>
          </p>
+
<ul>
           
+
<li>Around 60-70 % of people with dementia have Alzheimer’s disease.</li>
 +
<li>Around 1 in 100 has Alzheimer’s disease in Sweden.</li>
 +
<li>The cause of Alzheimer’s disease is formation of protein accumulations in the brain.</li>
 +
<li>Alzheimer’s disease is a fatal disease.</li>
 +
<li>Read more <a href="https://2017.igem.org/Team:Linkoping_Sweden/AlzheimersDisease"> here </a> </li>
 +
</ul>
 +
</article>
 +
<!--<div class="flex-text-30">
 +
<a class="content-button" href=""> Read more about alzheimer here </a>
 +
</div> -->
 +
</div>
 +
 +
 +
<div class="flex-flipper">
 +
<article class="flex-text-70">
 +
<p>
 +
The chaperones we will study are GroEL, GroES, DnaK and Trigger factor. GroEL and GroES helps unfolded and misfolded proteins to fold correctly [7]. DnaK helps with disaggregating and with unfolding of misfolded proteins [6]. And Trigger factor helps the protein to remain unfolded during its synthesis [7].
  
 +
</br></br>
 +
To overexpress the chaperones in the bacteria we will use a large plasmid containing all four chaperones and give them unique positively regulated promotors, one for GroEL-GroES, one for DnaK and one for TF. The purpose of this was to easily be able to induce transcription of the specific chaperones in different combinations.
 +
</p>
 +
</article>
 +
<!--<div class="flex-text-30">
 +
<a class="content-button" href="#"> Read more about the different chaperones here </a>
 +
</div>-->
 +
</div>
 +
 +
<div class="flex-flipper">
 +
<article class="flex-text-70">
 +
<p>
 +
The fluorescent markers we will fuse our proteins with are Enhanced-GFP (EGFP) and mNeonGreen. EGFP are a variation of GFP and mNeonGreen is derived from LanYFP [8]. mNeonGreen itself foldes much faster than EGFP and therefore one of these two could be expressed more easily than the other.
 +
</br></br>
 +
For every one of alzheimer-fluorescent fusion protein we will create a plasmid resulting in 4 combinations. These 4 plasmids will use a fourth promotor so that we can control this expression as well.
 +
</p>
 +
</article>
 +
<!--<div class="flex-text-30">
 +
<a class="content-button" href="#"> Read more about the fusion proteins here </a>
 +
</div>-->
 +
</div>
  
           
+
<div class="flex-flipper">
        </div>
+
                                <article class="flex-text-100">
   
+
<p>
       
+
If we succeeds with our project we  will create a model for successfully expressing these aggregate prone fusion proteins. The future of the project would then be to apply this model to other troublesome proteins and get a deeper knowledge about how the chaperones handle them.
 +
</p>
 +
</article>
 +
</div>
 +
 
 +
<div class="flex-flipper">
 +
<article class="flex-text-100">
 +
<h3> Our work process </h3>
 +
<p>
 +
The overview of the project is summarized in figure 1 below. As can be seen in the figure, chaperones and conditions will be tested in a screening process, with the purpose to find the best setup for further detailed studies. The detailed studies will involve modeling with systems biology, where the modeling team will give suggestions on what the laboratory team shall do to achieve the desired task. The flow of data between the laboratory and the modeling team will eventually result in the final data, with is the optimized setup for the expression of our peptides.
 +
</p>
 +
</article>
 +
</div>
 +
 
 +
<div class="flex-img-100">
 +
<img alt="project flow-chart" class="img-center" src="https://static.igem.org/mediawiki/2017/d/dd/T--Linkoping_Sweden--Flowchart_green.png">
 +
</div>
 +
 +
<article class="flex-text-100 text-center">
 +
<p class="text-center"> <i> Figure 1. An overviewing design of the project. </i> </p>
 +
</article>
 +
 +
<article class="flex-text-100 text-break">
 +
</br>
 +
<hr>
 +
                                        <h3> Sources </h3>
 +
<p class="text-small">
 +
1. Alzheimerfonden. Alzheimers sjukdom [Internet]. Cited 2017-06-15. Available from: http://www.alzheimerfonden.se/om_demens/alzheimers_sjukdom [in swedish]
 +
</br> 2. Alzheimerfonden. Lexikon för Alzheimers sjukdom och andra demenssjukdomar [Internet]. Cited 2017-06-15. Available from: http://www.alzheimerfonden.se/om_demens/lexikon [in swedish]
 +
</br> 3. Bloom GS. Amyloid-β and TauThe Trigger and Bullet in Alzheimer Disease Pathogenesis. JAMA Neurol. 2014;71(4):505-508. doi:10.1001/jamaneurol.2013.5847
 +
</br> 4. Baltes C, Princz-Kranz F, Rudin M, Mueggler T. Detecting Amyloid-β Plaques in Alzheimer’s Disease BT  - Magnetic Resonance Neuroimaging: Methods and Protocols. In: Modo M, Bulte JWM, editors. Totowa, NJ: Humana Press; 2011. p. 511–33. Available from: https://doi.org/10.1007/978-1-61737-992-5_26
 +
</br> 5. Kim, W., & Hecht, M. H. (2008). Mutations Enhance the Aggregation Propensity of the Alzheimer’s Aβ Peptide. Journal of Molecular Biology. http://doi.org/10.1016/j.jmb.2007.12.079
 +
</br> 6. Schröder, H., Langer, T., Hartl, F. U., & Bukau, B. (1993). DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. The EMBO Journal, 12(11), 4137–44. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=413706&tool=pmcentrez&rendertype=abstract
 +
</br> 7. Powers, E. T., Powers, D. L., & Gierasch, L. M. (2012). FoldEco: A Model for Proteostasis in E. coli. Cell Reports, 1(3), 265–276. http://doi.org/10.1016/j.celrep.2012.02.011
 +
</br> 8. Shaner, N. C., Lambert, G. G., Chammas, A., Ni, Y., Cranfill, P. J., Baird, M. A., … Wang, J. (2013). A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nature Methods, 10(5), 407–409. http://doi.org/10.1038/nmeth.2413
 +
</p>
 +
</article>
 +
</div> <!-- end of flex-container -->
 +
<aside class="aside aside-l"> </aside>
 +
<aside class="aside aside-r"> </aside>
  
 +
 +
</body>
  
 
</html>
 
</html>
 
{{Linkoping_Sweden/Footer}}
 
{{Linkoping_Sweden/Footer}}

Latest revision as of 13:47, 31 October 2017

Project Description


Amyloid-Beta and Tau are proteins which are known to be linked to the development of Alzheimer's disease, though the cause of the disease is still unknown [1]. They are both found in the brain in and around our neurons, and during Alzheimer's disease they accumulate to form plaques and tangles [2, 3]. The study of these aggregates are often done by staining them(4), which in turn demands an amount of the plaques great enough for staining. To instead study the early development of the aggregates a new method has to be developed. This could be studied by fusing a fluorescent markers like Green Fluorescent Protein (GFP) with the aggregation prone proteins. The problem is that when these marker are combined with the aggregation prone protein they become hard to express in Escherichia coli [5]. Therefore this year’s project is to optimize the expression the fusion proteins containing a fluorescent marker and amyloid-beta or tau in E. Coli.

To optimize the expression of the proteins we will be using overexpressed chaperones. Chaperones are proteins that can help other proteins to fold into their native three-dimensional shape, for example by dissolving aggregates and guiding both unfolded and misfolded proteins to their correctly folded form [6]. During our project we will be using four different chaperones and we will see how different combinations of these affect the expression of Amyloid-beta and Tau respectively.

Quick facts about Alzheimer's disease:


  • Around 60-70 % of people with dementia have Alzheimer’s disease.
  • Around 1 in 100 has Alzheimer’s disease in Sweden.
  • The cause of Alzheimer’s disease is formation of protein accumulations in the brain.
  • Alzheimer’s disease is a fatal disease.
  • Read more here

The chaperones we will study are GroEL, GroES, DnaK and Trigger factor. GroEL and GroES helps unfolded and misfolded proteins to fold correctly [7]. DnaK helps with disaggregating and with unfolding of misfolded proteins [6]. And Trigger factor helps the protein to remain unfolded during its synthesis [7].

To overexpress the chaperones in the bacteria we will use a large plasmid containing all four chaperones and give them unique positively regulated promotors, one for GroEL-GroES, one for DnaK and one for TF. The purpose of this was to easily be able to induce transcription of the specific chaperones in different combinations.

The fluorescent markers we will fuse our proteins with are Enhanced-GFP (EGFP) and mNeonGreen. EGFP are a variation of GFP and mNeonGreen is derived from LanYFP [8]. mNeonGreen itself foldes much faster than EGFP and therefore one of these two could be expressed more easily than the other.

For every one of alzheimer-fluorescent fusion protein we will create a plasmid resulting in 4 combinations. These 4 plasmids will use a fourth promotor so that we can control this expression as well.

If we succeeds with our project we will create a model for successfully expressing these aggregate prone fusion proteins. The future of the project would then be to apply this model to other troublesome proteins and get a deeper knowledge about how the chaperones handle them.

Our work process

The overview of the project is summarized in figure 1 below. As can be seen in the figure, chaperones and conditions will be tested in a screening process, with the purpose to find the best setup for further detailed studies. The detailed studies will involve modeling with systems biology, where the modeling team will give suggestions on what the laboratory team shall do to achieve the desired task. The flow of data between the laboratory and the modeling team will eventually result in the final data, with is the optimized setup for the expression of our peptides.

project flow-chart

Figure 1. An overviewing design of the project.



Sources

1. Alzheimerfonden. Alzheimers sjukdom [Internet]. Cited 2017-06-15. Available from: http://www.alzheimerfonden.se/om_demens/alzheimers_sjukdom [in swedish]
2. Alzheimerfonden. Lexikon för Alzheimers sjukdom och andra demenssjukdomar [Internet]. Cited 2017-06-15. Available from: http://www.alzheimerfonden.se/om_demens/lexikon [in swedish]
3. Bloom GS. Amyloid-β and TauThe Trigger and Bullet in Alzheimer Disease Pathogenesis. JAMA Neurol. 2014;71(4):505-508. doi:10.1001/jamaneurol.2013.5847
4. Baltes C, Princz-Kranz F, Rudin M, Mueggler T. Detecting Amyloid-β Plaques in Alzheimer’s Disease BT - Magnetic Resonance Neuroimaging: Methods and Protocols. In: Modo M, Bulte JWM, editors. Totowa, NJ: Humana Press; 2011. p. 511–33. Available from: https://doi.org/10.1007/978-1-61737-992-5_26
5. Kim, W., & Hecht, M. H. (2008). Mutations Enhance the Aggregation Propensity of the Alzheimer’s Aβ Peptide. Journal of Molecular Biology. http://doi.org/10.1016/j.jmb.2007.12.079
6. Schröder, H., Langer, T., Hartl, F. U., & Bukau, B. (1993). DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. The EMBO Journal, 12(11), 4137–44. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=413706&tool=pmcentrez&rendertype=abstract
7. Powers, E. T., Powers, D. L., & Gierasch, L. M. (2012). FoldEco: A Model for Proteostasis in E. coli. Cell Reports, 1(3), 265–276. http://doi.org/10.1016/j.celrep.2012.02.011
8. Shaner, N. C., Lambert, G. G., Chammas, A., Ni, Y., Cranfill, P. J., Baird, M. A., … Wang, J. (2013). A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nature Methods, 10(5), 407–409. http://doi.org/10.1038/nmeth.2413