Difference between revisions of "Team:INSA-UPS France/test"

 
(95 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
{{INSA-UPS_France/Header_new}}
 
{{INSA-UPS_France/Header_new}}
  
<html>
 
  
<!-- C O N T E N T -->
+
<html>
 
+
<main class="site-main">
 
+
  <main class="site-main">
+
 
   <div class="main_content">
 
   <div class="main_content">
 
   <div class="middle_container">
 
   <div class="middle_container">
Line 14: Line 11:
 
   <div class="section_container">
 
   <div class="section_container">
  
     <section style="display:table;background:none;padding:0px !important;z-index:100; ">
+
     <section style="margin-top:200px;">
      <h1 style="vertical-align:bottom;display:table-cell; width:40%;font-size:40pt;letter-spacing: 0.1em;z-index:120;text-align: center;">Entrepreneurship</h1>
+
      <h1 style="text-align: left;margin-top:-110px;font-size:5vw;letter-spacing: 1vw;">Design</h1>
      <img style="vertical-align:bottom;display:table-cell; width:100%;" src="https://static.igem.org/mediawiki/2017/d/d0/T--INSA-UPS_France--Entrepreneurship_croco.png" alt="">
+
      <img style="width:25%;min-width: 260px; position:absolute;right:0;top:-200px; " src="https://static.igem.org/mediawiki/2017/e/e3/T--INSA-UPS_France--design_croco.png" alt="">
     </section>
+
      <p style="margin-top: 50px;">
 +
        We created a synthetic consortium and demonstrated the power of such approach to fight against cholera disease. Our synthetic consortium involves three microorganism: i) an engineered <i>E. coli</i> to mimic<i> V. cholerae</i> ii) an engineered </i>V. harveyi</i> to sense the presence of the engineered <i>E. coli</i> and in repsonse to produce diacetyl iii) a yeast <i>P. pastoris</i> engineered to detect diacetyl and in response to produce antibacterial peptides (AMPs) in order to trigger lysis of<i> Vibrio </i> species. Here is presented a closer view of the molecular details for each micro-organism as well as an overview of our experimental plan.
 +
 
 +
      </p>
 +
    </section>
 +
 
 +
 
 +
    <section style="background: none;">
 +
      <h1 style="text-align:left;">Overview</h1>
 +
      <img src="https://static.igem.org/mediawiki/2017/b/b8/T--INSA-UPS_France--description_loop.png" alt="" style="width:100%;">
 +
    </section>
 +
 
 +
    <section>
 +
      <h1 style="text-align: left;">Organisms</h1>
 +
      <h2><i>Escherichia coli</i></h2>
 +
      <p>
 +
        For safety reasons, the bacteria gram negative <i>E. coli</i> was chosen to mimic <i> V. cholerae</i>. <i>E. coli</i> is an easy organism to deal with, especially as it is well documented, easy to transform with exogenous DNA and easy to culture. The strain K-12 MG1655 was transformed with a plasmid allowing expression of the protein CqsA from<i> V. cholerae</i>, the enzyme responsible for the synthesis of CAI-1. However, as a proof of concept, we also transformed our <i>E. coli</i> strain with the gene coding for the CqsA of </i>V. harveyi</i>, a non-pathogen strain, producing the molecule C8-CAI-1 (an analogue of the<i> V. cholerae</i> CAI-1)<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/21219472/" target="_blank">1</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/15466044/" target="_blank">2</a></sup>. C8-CAI1 is a carbohydrate chain based displaying an hydroxyl group on carbon 3 and ketone function on carbon 4. The CqsA synthetase from </i>V. harveyi</i> produce C8-CAI-1 from endogenous <i>E. coli</i> (S)-adenosylmethionine (SAM) and octanoyl-coenzyme. <i> cqsA </i> from both <i>V. harveyi</i> and <i> V. cholerae</i> were placed under the pLac promoter and we used plasmid pSB1C3 to maintain compatibility with the iGEM registry.
 +
 
 +
 
 +
 
 +
 
 +
</p>
 +
      <img src="https://static.igem.org/mediawiki/2017/f/fc/T--INSA-UPS_France--design_plasmid-coli.png" alt="" style="width: 10%; position:absolute;bottom:0; left:10%;">
 +
      <p style="margin-left:15%;">
 +
      </p>
 +
     </section>
 +
 
 +
 
 
      
 
      
 
     <section>
 
     <section>
       <h1>Commercialize a novel system for saving lives</h1>
+
       <h2><i>V. harveyi</i></h2>
 
       <p>
 
       <p>
         With such an innovative system of synthetic communication between microorganisms dedicated to fight cholera, an ongoing human health issue, it would be a nonsense not to exploit it for saving lives.  
+
         <i>V. harveyi</i> is a gram negative bacteria, well studied for its quorum sensing system. This bacteria displays its own pathway for the detection of C8-CAI-1. The gene <i>cqsS</i> encodes for the sensor C8-CAI-1 and a single point mutation in its sequence allows <i>V. harveyi</i> to detect both C8-CAI-1 and CAI-1 from <i> V. cholerae</i>. To avoid auto-activation of <i>V. harveyi</i>, we used the JMH626 strain, in which the <i> cqsA </i> gene, coding the enzyme involved in the production C8-CAI-1, has been deleted. Furthermore, additional genes <i>luxS</i> and <i>luxS</i> coding for key enzymes involved in the expression of other quorum sensing molecules have been deleted. All these mutations make the strain JMH626 specific for detecting non-endogenous C8-CAI-1. <i>V. harveyi</i> is also able to regulate the activation of genes under the control of the promoter pQRR4, in a C8-CAI-1 concentration dependent manner <sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/21219472/" target="_blank">1</a></sup>. At high C8-CAI-1 concentration, the promoter is inactivated. Thus we added the inverter tetR/pTet to activate a gene of interest in presence of C8-CAI-1. The gene of interest is <i>als</i> that encodes for the acetolactate synthase (Als). this enzyme synthetized diacetyl from pyruvate<sup><a href="http://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=vhr00650&keyword=diacetyl" target="_blank">3</a></sup>. Diacetyl is our ransmitter molecule (Figure 1).
 
       </p>
 
       </p>
       <p>
+
       <img src="https://static.igem.org/mediawiki/2017/f/fa/T--INSA-UPS_France--design_plasmid-harveyi.png" alt="" style="width: 10%; position:absolute;bottom:0; left:10%;">
        In this part of the project, our team developed an approach to commercialize our system. To achieve this goal, we first collected <b>testimonies</b> on two topics:
+
       <p style="margin-left:15%;">
      </p>
+
      The pBBR1MCS-4<sup><a href="http://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=vhr00650&keyword=diacetyl" target="_blank">4</a></sup>, a broad host range plasmid, was chosen to allow the transfer of the system into <i>V. harveyi</i> by conjugation (i.e. this is the only way to modify the <i>V. harveyi</i> chassis).  
      <ul>
+
        <li>a reflexion on the prototype:  how can we best adapt and optimize our system to the current cholera epidemics?</li>
+
        <li>an entrepreneurship reflexion: how to set up a company? What shall be our values?</li>
+
      </ul>
+
      <p>
+
        We therefore met successful entrepreneurs in the field of biotechnology and business developer (Marc Lemonnier from the start-up Antabio, Pierre Monsan from Toulouse White Biotechnology, Pierre-Alain Hoffmann from the CRITT Bio-Industries), people that developed a business to treat water, especially from V. cholerae (Christophe Campéri-Ginestet from Sunwaterlife), humanitarians from NGOs that daily face cholera (Claire Salvador from Doctors Without Borders and Alama Keita from UNICEF) and finally, more generally to Westerners. These rich discussions have helped us to deeply understand the cholera context and to adapt our positioning in a viable way for us and sustainable for our targeted users.
+
      </p>
+
       <p>
+
Consequently, a <b>scope statement</b> has been established, detailing the functional and technical features of our product.
+
      </p>
+
      <p>
+
        In parallel, an <a href="https://2017.igem.org/Team:INSA-UPS_France/HP/Gold_Integrated">ethical matrix</a> was built to highlight the important features to work on and to provide a decision tool so that our system is ethically acceptable.
+
      </p>
+
      <p>
+
        Then, we had to conceive the device following as closely as possible the scope statement: How to best contain GMMs? How to make user-friendly a device? What materials can be used to combine quality and price? Once again, the testimonies and the ethical matrix helped us to reflect about that. Besides, diffusion tests were carried out by our team to choose the best materials of the device. After answering these questions, the device containing our system was modeled and printed in 3D thanks to Jean-Jacques Dumas help, a professional in the design of industrial products.  
+
 
+
 
       </p>
 
       </p>
 +
<p style="margin-left:15%;">
 +
In conclusion, we designed a <i>V. harveyi</i> strain enable to detect both exogenous CAI-1 or C8-CAI-1, and to produce diacetyl as a molecular response.
 +
  </p>
 +
    </section>
 +
   
 +
    <section>
 +
      <h2><i>P. pastoris</i></h2>
 
       <p>
 
       <p>
         Finally, once our product created, our team developed a <b>business plan</b> in order to project ourselves into a business creation project, define the action plan to be implemented to exploit this opportunity and how that will result in financial terms. Here, we were assisted by Pierre-Alain Hoffmann, Deputy Director of the business incubator named CRITT Bio-Industries, who has a lot of knowledge in business creation and development.
+
         <i>V. harveyi</i> cannot not be used as the effector since production of antimicrobial peptides (AMPs) is lethal for <i> Vibrio </i> species. <i>P. pastoris</i> is a yeast commonly used in academic laboratories and industry for its high potential to produce protein. In addition, yeasts were previously described to produce a wide range of AMPs <sup><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494115/
 +
" target="_blank">5</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/23624708" target="_blank">6</a></sup>. Finally, a system allowing efficient communication between yeast and prokaryotes has already been decribed i.e. the diacetyl-dependant Odr-10 receptor system<sup><a href="https://2013.igem.org/Team:SCUT" target="_blank">7</a></sup>. This system allows the expression of targets genes under the control of pFUS1 via the Ste12 pathway (Figure 2). For all these reason, we thus chose <i>P. pastoris</i>. We used the constitutive pGAP promoter to express the receptor Odr-10 in <i>P. pastoris</i>
  
 
       </p>
 
       </p>
       <figure>
+
       <img src="https://static.igem.org/mediawiki/2017/6/67/T--INSA-UPS_France--design_plasmid-pichia.png" alt="" style="width: 10%; position:absolute;bottom:0; left:10%;">
        <img src="https://static.igem.org/mediawiki/2017/f/f2/T--INSA-UPS_France--Entrepreneurship_plan.png" style="max-width: 400px;" alt="">
+
     
        <figcaption>Entrepreneurship approach to commercialize our project Croc&rsquo;n Cholera </figcaption>
+
<p>
      </figure>
+
To kill<i> V. cholerae</i>, we looked for a new and innovative antibiotic solution to limit the risk of acquired-resistance. We decided to use AMPs, that are small membrane disrupting molecules toxic for a large panel of microorganisms<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/27837316" target="_blank">8</a></sup>. Here we selected AMPs from crocodiles. Crocodiles live in harsh environment and are known to possess an impressive defence system, that allows them to catch very few disease and antimicrobial peptides are part of it<sup><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3490821/" target="_blank">9</a></sup>. We focused on 3 different AMPs described to have the best efficiency against <i>V. cholerae</i>. Those AMPs are Leucrocin I<sup><a href="http://www.sciencedirect.com/science/article/pii/S0145305X10003071?via%3Dihub" target="_blank">10</a></sup>, D-NY15<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/24192554" target="_blank">11</a></sup> and cOT2<sup><a href="http://www.sciencedirect.com/science/article/pii/S0005273617300433" target="_blank">12</a></sup>. Leucrocine I possess one cationic charge for 7 amino acids. D-NY15 is its optimized counterpart with 4 cationic charges and a sequence of 15 amino-acid long. Finally, cOT2 is 29 amino acid long and possesses 6 cationic charges. These AMPs were placed under control of the pGAP constitutive promoter for preliminary tests and under pFUS1 promoter to promote their expression in response to diacetyl. The genetic constructions were inserted into the  integrative pPICZα plasmid i.e. a good plasmid for protein production. The signal peptide α-factor was fused to the AMPs to allow for secretion of the peptides.
 +
</p>
 +
  <p style="margin-left:15%;">
 +
The action of these AMPs is the last event of our synthetic consortium.
 +
</p>
 
     </section>
 
     </section>
  
 
     <style>
 
     <style>
       .overview_pe{    
+
      /* ASIDE NAV */
        text-align: center;
+
       .left_container{
         display:table;
+
         width:35%;
         table-layout: fixed;
+
         float:left;
 
       }
 
       }
 
+
       .left_container img{
       .pe_category_ov{
+
        display: table-cell;
+
        height:100%;
+
        vertical-align: top;
+
        width:20%;
+
      }
+
      .pe-category-inside{
+
        background:rgba(255,255,255,0.2);
+
        border-radius: 20px;
+
        overflow: hidden;
+
        margin:10px;
+
        cursor:pointer;
+
        border:solid 3px transparent;
+
      }
+
      .pe-category-inside img{
+
 
         width:100%;
 
         width:100%;
      }
 
      .pe-category-inside p{
 
        padding:20px;
 
        text-align: justify;
 
      }
 
      .pe-category-inside.category-selected{
 
        border: solid 3px black;
 
 
       }
 
       }
  
      .content-right{
 
        width:80%;
 
        margin-left:20%;
 
      }
 
      .summary-left{
 
        width:18%;
 
        float:left;
 
      }
 
      .summary-left{
 
        cursor:pointer;
 
      }
 
      .summary-left.summary-fixed{
 
        position:fixed;
 
        top:140px;
 
        width:10%;
 
      }
 
 
     </style>
 
     </style>
  
  
     <div class="overview_pe">
+
     <h1 style="font-family: 'Quicksand', sans-serif;font-size:34pt;text-align: left;margin:20px 10%;">Modules &amp; Parts</h1>
      <div class="pe_category_ov">
+
 
        <div class="pe-category-inside">
+
    <div class="left_container">
          <a href=""><h2>Testimonies</h2></a>
+
    <div class="left_container__inside">
        </div>
+
       <img style="height:100%;" src="https://static.igem.org/mediawiki/2017/a/a8/T--INSA-UPS_France--design_blupuriline.png" alt="">
      </div>
+
    </div>
      <div class="pe_category_ov">
+
        <div class="pe-category-inside category-selected" data-target="1">
+
          <h2>Scope Statement</h2>
+
        </div>
+
       </div>
+
      <div class="pe_category_ov">
+
        <div class="pe-category-inside">
+
          <a href=""><h2>Device Conception</h2></a>
+
        </div>
+
      </div>
+
      <div class="pe_category_ov">
+
        <div class="pe-category-inside" data-target="2">
+
          <h2>Business Plan</h2>
+
        </div>
+
      </div>
+
 
     </div>
 
     </div>
  
    <style>
+
    <style>
      .category-content.visible{
+
    .right_container{
         display:block;
+
         width:60%;
      }
+
        margin-left:40%;
       .category-content{
+
    }
        display: none;
+
    section ul{
      }
+
       list-style-position: inside;
 +
    }
 +
 
 +
    .invisible-image{
 +
      visibility: hidden;
 +
    }
 
     </style>
 
     </style>
 +
 
 +
   
 +
    <div class="right_container">
  
     <div class="category-content visible" id="1">
+
     <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt="" style="width:30%;">
      <div class="summary-left">
+
    <section class="modules_design" style="border:solid 5px #ae3d3d;margin-top:0px;margin-bottom: 0px;">
        <ul>
+
       <h2 style="color:#ae3d3d;">Sense</h2>
          <li data-number="1" style="list-style-type: none;">Scope Statement</li>
+
          <li data-number="1">1- Project presentation</li>
+
          <li data-number="2">2- Project requirements</li>
+
          <li data-number="3">Conclusion</li>
+
          <li data-number="4">References</li>
+
        </ul>
+
       </div>
+
    <div class="content-right">
+
    <section id="sc1">
+
      <h1>Chapter 1 - Project presentation</h1>
+
      <h2>Context</h2>
+
 
       <p>
 
       <p>
        Cholera is a diarrhea-causing-disease that has affected the entire world through many epidemics throughout history. Today it still strikes developing countries, war-torn countries or those affected by natural disasters. It is contracted after ingestion of water contaminated with the pathogenic bacterium <i>Vibrio cholerae</i>. The main cause of a cholera epidemic is the lack of drinking water and sanitation resources in affected countries. According to the WHO, between 1.3 and 4 million cases are reported worldwide each year and 21,000 to 143,000 deaths.
+
          To create our sensor strain, we took advantage of the intraspecies quorum sensing of <i>V. cholerae</i>: the <b>CAI-1/CqsS system</b>. To mimic this pathway, we made an <i>E. coli</i> producer strain of quorum-sensing molecules (i.e. CAI-1 and C8-CAI-1) and we express a modified CqsS* receptor in <i>V. harveyi</i> that can sense both CAI-1 and C8-CAI-1.
 
       </p>
 
       </p>
 +
 
 +
    </section>
 +
    <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt="" style="width:30%;">
 +
    <section class="modules_design" style="border:solid 5px #468789;margin-top:0px;margin-bottom: 0px;">
 +
      <h2 style="color:#468789;">Transmit</h2>
 
       <p>
 
       <p>
        Rehydratation is a very efficient treatment to cure the patients, however some people can not get this treatment early enough because they live in remote areas or can not have access to drinkable water. Thus a solution to treat water in these areas has to be found. Current preventive solutions (sterilizing filtration, water treatment by chlorination, etc.) are expensive or difficult to set up.
+
      In response to quorum sensing molecules, the sensor strain activates the pathway leading to the inhibition of the <i>als</i> gene placed under the control of <b>pQRR4 promoter</b>. The signal is inverted by the <b>tetR/pTet</b> system to trigger <i>als</i> gene expression and thus diacetyl production. Diacetyl in turn activates the <b>Odr-10 receptor</b> implemented in the yeast <i>Pichia pastoris</i>.
 
       </p>
 
       </p>
 
+
     
       <h2>Purpose of the project</h2>
+
   
 +
          </section>
 +
    <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt=""  style="width:30%;">
 +
    <section class="modules_design" style="border:solid 5px #f37b6f;margin-top:0px;margin-bottom: 0px;">
 +
       <h2 style="color:#f37b6f;">Respond</h2>
 
       <p>
 
       <p>
        Our team wants to make a new system of detection and purification of water contaminated with the pathogenic bacterium <i>Vibrio cholerae</i>. This device will consist of two elements:
+
    Once Odr-10 receptor sensed diacetyl, the <b>pFUS1</b> promoter triggers expression of AMPs. After excretion, these AMPs can disrupt the membrane of the <i>Vibrio</i> species
      </p>
+
      <ul>
+
        <li>A sensor to detect the presence of <i>V. cholerae</i> in water consisting in engineered <i>Vibrio harveyi</i>.</li>
+
        <li>
+
          An effector to secrete a cocktail of antimicrobial peptides (AMPs) consisting in engineered <i>Pichia pastoris</i>. In Nature, these AMPs are successfully used by the crocodile immune system against bacteria. The peptides used in our system have a broad spectrum of action and are particularly effective against <i>V. cholerae</i>.</li>
+
      </ul>
+
      <p>
+
        The device will be designed for local populations. Thus, the goal is to set up a system as suitable as possible to their users for the purification of water contaminated with cholera.
+
 
       </p>
 
       </p>
  
      <h2>Organization of the project</h2>
 
      <p>
 
        This project is run by a group of nine students from different universities: Paul Sabatier University (Toulouse), INSA Lyon and INSA Toulouse. It is supervised by St&eacute;phanie Heux and Brice Enjalbert, researchers at LISBP (Toulouse), assisted by eleven other researchers. The team was formed in January 2017 and will work on this project until November 2017, date of the final restitution at the MIT, Boston.
 
      </p>
 
 
     </section>
 
     </section>
 +
    <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt=""  style="width:30%;">
  
    <section id="sc2">
 
      <h1>Chapter 2 - Project requirements</h1>
 
  
      <h2>Functional specifications</h2>
 
      <h3>Detection of <i>Vibrio cholerae</i></h3>
 
  
      <h4>Description</h4>
 
      <p>
 
        Our system must <b>detect the presence of <i>Vibrio cholerae</i></b> in water so that the antimicrobial peptides (AMPs) are spread in flow only if it contains <i>Vibrio cholerae</i>. In fact, the production of AMPs has to be controlled for two reasons. On the one hand, if water is drinkable, there is no need for AMPs production. On the other hand, other microorganisms (either from the user microbiota or the nearby environment) won&rsquo;t develop peptide resistance.
 
      </p>
 
      <h4>Constraints</h4>
 
      <p>
 
        To develop the disease, the minimal quantity of <b>V. cholerae</b> cells a human being must ingest  is about 10<sup>4</sup> cells, in one dose of water<sup>1, 2</sup>. The constraints are the following:
 
      </p>
 
      <ul>
 
        <li>to <b>detect this concentration</b> of cells </li>
 
        <li>to <b>activate</b> AMP production for water purification <b>only starting from this concentration</b></li>
 
      </ul>
 
      <h4>Priority</h4>
 
      <p>
 
        Detection is not the top priority of our system. Purification could work continuously but the implementation of this function is better for safety reason. Moreover, according to the testimonies, the detection function of our system is a new and strong point in the treatment of water contaminated with <i>V. cholerae</i>.
 
      </p>
 
  
       <h3>Purification of water</h3>
+
    </div>
       <h4>Description</h4>
+
 
 +
    <section style="padding-left:20%;">
 +
       <h1 style="text-align: left;">Experimental plan</h1>
 +
       <img src="https://static.igem.org/mediawiki/2017/b/b3/T--INSA-UPS_France--design_coli.png" alt="" style="width:15%; position:absolute; top:10px; left:10px;">
 +
      <h2><i>E. coli</i></h2>
 
       <p>
 
       <p>
         The other aim of our project is to <b>wipe <i>V. cholerae</i> out of water</b>. The system has to produce antimicrobial peptides when water is contaminated with <i>V. cholerae</i>, i.e. when water contains amounts of microorganism superior to the minimum toxic concentration (about 10<sup>4</sup> cells in one dose of water<sup>1</sup>). The AMPs used for the project have a broad spectrum of action against microorganisms, but they are particularly efficient against <i>V. cholerae</i> (Leucrocine I : MIC = 0.156 &micro;g/mL<sup>3</sup> (&gt;52&micro;g/mL<sup>4</sup>); D-NY15: MIC = 27 &micro;g/mL<sup>4</sup>; cOT2: MIC = 29.22 &micro;g/mL<sup>5</sup>). The goal is to produce these peptides until <i>V. cholerae</i> is wiped out and water becomes drinkable or usable without being dangerous.
+
         Quorum sensing molecule production
 
       </p>
 
       </p>
      <h4>Constraints</h4>
 
 
       <ul>
 
       <ul>
         <li>The AMPs have to be correctly <b>synthesized</b> and <b>secreted</b>.</li>
+
         <li>Measurement of C8-CAI-1 & CAI-1in supernateant by NMR</li>
         <li>They must be <b>stable</b> enough to keep their activities in muddy water for example. </li>
+
         <li>Bioluminescence assay</li>
         <li>The AMPs must properly <b>diffuse</b> to target bacteria. </li>
+
         </ul>
        <li>Several <b>factors</b> have to be taken into account: temperature in affected countries (around 40&deg;C (104&deg;F)), the viscosity of water, its pH, etc.</li>
+
    </section>
      </ul>
+
      <h4>Priority</h4>
+
      <p>
+
        Purification of water contaminated with <i>V. cholerae</i> is the central part of our project: the priority is high. Without it,  which is the first goal of the project, the contract won’t be fulfilled.
+
      </p>
+
  
      <h2>Technical specifications</h2>
 
      <h3>Safety</h3>
 
      <h4>Ingestion of the GMMs</h4>
 
      <p>
 
        The exchanges of molecules between the compartment containing GMMs and water must be feasible but the GMMs must not go into water. Actually, on the one hand, the CAI-1 molecule of the <i>V. cholerae</i> quorum sensing must diffuse to the compartment containing the detecting bacteria, <i>V. harveyi.</i> On the other hand, the AMPs produced by <i>P. pastoris</i> must go from the compartment containing the GMMs to the water contaminated with <i>V. cholerae</i>. However, class I <b>GMMs must be kept out of the purified water</b>.
 
      </p>
 
      <h4>Spreading of the GMMs</h4>
 
      <p>
 
        GMMs must <b>not be spread in the environment</b>. The compartment containing them must be impact- and break-resistant. People need to be aware that GMMs should not be disseminated in the environment.
 
      </p>
 
      <h4>Human toxicity of the AMPs</h4>
 
      <p>
 
        AMPs will be produced and released in water with the aim of wiping out <i>V. cholerae</i>. The amount of AMP remaining in water should <b>not be toxic to humans</b>. Experimentations must be done to know the quantity of AMPs in the water supposed to be drunk and especially their effects on epithelial cells (esophagus, stomach, intestines, etc.).
 
      </p>
 
      <h4>Limiting media leaks</h4>
 
      <p>
 
        The proportion of nutrients should be correctly calculated so that they are all consumed during the lifetime of GMMs. An excess of nutrients in the compartment could then diffuse into the water and cause the emergence of new microorganisms.
 
      </p>
 
  
      <h3>Environmental</h3>
+
   
       <h4>Waste management of the GMMs</h4>
+
    <section style="padding-left:20%;">
 +
      <img src="https://static.igem.org/mediawiki/2017/5/5c/T--INSA-UPS_France--design_harveyi.png" alt="" style="width:15%; position:absolute; top:10px; left:10px;">
 +
       <h2><i>V. harveyi</i></h2>
 
       <p>
 
       <p>
         As GMMs are used in this system, it is essential to think about their waste management. After the use of the GMMs for the detection of <i>V. cholerae</i> and the purification of water, they must be killed before throwing them away. The questions are: <b>how to kill them and where to dump the GMMs?</b>
+
         Conjugation
 
       </p>
 
       </p>
       <h4>Recyclable plastic</h4>
+
       <ul>
 +
        <li> Conjugation test using a plasmid expressing RFP</li>
 +
        </ul>
 
       <p>
 
       <p>
         In order to have an eco-friendly approach, the plastic used for the device must be recyclable.
+
         Diacetyl production
 
       </p>
 
       </p>
 
+
       <ul>
       <h3>Material</h3>
+
         <li> Measurement by NMR of diacetyl in supernateant of <i> E. coli</i> and </i>V. harveyi</i> producing strains </li>
      <h4>GMMs storage</h4>
+
      <p>
+
         GMMs (<i>V. harveyi</i> and <i>P. pastoris</i>) must be <b>confined in the same compartment</b> because they need to interact with each other. The microorganisms must be kept in this compartment. If they are freeze-dried, the water to be treated must be able to rehydrate the microorganisms. Therefore, water must be able to enter into the compartment.
+
      </p>
+
      <p>
+
        To sum up, the compartment containing the microorganisms must hold them back but also, allow exchanges of CAI-1 molecules, AMPs and water between the two compartments of the device.
+
      </p>
+
      <h4>Easy to use</h4>
+
      <p>
+
        In developing countries, war-torn countries or those affected by natural disasters, people <b>cannot possess a complex device</b> from both a scientific and technical point of view.
+
      </p>
+
      <h4>Transportable</h4>
+
      <p>
+
        The device must be <b>easy to transport</b> in order to reach the populations of remote villages or in conditions of natural disaster and armed conflict.
+
      </p>
+
      <h4>Treatment speed</h4>
+
      <p>
+
        The treatment <b>speed</b> must be reasonable compared to the volume of treated water.
+
      </p>
+
      <h4>Water treatment capacity</h4>
+
      <p>
+
        The water treatment <b>capacity</b> must be adapted to the device function and to the capacity of the microorganisms to detect and treat the water. According to Alama Keita (UNICEF), our device must be able to purify around 11,025 L of water in a week for a village.
+
      </p>
+
      <h4>Strength</h4>
+
      <p>
+
        The device has to be built with robust materials (refer to paragraph &ldquo;Spreading of the GMMs&rdquo;).
+
      </p>
+
      <h4>Water taste</h4>
+
      <p>
+
        Water treatment <b>must not modified its taste</b> so that the product can be easily accepted.
+
      </p>
+
 
+
      <h3>Economical</h3>
+
      <p>
+
        The <b>price</b> must be adapted to similar options offered on the market.       
+
      </p>
+
      <p>
+
        Chloramine tablets are often used to treat water. In order to be competitive on the market, it is necessary to bring our price into line with our competitors. Therefore, to give us an order of magnitude, cost of chloramine tablets to treat the same volume of water as our product can be calculated.
+
      </p>
+
      <p>
+
        The product &ldquo;Chloramine 60 Tablets from SANOFI AVENTIS BELGIUM&rdquo;<sup>6</sup> contains 60 tablets of chloramine and costs 3.69&euro;. According to the instructions, 1 to 4 tablets must be dissolved in 25L of water, depending on the water pollution degree. One tablet costs 3.69/60=0.0615&euro;. Thus, treating 25 L of water costs up to 246cts (4 tablets) and up to 9.84cts for 1L.
+
      </p>
+
      <p>
+
        To conclude, treating water with our system should not cost more than 10cts per L.
+
      </p>
+
    </section>
+
 
+
    <section id="sc3">
+
      <h1>Conclusion about the scope statement</h1>
+
      <p>
+
        To conclude, the system must be able to detect <i>V. cholerae</i> and release AMPs from a threshold concentration of pathogenic bacterium in water. The water treatment aspect thanks to AMPs is essential.
+
      </p>
+
      <p>
+
        The device that we have to create must gather technical criteria from an environmental, safety, material and economic point of view that we have listed in the scope statement. These specifications were defined taking into account the advice we received from the people we met throughout our project.
+
      </p>
+
      <p>
+
        The design of the device will have to best fit these constraints to be <b>accepted by our potential future customers.</b>
+
      </p>
+
    </section>
+
 
+
    <section id="sc4">
+
      <h1>References</h1>
+
      <ol>
+
        <li>
+
          Baron, S. (Ed.). (1996). <i>Medical Microbiology</i> (4th ed.). Galveston (TX): University of Texas Medical Branch at Galveston.
+
        </li>
+
        <li>
+
          Nelson et al. (2009). <i>Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales.</i> Front Ecol Environ, 7(1): 4-11.         
+
        </li>
+
        <li>
+
          Pata, S., Yaraksa, N., Daduang, S., Temsiripong, Y., Svasti, J., Araki, T., &amp; Thammasirirak, S. (2011). <i>Characterization of the novel antibacterial peptide Leucrocin from crocodile (Crocodylus siamensis) white blood cell extracts. Developmental and Comparative Immunology, 35</i>(5), 545&ndash;553. https://doi.org/10.1016/j.dci.2010.12.011
+
        </li>
+
        <li>
+
          Prajanban, B.-O., Jangpromma, N., Araki, T., &amp; Klaynongsruang, S. (2017). <i>Antimicrobial effects of novel peptides cOT2 and sOT2 derived from Crocodylus siamensis and Pelodiscus sinensis ovotransferrins.</i> Biochimica Et Biophysica Acta<, <i>1859</i>(5), 860&ndash;869. https://doi.org/10.1016/j.bbamem.2017.01.035
+
        </li>
+
        <li>
+
          Yaraksa, N., Anunthawan, T., Theansungnoen, T., Daduang, S., Araki, T., Dhiravisit, A., &amp; Thammasirirak, S. (2014). <i>Design and synthesis of cationic antibacterial peptide based on Leucrocin I sequence, antibacterial peptide from crocodile (Crocodylus siamensis) white blood cell extracts.</i> The Journal of Antibiotics, <i>67</i>(3), 205&ndash;212. https://doi.org/10.1038/ja.2013.114
+
        </li>
+
        <li>
+
          <a href="http://www.newpharma.be/pharmacie/sanofi-aventis-belgium/980/chloramine-60-comprimes.html">Newpharma. <i>Chloramine 60 Comprimés de SANOFI AVENTIS BELGIUM.</i> </a>
+
        </li>
+
      </ol>
+
    </section> 
+
 
+
 
+
    </div>
+
  </div>
+
 
+
    <div class="category-content" id="2">
+
      <div class="summary-left">
+
        <ul>
+
          <li data-number="1" style="list-style-type: none;">Business Plan</li>
+
          <li data-number="2">1- Status and organization</li>
+
 
         </ul>
 
         </ul>
      </div>
 
    <div class="content-right">
 
    <section id="bp1">
 
      <h1>Business Plan</h1>
 
      <p>
 
        Now that we have defined in more detail the prototype of our product, we wanted to carry out the entrepreneurship approach by making a complete business plan. A prerequisite to starting a new business is to analyze the market and find the best way to get into it. We would like to warmly thank Mr. Hoffmann, deputy director of CRITT Bio-Industries who helped us in the development of this business plan. He was able to enlighten us on certain points thanks to his expertise in the creation and development of companies in the field of biotechnology processes.
 
      </p>
 
 
     </section>
 
     </section>
 
+
   
     <section id="bp2">
+
     <section style="padding-left:20%;">
       <h1>Chapter I - Status and organization </h1>
+
       <img src="https://static.igem.org/mediawiki/2017/2/2d/T--INSA-UPS_France--design_pichia.png" alt="" style="width:15%; position:absolute; top:10px; left:10px;">
       <h2> Legal status</h2>
+
       <h2><i>P. pastoris</i></h2>
 
       <p>
 
       <p>
        Our project would be developed at first as a start-up. Some legal statuses are more adapted to start-ups than others. The french status SARL (Soci&eacute;t&eacute; A Responsabilit&eacute; Limit&eacute;e, corresponding to Limited Liability Company) has some drawbacks: the capital is shared in social parts, without any distinctions of profiles. New associates cannot simply join the social parts: complex procedures are needed. The status is not enough flexible for the creation of a start-up.
+
          Diacetyl detection
 
       </p>
 
       </p>
 +
      <ul>
 +
        <li> <i> In vivo </i> functionality of pGAP using RFP reporter system </li>
 +
        <li><i> In vivo </i> functionality of ODR10/pFUS1 system  test using RFP reporter system </li>
 +
      </ul>
 
       <p>
 
       <p>
         In contrast, the status of SAS (Soci&eacute;t&eacute; par Actions Simplifi&eacute;e, which has no english equivalent but could be translated as a &ldquo;simplified limited liability company&rdquo;) seems much more flexible and suitable to start-ups. Different social parts associated with different rights are available, the governance body can be modified and finally, there are lots of liberties for status definitions as well as for the arrival of new associates.
+
         Antimicrobial peptides (AMPs)
 
       </p>
 
       </p>
 +
      <ul>
 +
        <li>Verification of AMP genes expression by RT-PCR</li>
 +
        <li>Verification of AMPs activity by toxicity assay</li>
 +
      </ul>
 
     </section>
 
     </section>
 
+
     <!-- fin section -->  
     </div>
+
  </div>
+
 
+
  
 
   </div>
 
   </div>
Line 385: Line 216:
 
       <a href="https://www.veolia.com/en"><img src="https://static.igem.org/mediawiki/2017/9/91/T--INSA-UPS_France--Logo_veolia.png" alt=""></a>
 
       <a href="https://www.veolia.com/en"><img src="https://static.igem.org/mediawiki/2017/9/91/T--INSA-UPS_France--Logo_veolia.png" alt=""></a>
 
       <a href="https://www.france-science.org/-Homepage-English-.html"><img src="https://static.igem.org/mediawiki/2017/1/1a/T--INSA-UPS_France--Logo_ambassade.jpg" alt=""></a>
 
       <a href="https://www.france-science.org/-Homepage-English-.html"><img src="https://static.igem.org/mediawiki/2017/1/1a/T--INSA-UPS_France--Logo_ambassade.jpg" alt=""></a>
 +
      <a href="https://www-lbme.biotoul.fr/"><img src="https://static.igem.org/mediawiki/2017/5/51/T--INSA-UPS_France--Logo_LBME.png" alt=""></a>
 +
      <a href="https://www6.toulouse.inra.fr/metatoul_eng/"><img src="https://static.igem.org/mediawiki/2017/1/16/T--INSA-UPS_France--Logo_metatoul.png" alt=""></a>
 
       <a href="http://www.univ-tlse3.fr/associations-+/do-you-have-a-project--378066.kjsp?RH=1238417866394"><img src="https://static.igem.org/mediawiki/2017/5/5b/T--INSA-UPS_France--Logo_fsdie.png" alt=""></a>
 
       <a href="http://www.univ-tlse3.fr/associations-+/do-you-have-a-project--378066.kjsp?RH=1238417866394"><img src="https://static.igem.org/mediawiki/2017/5/5b/T--INSA-UPS_France--Logo_fsdie.png" alt=""></a>
 
       <a href="http://en.univ-toulouse.fr/our-strengths"><img src="https://static.igem.org/mediawiki/2017/9/93/T--INSA-UPS_France--Logo_fsie.jpg" alt=""></a>
 
       <a href="http://en.univ-toulouse.fr/our-strengths"><img src="https://static.igem.org/mediawiki/2017/9/93/T--INSA-UPS_France--Logo_fsie.jpg" alt=""></a>
Line 404: Line 237:
 
   </main>
 
   </main>
  
 
+
<!--
 
+
   -->
 
+
<!-- C O N T E N T -->
+
<script type="text/javascript">
+
   $(document).on("click",".pe-category-inside", function(){
+
      var target = $(this).data("target");
+
      $('.pe-category-inside').removeClass('category-selected');
+
      $(this).addClass('category-selected');
+
      $('.category-content').removeClass("visible");
+
      $("#"+target).addClass("visible");
+
      console.log("target: "+target+ "pos: "+($("#"+target).position().top));
+
      // Smooth scroll to the category
+
      var c_0 = $("#"+target).position().top-70;
+
      $('.main_content').animate({scrollTop: c_0 }, 1000);
+
 
+
    });
+
</script>
+
 
+
<script type="text/javascript">
+
  $('.main_content').scroll(function(){
+
    var pos = $('.main_content').scrollTop();
+
    // Scope Statement
+
    if($('*[data-target="1"]').hasClass('category-selected')){
+
      if(pos>$("#sc1").position().top-70){
+
        $('.summary-left ul li').css("font-weight", "normal");
+
        $('*[data-number="1"]').css("font-weight", "bold");
+
        if(pos>$("#sc2").position().top-70){
+
          $('.summary-left ul li').css("font-weight", "normal");
+
          $('*[data-number="2"]').css("font-weight", "bold");
+
          if(pos>$("#sc3").position().top-70){
+
            $('.summary-left ul li').css("font-weight", "normal");
+
            $('*[data-number="3"]').css("font-weight", "bold");
+
            if(pos>$("#sc4").position().top-70){
+
              $('.summary-left ul li').css("font-weight", "normal");
+
              $('*[data-number="4"]').css("font-weight", "bold");
+
            }
+
          }
+
        }
+
      }
+
      // FIXED ASIDE NAV
+
      if(pos>$("#sc1").position().top){
+
        $('.summary-left').addClass("summary-fixed");
+
      }
+
      else{
+
        $('.summary-left').removeClass("summary-fixed");
+
      }
+
    }
+
  });
+
    </script>
+
  
 
</html>
 
</html>
 
{{INSA-UPS_France/General_script}}
 
{{INSA-UPS_France/General_script}}
 
{{INSA-UPS_France/Header_script}}
 
{{INSA-UPS_France/Header_script}}

Latest revision as of 19:36, 31 October 2017


Design

We created a synthetic consortium and demonstrated the power of such approach to fight against cholera disease. Our synthetic consortium involves three microorganism: i) an engineered E. coli to mimic V. cholerae ii) an engineered V. harveyi to sense the presence of the engineered E. coli and in repsonse to produce diacetyl iii) a yeast P. pastoris engineered to detect diacetyl and in response to produce antibacterial peptides (AMPs) in order to trigger lysis of Vibrio species. Here is presented a closer view of the molecular details for each micro-organism as well as an overview of our experimental plan.

Overview

Organisms

Escherichia coli

For safety reasons, the bacteria gram negative E. coli was chosen to mimic V. cholerae. E. coli is an easy organism to deal with, especially as it is well documented, easy to transform with exogenous DNA and easy to culture. The strain K-12 MG1655 was transformed with a plasmid allowing expression of the protein CqsA from V. cholerae, the enzyme responsible for the synthesis of CAI-1. However, as a proof of concept, we also transformed our E. coli strain with the gene coding for the CqsA of V. harveyi, a non-pathogen strain, producing the molecule C8-CAI-1 (an analogue of the V. cholerae CAI-1)1,2. C8-CAI1 is a carbohydrate chain based displaying an hydroxyl group on carbon 3 and ketone function on carbon 4. The CqsA synthetase from V. harveyi produce C8-CAI-1 from endogenous E. coli (S)-adenosylmethionine (SAM) and octanoyl-coenzyme. cqsA from both V. harveyi and V. cholerae were placed under the pLac promoter and we used plasmid pSB1C3 to maintain compatibility with the iGEM registry.

V. harveyi

V. harveyi is a gram negative bacteria, well studied for its quorum sensing system. This bacteria displays its own pathway for the detection of C8-CAI-1. The gene cqsS encodes for the sensor C8-CAI-1 and a single point mutation in its sequence allows V. harveyi to detect both C8-CAI-1 and CAI-1 from V. cholerae. To avoid auto-activation of V. harveyi, we used the JMH626 strain, in which the cqsA gene, coding the enzyme involved in the production C8-CAI-1, has been deleted. Furthermore, additional genes luxS and luxS coding for key enzymes involved in the expression of other quorum sensing molecules have been deleted. All these mutations make the strain JMH626 specific for detecting non-endogenous C8-CAI-1. V. harveyi is also able to regulate the activation of genes under the control of the promoter pQRR4, in a C8-CAI-1 concentration dependent manner 1. At high C8-CAI-1 concentration, the promoter is inactivated. Thus we added the inverter tetR/pTet to activate a gene of interest in presence of C8-CAI-1. The gene of interest is als that encodes for the acetolactate synthase (Als). this enzyme synthetized diacetyl from pyruvate3. Diacetyl is our ransmitter molecule (Figure 1).

The pBBR1MCS-44, a broad host range plasmid, was chosen to allow the transfer of the system into V. harveyi by conjugation (i.e. this is the only way to modify the V. harveyi chassis).

In conclusion, we designed a V. harveyi strain enable to detect both exogenous CAI-1 or C8-CAI-1, and to produce diacetyl as a molecular response.

P. pastoris

V. harveyi cannot not be used as the effector since production of antimicrobial peptides (AMPs) is lethal for Vibrio species. P. pastoris is a yeast commonly used in academic laboratories and industry for its high potential to produce protein. In addition, yeasts were previously described to produce a wide range of AMPs 5,6. Finally, a system allowing efficient communication between yeast and prokaryotes has already been decribed i.e. the diacetyl-dependant Odr-10 receptor system7. This system allows the expression of targets genes under the control of pFUS1 via the Ste12 pathway (Figure 2). For all these reason, we thus chose P. pastoris. We used the constitutive pGAP promoter to express the receptor Odr-10 in P. pastoris

To kill V. cholerae, we looked for a new and innovative antibiotic solution to limit the risk of acquired-resistance. We decided to use AMPs, that are small membrane disrupting molecules toxic for a large panel of microorganisms8. Here we selected AMPs from crocodiles. Crocodiles live in harsh environment and are known to possess an impressive defence system, that allows them to catch very few disease and antimicrobial peptides are part of it9. We focused on 3 different AMPs described to have the best efficiency against V. cholerae. Those AMPs are Leucrocin I10, D-NY1511 and cOT212. Leucrocine I possess one cationic charge for 7 amino acids. D-NY15 is its optimized counterpart with 4 cationic charges and a sequence of 15 amino-acid long. Finally, cOT2 is 29 amino acid long and possesses 6 cationic charges. These AMPs were placed under control of the pGAP constitutive promoter for preliminary tests and under pFUS1 promoter to promote their expression in response to diacetyl. The genetic constructions were inserted into the integrative pPICZα plasmid i.e. a good plasmid for protein production. The signal peptide α-factor was fused to the AMPs to allow for secretion of the peptides.

The action of these AMPs is the last event of our synthetic consortium.

Modules & Parts

Sense

To create our sensor strain, we took advantage of the intraspecies quorum sensing of V. cholerae: the CAI-1/CqsS system. To mimic this pathway, we made an E. coli producer strain of quorum-sensing molecules (i.e. CAI-1 and C8-CAI-1) and we express a modified CqsS* receptor in V. harveyi that can sense both CAI-1 and C8-CAI-1.

Transmit

In response to quorum sensing molecules, the sensor strain activates the pathway leading to the inhibition of the als gene placed under the control of pQRR4 promoter. The signal is inverted by the tetR/pTet system to trigger als gene expression and thus diacetyl production. Diacetyl in turn activates the Odr-10 receptor implemented in the yeast Pichia pastoris.

Respond

Once Odr-10 receptor sensed diacetyl, the pFUS1 promoter triggers expression of AMPs. After excretion, these AMPs can disrupt the membrane of the Vibrio species

Experimental plan

E. coli

Quorum sensing molecule production

  • Measurement of C8-CAI-1 & CAI-1in supernateant by NMR
  • Bioluminescence assay

V. harveyi

Conjugation

  • Conjugation test using a plasmid expressing RFP

Diacetyl production

  • Measurement by NMR of diacetyl in supernateant of E. coli and V. harveyi producing strains

P. pastoris

Diacetyl detection

  • In vivo functionality of pGAP using RFP reporter system
  • In vivo functionality of ODR10/pFUS1 system test using RFP reporter system

Antimicrobial peptides (AMPs)

  • Verification of AMP genes expression by RT-PCR
  • Verification of AMPs activity by toxicity assay