Difference between revisions of "Team:INSA-UPS France/test"

 
(82 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
 
{{INSA-UPS_France/Links_new}}
 
{{INSA-UPS_France/Links_new}}
 
{{INSA-UPS_France/Style_new}}
 
{{INSA-UPS_France/Style_new}}
 
{{INSA-UPS_France/Header_new}}
 
{{INSA-UPS_France/Header_new}}
 +
 +
 
<html>
 
<html>
<style>
+
<main class="site-main">
 +
  <div class="main_content">
 +
  <div class="middle_container">
  
.main_title{
+
   <div class="section_container">
   height:300px;
+
  font: 700 4em/1.5 'Quicksand', sans-serif;
+
  position:relative;
+
  letter-spacing: 0.1em;
+
  z-index:10;
+
  margin-bottom:50px;
+
  width:100%;
+
 
+
}
+
.main_title > div{
+
  width:100%;
+
  position:absolute;
+
  bottom:-10px;
+
  background:rgba(255,255,255,0.2);
+
  border-radius: 20px;
+
}
+
  
.main_title p{
+
    <section style="margin-top:200px;">
  padding:30px;
+
      <h1 style="text-align: left;margin-top:-110px;font-size:5vw;letter-spacing: 1vw;">Design</h1>
}
+
      <img style="width:25%;min-width: 260px; position:absolute;right:0;top:-200px; " src="https://static.igem.org/mediawiki/2017/e/e3/T--INSA-UPS_France--design_croco.png" alt="">
 +
      <p style="margin-top: 50px;">
 +
        We created a synthetic consortium and demonstrated the power of such approach to fight against cholera disease. Our synthetic consortium involves three microorganism: i) an engineered <i>E. coli</i> to mimic<i> V. cholerae</i> ii) an engineered </i>V. harveyi</i> to sense the presence of the engineered <i>E. coli</i> and in repsonse to produce diacetyl iii) a yeast <i>P. pastoris</i> engineered to detect diacetyl and in response to produce antibacterial peptides (AMPs) in order to trigger lysis of<i> Vibrio </i> species. Here is presented a closer view of the molecular details for each micro-organism as well as an overview of our experimental plan.
  
.main_title img{
+
      </p>
  position:absolute;
+
    </section>
  right:0;
+
  width:400px;
+
  bottom:-25px;
+
}
+
  
  
</style>
+
    <section style="background: none;">
 +
      <h1 style="text-align:left;">Overview</h1>
 +
      <img src="https://static.igem.org/mediawiki/2017/b/b8/T--INSA-UPS_France--description_loop.png" alt="" style="width:100%;">
 +
    </section>
  
 +
    <section>
 +
      <h1 style="text-align: left;">Organisms</h1>
 +
      <h2><i>Escherichia coli</i></h2>
 +
      <p>
 +
        For safety reasons, the bacteria gram negative <i>E. coli</i> was chosen to mimic <i> V. cholerae</i>. <i>E. coli</i> is an easy organism to deal with, especially as it is well documented, easy to transform with exogenous DNA and easy to culture. The strain K-12 MG1655 was transformed with a plasmid allowing expression of the protein CqsA from<i> V. cholerae</i>, the enzyme responsible for the synthesis of CAI-1. However, as a proof of concept, we also transformed our <i>E. coli</i> strain with the gene coding for the CqsA of </i>V. harveyi</i>, a non-pathogen strain, producing the molecule C8-CAI-1 (an analogue of the<i> V. cholerae</i> CAI-1)<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/21219472/" target="_blank">1</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/15466044/" target="_blank">2</a></sup>. C8-CAI1 is a carbohydrate chain based displaying an hydroxyl group on carbon 3 and ketone function on carbon 4. The CqsA synthetase from </i>V. harveyi</i> produce C8-CAI-1 from endogenous <i>E. coli</i> (S)-adenosylmethionine (SAM) and octanoyl-coenzyme. <i> cqsA </i> from both <i>V. harveyi</i> and <i> V. cholerae</i> were placed under the pLac promoter and we used plasmid pSB1C3 to maintain compatibility with the iGEM registry.
  
  <main class="site-main">
 
  <div class="main_content">
 
  <div class="middle_container">
 
  
  <div class="section_container">
 
  
    <div class="article_offset" id="protocols"></div>
+
 
     <div class="main_title">
+
</p>
       <div>
+
      <img src="https://static.igem.org/mediawiki/2017/f/fc/T--INSA-UPS_France--design_plasmid-coli.png" alt="" style="width: 10%; position:absolute;bottom:0; left:10%;">
        <p>Protocols</p>
+
      <p style="margin-left:15%;">
       </div>
+
      </p>
       <img src="https://static.igem.org/mediawiki/2017/0/08/T--INSA-UPS_France--Experiments_croco.png" alt="">
+
     </section>
     </div>
+
 
 +
 
 +
   
 +
    <section>
 +
      <h2><i>V. harveyi</i></h2>
 +
      <p>
 +
        <i>V. harveyi</i> is a gram negative bacteria, well studied for its quorum sensing system. This bacteria displays its own pathway for the detection of C8-CAI-1. The gene <i>cqsS</i> encodes for the sensor C8-CAI-1 and a single point mutation in its sequence allows <i>V. harveyi</i> to detect both C8-CAI-1 and CAI-1 from <i> V. cholerae</i>. To avoid auto-activation of <i>V. harveyi</i>, we used the JMH626 strain, in which the <i> cqsA </i> gene, coding the enzyme involved in the production C8-CAI-1, has been deleted. Furthermore, additional genes <i>luxS</i> and <i>luxS</i> coding for key enzymes involved in the expression of other quorum sensing molecules have been deleted. All these mutations make the strain JMH626 specific for detecting non-endogenous C8-CAI-1. <i>V. harveyi</i> is also able to regulate the activation of genes under the control of the promoter pQRR4, in a C8-CAI-1 concentration dependent manner <sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/21219472/" target="_blank">1</a></sup>. At high C8-CAI-1 concentration, the promoter is inactivated. Thus we added the inverter tetR/pTet to activate a gene of interest in presence of C8-CAI-1. The gene of interest is <i>als</i> that encodes for the acetolactate synthase (Als). this enzyme synthetized diacetyl from pyruvate<sup><a href="http://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=vhr00650&keyword=diacetyl" target="_blank">3</a></sup>. Diacetyl is our ransmitter molecule (Figure 1).
 +
       </p>
 +
      <img src="https://static.igem.org/mediawiki/2017/f/fa/T--INSA-UPS_France--design_plasmid-harveyi.png" alt="" style="width: 10%; position:absolute;bottom:0; left:10%;">
 +
      <p style="margin-left:15%;">
 +
      The pBBR1MCS-4<sup><a href="http://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=vhr00650&keyword=diacetyl" target="_blank">4</a></sup>, a broad host range plasmid, was chosen to allow the transfer of the system into <i>V. harveyi</i> by conjugation (i.e. this is the only way to modify the <i>V. harveyi</i> chassis).
 +
      </p>
 +
<p style="margin-left:15%;">
 +
In conclusion, we designed a <i>V. harveyi</i> strain enable to detect both exogenous CAI-1 or C8-CAI-1, and to produce diacetyl as a molecular response.
 +
  </p>
 +
    </section>
 +
   
 +
    <section>
 +
       <h2><i>P. pastoris</i></h2>
 +
      <p>
 +
        <i>V. harveyi</i> cannot not be used as the effector since production of antimicrobial peptides (AMPs) is lethal for <i> Vibrio </i> species. <i>P. pastoris</i> is a yeast commonly used in academic laboratories and industry for its high potential to produce protein. In addition, yeasts were previously described to produce a wide range of AMPs <sup><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494115/
 +
" target="_blank">5</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/23624708" target="_blank">6</a></sup>. Finally, a system allowing efficient communication between yeast and prokaryotes has already been decribed i.e. the diacetyl-dependant Odr-10 receptor system<sup><a href="https://2013.igem.org/Team:SCUT" target="_blank">7</a></sup>. This system allows the expression of targets genes under the control of pFUS1 via the Ste12 pathway (Figure 2). For all these reason, we thus chose <i>P. pastoris</i>. We used the constitutive pGAP promoter to express the receptor Odr-10 in <i>P. pastoris</i>
 +
 
 +
      </p>
 +
       <img src="https://static.igem.org/mediawiki/2017/6/67/T--INSA-UPS_France--design_plasmid-pichia.png" alt="" style="width: 10%; position:absolute;bottom:0; left:10%;">
 +
     
 +
<p>
 +
To kill<i> V. cholerae</i>, we looked for a new and innovative antibiotic solution to limit the risk of acquired-resistance. We decided to use AMPs, that are small membrane disrupting molecules toxic for a large panel of microorganisms<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/27837316" target="_blank">8</a></sup>. Here we selected AMPs from crocodiles. Crocodiles live in harsh environment and are known to possess an impressive defence system, that allows them to catch very few disease and antimicrobial peptides are part of it<sup><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3490821/" target="_blank">9</a></sup>. We focused on 3 different AMPs described to have the best efficiency against <i>V. cholerae</i>. Those AMPs are Leucrocin I<sup><a href="http://www.sciencedirect.com/science/article/pii/S0145305X10003071?via%3Dihub" target="_blank">10</a></sup>, D-NY15<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/24192554" target="_blank">11</a></sup> and cOT2<sup><a href="http://www.sciencedirect.com/science/article/pii/S0005273617300433" target="_blank">12</a></sup>. Leucrocine I possess one cationic charge for 7 amino acids. D-NY15 is its optimized counterpart with 4 cationic charges and a sequence of 15 amino-acid long. Finally, cOT2 is 29 amino acid long and possesses 6 cationic charges. These AMPs were placed under control of the pGAP constitutive promoter for preliminary tests and under pFUS1 promoter to promote their expression in response to diacetyl. The genetic constructions were inserted into the  integrative pPICZα plasmid i.e. a good plasmid for protein production. The signal peptide α-factor was fused to the AMPs to allow for secretion of the peptides.
 +
</p>
 +
  <p style="margin-left:15%;">
 +
The action of these AMPs is the last event of our synthetic consortium.
 +
</p>
 +
     </section>
  
 
     <style>
 
     <style>
       .protocols{
+
      /* ASIDE NAV */
         margin-top:20px;
+
       .left_container{
 +
         width:35%;
 +
        float:left;
 
       }
 
       }
       .protocols h1{
+
       .left_container img{
         margin:0px 0px 10px 0px;
+
         width:100%;
        cursor:pointer;
+
 
       }
 
       }
  
      .protocols h1 i.fa.visible-fa{
 
        display:inline-block;
 
      }
 
      .protocols h1 i.fa{
 
        display:none;
 
      }
 
      .prot-inside{
 
        display:none;
 
      }
 
      .prot-inside.visible-prot-inside{
 
        display:block;
 
      }
 
      .protocols ol{
 
        text-align: left;
 
      }
 
      .protocols table tr td{
 
        border:solid 1px #eee;
 
      }
 
 
     </style>
 
     </style>
  
    <div class="article_offset" id="prot0">
 
      <section class="protocols">
 
        <h1>Protocole template<i class="fa fa-caret-down"></i><i class="fa fa-caret-up"></i></h1>
 
        <div class="prot-inside">
 
          <h2>Sous-titre</h2>
 
          <p>
 
            Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
 
          </p>
 
          <ul>
 
            <li>Puce 1</li>
 
            <li>Puce 2</li>
 
            <li>Puce 3</li>
 
          </ul>
 
          <p>
 
            Lorem ipsum dolor sit amet, consectetur adipisicing elit. Aut voluptatum error asperiores deserunt cumque quo odit atque doloremque! Repellendus omnis quas rem aliquam mollitia labore, sit pariatur, itaque velit officiis?
 
          </p>
 
          <ol>
 
            <li>Puce 1</li>
 
            <li>Puce 2</li>
 
            <li>Puce 3</li>
 
            <li>Puce 4</li>
 
          </ol>
 
          <table>
 
            <tr>
 
              <th>Lorem</th>
 
              <td>ipsum</td>
 
              <td>dolor</td>
 
              <td>sit</td>
 
            </tr>
 
            <tr>
 
              <th>amet</th>
 
              <td>consectetur</td>
 
              <td>adipisicing</td>
 
              <td>elit</td>
 
            </tr>
 
          </table>
 
        </div>
 
      </section>
 
    </div>
 
  
<div class="article_offset" id="prot0">
+
    <h1 style="font-family: 'Quicksand', sans-serif;font-size:34pt;text-align: left;margin:20px 10%;">Modules &amp; Parts</h1>
      <section class="protocols">
+
        <h1>Medium and antibiotics<i class="fa fa-caret-down"></i><i class="fa fa-caret-up"></i></h1>
+
        <div class="prot-inside">
+
          <h2>Introduction</h2>
+
          <p>
+
            Here are listed antibiotics concentration and media recipe used during the experiments.
+
          </p>
+
<h2>LB medium</h2>
+
          <p>
+
                      <table>
+
            <tr>
+
              <th>Tryptone</th>
+
              <td>10 g/L</td>
+
            </tr>
+
            <tr>
+
              <th>Yeast extract</th>
+
              <td>5 g/L</td>
+
            </tr>
+
            <tr>
+
              <th>NaCl</th>
+
              <td>10 g/L</td>
+
            </tr>
+
            <tr>
+
              <th>Water</th>
+
              <td>Up to 1 L</td>
+
            </tr>
+
          </table>
+
          </p>
+
          <p>
+
For solid medium, add 15 g/L of agar.
+
Medium need to be autoclaved before use.
+
          </p>
+
  
<h2>Procedure</h2>
+
    <div class="left_container">
          <p>
+
    <div class="left_container__inside">
            Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
+
      <img style="height:100%;" src="https://static.igem.org/mediawiki/2017/a/a8/T--INSA-UPS_France--design_blupuriline.png" alt="">
          </p>
+
    </div>
        </div>
+
      </section>
+
 
     </div>
 
     </div>
  
 +
    <style>
 +
    .right_container{
 +
        width:60%;
 +
        margin-left:40%;
 +
    }
 +
    section ul{
 +
      list-style-position: inside;
 +
    }
  
 +
    .invisible-image{
 +
      visibility: hidden;
 +
    }
 +
    </style>
 +
 
 +
   
 +
    <div class="right_container">
  
     <div class="article_offset" id="prot1"></div>
+
     <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt="" style="width:30%;">
    <section class="protocols">
+
    <section class="modules_design" style="border:solid 5px #ae3d3d;margin-top:0px;margin-bottom: 0px;">
      <h1>PCR <i class="fa fa-caret-down"></i><i class="fa fa-caret-up"></i></h1>
+
       <h2 style="color:#ae3d3d;">Sense</h2>
       <div class="prot-inside">
+
      <h2>Introduction</h2>
+
 
       <p>
 
       <p>
        We used the <a href="https://tools.thermofisher.com/content/sfs/manuals/MAN0012393_Phusion_HighFidelity_DNAPolymerase_UG.pdf">Thermo Scientific Phusion High-Fidelity DNA Polymerase</a>. Amplification of templates with high GC content, high secondary structure, low template concentrations or long amplicons may require further optimization.
+
          To create our sensor strain, we took advantage of the intraspecies quorum sensing of <i>V. cholerae</i>: the <b>CAI-1/CqsS system</b>. To mimic this pathway, we made an <i>E. coli</i> producer strain of quorum-sensing molecules (i.e. CAI-1 and C8-CAI-1) and we express a modified CqsS* receptor in <i>V. harveyi</i> that can sense both CAI-1 and C8-CAI-1.
 
       </p>
 
       </p>
      <h2>Materials</h2>
+
 
      <ul>
+
    </section>
        <li>PCR thermocycler</li>
+
    <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt="" style="width:30%;">
        <li>PCR tubes</li>
+
    <section class="modules_design" style="border:solid 5px #468789;margin-top:0px;margin-bottom: 0px;">
        <li>nuclease-free water</li>
+
       <h2 style="color:#468789;">Transmit</h2>
        <li>dNTP</li>
+
        <li>Phusion HF Buffer (X5) or GC Buffer</li>
+
        <li>Primers (both forward and reverse)</li>
+
        <li>Template DNA</li>
+
        <li>Phusion polymerase</li>
+
      </ul>
+
       <h2>Procedure</h2>
+
 
       <p>
 
       <p>
        All components <b>should be mixed and centrifuged prior to use</b>. It is important to add Phusion DNA Polymerase last in order to prevent any primer degradation caused by the 3&acute;&rarr; 5&acute; exonuclease activity.  
+
      In response to quorum sensing molecules, the sensor strain activates the pathway leading to the inhibition of the <i>als</i> gene placed under the control of <b>pQRR4 promoter</b>. The signal is inverted by the <b>tetR/pTet</b> system to trigger <i>als</i> gene expression and thus diacetyl production. Diacetyl in turn activates the <b>Odr-10 receptor</b> implemented in the yeast <i>Pichia pastoris</i>.
 
       </p>
 
       </p>
      <p>
 
        Phusion DNA Polymerase may be diluted in 1X HF or GC Buffer just prior to use in order to reduce pipetting errors.
 
      </p>
 
      <p>
 
        Use of high quality, purified DNA templates greatly enhances the success of PCR.
 
      </p>
 
      <ol>
 
        <li>
 
          We recommend assembling all reaction components on ice and quickly transferring the reactions to a thermocycler preheated to the denaturation temperature (98&deg;C).
 
          <table>
 
            <tr>
 
              <th>Component</th>
 
              <th>50 &mu;L</th>
 
              <th>final concentration</th>
 
            </tr>
 
            <tr>
 
              <td>Nuclease-free water</td>
 
              <td>qs 50 &mu;L</td>
 
              <td></td>
 
            </tr>
 
            <tr>
 
              <td>Buffer Phusion HF (5X)</td>
 
              <td>10&mu;L</td>
 
              <td>1X</td>
 
            </tr>
 
            <tr>
 
              <td>10 mM dNTPs</td>
 
              <td>1 &mu;L</td>
 
              <td>200 &mu;M</td>
 
            </tr>
 
            <tr>
 
              <td>10 &mu;M Forward primer</td>
 
              <td>2.5 &mu;L</td>
 
              <td>0.5 &mu;M</td>
 
            </tr>
 
            <tr>
 
              <td>10 &mu;M Reverse Primer</td>
 
              <td>2.5 &mu;L</td>
 
              <td>0.5 &mu;M</td>
 
            </tr>
 
            <tr>
 
              <td> DNA template (10 ng/&mu;L)</td>
 
              <td>1 &mu;L</td>
 
              <td>10ng</td>
 
            </tr>
 
            <tr>
 
              <td>Phusion DNA Polymerase</td>
 
              <td>0.5 &mu;L</td>
 
              <td>1.0 U/0.5 &mu;L of reaction</td>
 
            </tr>
 
          </table>
 
          Notes: Gently mix the reaction. Collect all liquid to the bottom of the tube by a quick spin if necessary
 
        </li>
 
        <li>
 
          Transfer PCR tubes from ice to a PCR machine with the block preheated to 98&deg;C and begin thermocycling:
 
          <table>
 
            <tr>
 
              <th>Step</th>
 
              <th>Temperature</th>
 
              <th>Time</th>
 
            </tr>
 
            <tr>
 
              <td>Initial denaturation</td>
 
              <td>98&deg;C</td>
 
              <td>45 sec</td>
 
            </tr>
 
            <tr>
 
              <td rowspan="3">30 cycles</td>
 
              <td>98&deg;C</td>
 
              <td>15 sec</td>
 
            </tr>
 
            <tr>
 
              <td>55&deg;C</td>
 
              <td>30 sec</td>
 
            </tr>
 
            <tr>
 
              <td>72&deg;C</td>
 
              <td>30 sec/kb</td>
 
            </tr>
 
            <tr>
 
              <td>Final extension</td>
 
              <td>72&deg;C</td>
 
              <td>5 min</td>
 
            </tr>
 
            <tr>
 
              <td>Hold</td>
 
              <td>4&deg;C</td>
 
              <td>hold</td>
 
            </tr>
 
          </table>
 
          <table>
 
            <tr>
 
              <th>Parts</th>
 
              <th>Length</th>
 
              <th>Time of extension</th>
 
            </tr>
 
            <tr>
 
              <td>pGAP-cOT2 / pGAP-DNY15 / pGAP-Leucro / YFP / DsRed</td>
 
              <td>1 kb</td>
 
              <td>30 sec</td>
 
            </tr>
 
            <tr>
 
              <td>harveyi 1 / 2 / 3 / Vc and Vh</td>
 
              <td>2 kb</td>
 
              <td>60 sec</td>
 
            </tr>
 
            <tr>
 
              <td>Odr10-cOT2</td>
 
              <td>3 kb</td>
 
              <td>90 sec</td>
 
            </tr>
 
          </table>
 
        </li>
 
        <li>
 
          Then purify the products thanks to PCR purification kit
 
        </li>
 
      </ol>
 
    </div>
 
    </section>
 
 
    <div class="article_offset" id="prot1b"></div>
 
    <section class="protocols">
 
      <h1>PCR purification <i class="fa fa-caret-down"></i><i class="fa fa-caret-up"></i></h1>
 
      <div class="prot-inside">
 
 
        
 
        
       <h2>Introduction</h2>
+
   
 +
          </section>
 +
    <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt=""  style="width:30%;">
 +
    <section class="modules_design" style="border:solid 5px #f37b6f;margin-top:0px;margin-bottom: 0px;">
 +
       <h2 style="color:#f37b6f;">Respond</h2>
 
       <p>
 
       <p>
        This protocol was extracted from <a href="https://tools.thermofisher.com/content/sfs/manuals/purelink_pcr_man.pdf">Invitrogen PureLink&reg; PCR Purification Kit</a>. Refer to this protocol for troubleshooting. Use the PureLink&reg; PCR Purification Kit to efficiently remove primers, dNTPs, enzymes, and salts from PCR products in less than 15 minutes. Use the kit with Binding Buffer High-Cutoff (B3) to remove primer dimers or short spurious PCR products. The purified PCR product is suitable for automated fluorescent DNA sequencing, restriction enzyme digestion, and cloning.
+
    Once Odr-10 receptor sensed diacetyl, the <b>pFUS1</b> promoter triggers expression of AMPs. After excretion, these AMPs can disrupt the membrane of the <i>Vibrio</i> species
 
       </p>
 
       </p>
      <h2>Materials</h2>
 
      <ul>
 
        <li>Binding Buffer (B2)</li>
 
        <li>Binding Buffer High-Cutoff (B3)</li>
 
        <li>Wash Buffer (W1)</li>
 
        <li>Elution Buffer; 10 mM Tris-HCl, pH 8.5 (E1)</li>
 
        <li>PureLink&reg; PCR Spin Columns with Collection Tubes</li>
 
        <li>PureLink&reg; Elution Tubes (1.7 mL)</li>
 
        <li>50–100 &mu;L PCR product</li>
 
        <li>100% isopropanol</li>
 
        <li>96–100% ethanol</li>
 
        <li>Sterile, distilled water (pH>7.0)</li>
 
        <li>Microcentrifuge capable of achieving &gt;10,000 &times; g</li>
 
      </ul>
 
      <h2>Procedure</h2>
 
      <p><i>/!\ The PureLink® PCR Purification Kit buffers contain guanidine hydrochloride and isopropanol. Always wear a laboratory coat, disposable gloves, and eye protection when handling buffers.</i></p>
 
      <p><i>/!\ Do not add bleach or acidic solutions directly to solutions containing guanidine hydrochloride or sample preparation waste because it forms reactive compounds and toxic gases when mixed with bleach or acids.</i></p>
 
      <p>
 
        Follow the recommendations below to obtain the best results:
 
      </p>
 
      <ul>
 
        <li>Maintain a PCR volume of 50&ndash;100 &mu;L</li>
 
        <li>Save an aliquot of PCR products before purification to verify and check the amplicon on the gel</li>
 
        <li>Use a centrifuge at room temperature for all steps</li>
 
        <li>Pipet the Elution Buffer (E1) in the center of the column and perform a 1 minute incubation</li>
 
        <li>Always use sterile water with pH 7–8.5, if you are using water for elution</li>
 
      </ul>
 
      <ol>
 
        <li>
 
          <b>Before starting</b>. Add isopropanol to the Binding Buffers and ethanol to the Wash Buffer according to the following table. After adding isopropanol or ethanol, store all buffers at room temperature.
 
          <table>
 
            <tr>
 
              <th>Buffer</th>
 
              <th>Cat. no. K3100-01</th>
 
            </tr>
 
            <tr>
 
              <td>Binding Buffer (B2)</td>
 
              <td>10mL 100% isopropranol</td>
 
            </tr>
 
            <tr>
 
              <td>Binding Buffer HC (B3)</td>
 
              <td>2.3mL 100% isopropranol</td>
 
            </tr>
 
            <tr>
 
              <td>Wash Bufer (W1)</td>
 
              <td>64mL 96-100% isopropranol</td>
 
            </tr>
 
          </table>
 
        </li>
 
        <li><b>Binding DNA. </b></li>
 
        <li>Add 4 volumes of PureLink&reg; Binding Buffer (B2) with isopropanol (see before starting) or Binding Buffer HC (B3) with isopropanol (see before starting) to 1 volume of the PCR product (50&ndash;100 &mu;L). Mix well.</li>
 
        <li>Remove a PureLink&reg; Spin Column in a Collection Tube from the package.</li>
 
        <li>Add the sample with the appropriate Binding Buffer (from step 1 of this procedure) to the PureLink&reg; Spin Column.</li>
 
        <li>Centrifuge the column at room temperature at 10,000 &times; g for 1 minute.</li>
 
        <li>Discard the flow through and place the spin column into the collection tube.</li>
 
        <li><b>Washing DNA</b></li>
 
        <li>Add 650 &mu;L of Wash Buffer with ethanol (see before starting) to the column.</li>
 
        <li>Centrifuge the column at room temperature at 10,000 &times; g for 1 minute. Discard the flow through from the collection tube and place the column into the tube.</li>
 
        <li>Centrifuge the column at maximum speed at room temperature for 2&ndash;3 minutes to remove any residual Wash Buffer. Discard the collection tube. Then let the residual ethanol evaporate by placing the open column on the collection tube and let it sit for 5 mins.</li>
 
        <li><b>Eluting DNA.</b></li>
 
        <li>Place the spin column in a clean 1.7-mL PureLink&reg; Elution Tube supplied with the kit.</li>
 
        <li>Add 30 &mu;L of Elution Buffer (10 mM Tris-HCl, pH 8.5) or sterile, distilled water (pH &gt;7.0) to the center of the column.</li>
 
        <li>Incubate the column at room temperature for 1 minute.</li>
 
        <li>Centrifuge the column at maximum speed for 2 minutes.</li>
 
        <li>The elution tube contains the purified PCR product. Remove and discard the column. The recovered elution volume is ~48 &mu;L. Store the purified PCR product at &ndash;20&deg;C or use the PCR product for the desired downstream application.</li>
 
      </ol>
 
    </div>
 
    </section>
 
  
    <div class="article_offset" id="prot1c"></div>
 
    <section class="protocols">
 
      <h1>Colony PCR <i class="fa fa-caret-down"></i><i class="fa fa-caret-up"></i></h1>
 
      <div class="prot-inside">
 
      <h2>Introduction</h2>
 
      <p>This protocol was elaborated thanks to the help of Anthony Henras.</p>
 
      <h2>Materials</h2>
 
      <p>
 
        10 &mu;L of 0.02N NaOH / 1 PCR
 
      </p>
 
      <h2>Procedure</h2>
 
      <ol>
 
        <li>Resuspend the equivalent of the tip of a P1000 pipette of the colony in 10 &mu;L of 0.02N NaOH</li>
 
        <li>Mix well (vortex)</li>
 
        <li>Incubate 5 min at 95&deg;C and then chill on ice for 10 min at 4&deg;C (program the thermocycler to do so (Program YeastLysis))</li>
 
        <li>
 
          For each PCR mix: <br />
 
          <i>NOTE: mix on ice and put on the thermocycler directly after mixing</i>
 
          <table>
 
            <tr>
 
              <th>Component</th>
 
              <th>Volume (&mu;L)</th>
 
            </tr>
 
            <tr>
 
              <td>Previous cell extract</td>
 
              <td>2</td>
 
            </tr>
 
            <tr>
 
              <td>Taq Pol Buffer</td>
 
              <td>10</td>
 
            </tr>
 
            <tr>
 
              <td>Forward oligo 100 10 &mu;M</td>
 
              <td>0.5</td>
 
            </tr>
 
            <tr>
 
              <td>Reverse oligo 100 10 &mu;M</td>
 
              <td>0.5</td>
 
            </tr>
 
            <tr>
 
              <td>dNTP</td>
 
              <td>1</td>
 
            </tr>
 
            <tr>
 
              <td>H2O</td>
 
              <td>35.6</td>
 
            </tr>
 
            <tr>
 
              <td>Taq DNA polymerase</td>
 
              <td>0.4</td>
 
            </tr>
 
          </table>
 
        </li>
 
        <li>
 
          Put on a thermocycler and start this cycle:
 
          <table>
 
            <tr>
 
              <td></td>
 
              <td>95&deg;C</td>
 
              <td>5 min</td>
 
            </tr>
 
            <tr>
 
              <td rowspan="3">35 cycles</td>
 
              <td>95&deg;C</td>
 
              <td>30 sec</td>
 
            </tr>
 
            <tr>
 
              <td>55&deg;C</td>
 
              <td>1 min</td>
 
            </tr>
 
            <tr>
 
              <td>72&deg;C</td>
 
              <td>3 min</td>
 
            </tr>
 
            <tr>
 
              <td></td>
 
              <td>72&deg;C</td>
 
              <td>10 min</td>
 
            </tr>
 
            <tr>
 
              <td></td>
 
              <td>22&deg;C</td>
 
              <td>&infin;</td>
 
            </tr>
 
          </table>
 
        </li>
 
        <li>Migration on gel to check the results</li>
 
      </ol>
 
    </div>
 
 
     </section>
 
     </section>
 +
    <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt=""  style="width:30%;">
  
    <div class="article_offset" id="prot2"></div>
 
    <section class="protocols">
 
    <h1>Gel extraction <i class="fa fa-caret-down"></i><i class="fa fa-caret-up"></i></h1>
 
    <div class="prot-inside">
 
      <h2>Procedure</h2>
 
      <p>
 
        <i>Please, before doing your preparative gel, use one sample to make an analityc one !</i>
 
      </p>
 
      <ol>
 
        <li>Equilibrate a water bath or heat block to 50&deg;C.</li>
 
        <li>
 
        Excise a minimal area of gel containing the DNA fragment of interest.<br />
 
       
 
          <ul>
 
            <li><b>Crucial:</b> To protect the UV box, it is a good idea to place the gel on a glass plate if available. </li>
 
            <li>Try to get as little excess gel around the band as possible.</li>
 
          </ul>
 
  
        </li>
 
        <li>Weigh the gel slice containing the DNA fragment using a scale sensitive to 0.001 g.</li>
 
        <li>
 
          Add Gel Solubilization Buffer (L3) to the excised gel in the tube size indicated in the following table:
 
          <table>
 
            <tr>
 
              <th>Gel</th>
 
              <th>Tube</th>
 
              <th>Buffer L3 Volume</th>
 
            </tr>
 
            <tr>
 
              <td>&le;2% agarose</td>
 
              <td>1.7 mL polypropylene</td>
 
              <td>3:1 (i.e., 1.2 mL Buffer L3: 400 mg gel piece)</td>
 
            </tr>
 
            <tr>
 
              <td>&gt;2% agarose</td>
 
              <td>5 mL polypropylene</td>
 
              <td>6:1 (i.e., 2.4 mL Buffer L3: 400 mg gel piece)</td>
 
            </tr>
 
          </table>
 
        </li>
 
        <li>
 
          Place the tube with the gel slice and Buffer L3 into a 50&deg;C water bath or heat block. Incubate the tube at 50&deg;C for 10 minutes. Invert the tube every 3 minutes to mix and ensure gel dissolution.
 
          <ul>
 
            <li>Note: High concentration gels (&gt;2% agarose) or large gel slices may take longer than 10 minutes to dissolve.</li>
 
          </ul>
 
        </li>
 
        <li>
 
          After the gel slice appears dissolved, incubate the tube for an additional 5 minutes.
 
          <ul>
 
            <li>
 
              Optional: For optimal DNA yields, add 1 gel volume of isopropanol to the dissolved gel slice. Mix well.
 
            </li>
 
          </ul>
 
        </li>
 
        <li>
 
          <b>Before Starting:</b> Add ethanol to the Wash Buffer (W1) according to the label on the bottle.
 
        </li>
 
        <li>
 
          <b>Purifying DNA Using a Centrifuge</b>
 
        </li>
 
        <li>
 
          <b>Load.</b> Pipet the dissolved gel piece onto a Quick Gel Extraction Column inside a Wash Tube. Use 1 column per 400 mg of agarose gel.
 
          <ul>
 
            <li>
 
              Note: The column reservoir capacity is 850 &mu;L.
 
            </li>
 
          </ul>
 
        </li>
 
        <li>
 
          <b>Bind.</b> Centrifuge the column at &gt;12,000 &times; g for 1 minute. Discard the flow-through and place the column into the Wash Tube.
 
        </li>
 
        <li>
 
          <b>Wash.</b> Add 500 &mu;L Wash Buffer (W1) containing ethanol to the column.
 
        </li>
 
        <li>
 
          <b>Remove Buffer.</b> Centrifuge the column at &gt;12,000 &times; g for 1 minute. Discard the flow-through and place the column into the Wash Tube.
 
        </li>
 
        <li>
 
          <b>Remove Ethanol.</b> Centrifuge the column at maximum speed for 1–2 minutes. Discard the flow-through.
 
        </li>
 
        <li>
 
          <b>Elute.</b> Place the column into a Recovery Tube. Add 30 &mu;L Elution Buffer (E5) to the center of the column. Incubate the tube for 1 minute at room temperature.
 
        </li>
 
        <li>
 
          <b>Collect.</b> Centrifuge the tube at &gt;12,000 &times; g for 1 minute.
 
        </li>
 
        <li>
 
          <b>Store.</b> The elution tube contains the purified DNA. Store the purified DNA at 4&deg;C for immediate use or at &minus;20&deg;C for long-term storage.
 
        </li>
 
      </ol>
 
    </div>
 
    </section>
 
  
    <div class="article_offset" id="prot3"></div>
 
    <section class="protocols">
 
  
    <h1>Gel migration <i class="fa fa-caret-down"></i><i class="fa fa-caret-up"></i></h1>
 
    <div class="prot-inside">
 
      <h2>Introduction</h2>
 
      <p>
 
        This protocol is the classical one used for electrophoresis. - You can adapt the concentration of agar according to the length of your fragment 1% agar if the DNA fragments are big 2% agar if the DNA fragments are small (the bigger fragment are sticked together) - Adapt the volume of the gel 15 to 30 mL for small gels and 150 to 200 mL for big gels
 
      </p>
 
 
      <h2>Procedure</h2>
 
      <ol>
 
        <li>
 
          Thoroughly rinse gel housing and well-comb with dH2O.
 
        </li>
 
        <li>
 
          Place gel mold perpendicular to flow direction, ensuring proper sealing of rubber gaskets.
 
        </li>
 
        <li>
 
          Add the calculated amounts of 0.5xTBE and agarose to a fresh Erlenmeyer flask.
 
        </li>
 
        <li>
 
          Heat in microwave until mixture can be dissolved.
 
          <ul>
 
            <li>
 
              <b>CRITICAL:</b> Do not let the mixture boil over and out of the flask. Typical heating time for 50mL in a 2.45GHz microwave oven at full power is 30s. USE HEAT GLOVES
 
            </li>
 
          </ul>
 
        </li>
 
        <li>
 
          Gently swirl until well mixed and gently swirling periodically until ~55&deg;C.
 
        </li>
 
        <li>
 
          Gently pour molten agarose gel into housing, avoiding air bubbles.
 
        </li>
 
        <li>
 
          Place desired well comb in desired position.
 
        </li>
 
        <li>
 
          Once gelled, carefully remove well comb in a uniform fashion.
 
        </li>
 
        <li>
 
          Remove gel mold and place in parallel direction to flow
 
          <ul>
 
            <li>
 
              <b>CRITICAL:</b> the deposit line has to be at the anode (negative pole)
 
            </li>
 
          </ul>
 
        </li>
 
        <li>
 
          Fill gel box with 0.5 xTAE until the gel is well covered.
 
        </li>
 
        <li>
 
          Place the ladder on the gel, the native and digested plasmid (write down the gel map)
 
          <ul>
 
            <li><b>TIP:</b> When loading the sample in the well, maintain positive pressure on the sample to prevent bubbles or buffer from entering the tip. </li>
 
          </ul>
 
        </li>
 
        <li>
 
          Run the electrophoresis for 20-30min at 100V until the dye line is approximately 80% of the way down the gel
 
        </li>
 
        <li>
 
          Turn OFF power, disconnect the electrodes from the power source, and then carefully remove the gel from the gel box.
 
        </li>
 
        <li>
 
          Place the gel into a container filled with 100 mL of TAE running buffer and 5 &mu;L of EtBr, place on a rocker for 20-30 mins, r
 
        </li>
 
        <li>
 
          Place the gel into a container filled with water and destain for 5 mins.
 
        </li>
 
        <li>
 
          Reaveal under UV lamp, visualize your DNA fragments
 
        </li>
 
      </ol>
 
 
     </div>
 
     </div>
    </section>
 
 
  
    <div class="article_offset" id="prot4"></div>
+
     <section style="padding-left:20%;">
     <section class="protocols">
+
      <h1 style="text-align: left;">Experimental plan</h1>
    <h1>Miniprep <i class="fa fa-caret-down"></i><i class="fa fa-caret-up"></i></h1>
+
      <img src="https://static.igem.org/mediawiki/2017/b/b3/T--INSA-UPS_France--design_coli.png" alt="" style="width:15%; position:absolute; top:10px; left:10px;">
    <div class="prot-inside">
+
       <h2><i>E. coli</i></h2>
       <h2>Introduction</h2>
+
 
       <p>
 
       <p>
         This protocol was taken from the <a href="https://tools.thermofisher.com/content/sfs/manuals/MAN0013117_GeneJET_Plasmid_Miniprep_UG.pdf">ThermoScientific GeneJET Plasmid Miniprep Kit</a>. Safety: Both the Lysis Solution and the Neutralization Solution contain irritants. <b>Wear gloves when handling these solutions.</b>
+
         Quorum sensing molecule production
 
       </p>
 
       </p>
 
      <h2>Procedure</h2>
 
 
       <ul>
 
       <ul>
         <li>
+
         <li>Measurement of C8-CAI-1 & CAI-1in supernateant by NMR</li>
          Note: All steps should be carried out at room temperature. All centrifugations should be carried out in a microcentrifuge at &ge; 12 000 x g (10 000-14 000 rpm, depending on the rotor type).
+
         <li>Bioluminescence assay</li>
        </li>
+
         </ul>
        <li>
+
          Be sure that the concentrated solutions have been diluted with the appropriated buffer
+
        </li>
+
      </ul>
+
      <ol>
+
        <li>
+
          Pick a single colony from a freshly streaked selective plate to inoculate 5mL of LB medium supplemented with the appropriate selection antibiotic.
+
        </li>
+
        <li>
+
          Incubate for 12-16 hours at 37&deg;C while shaking at 200-250 rpm
+
        </li>
+
        <li>
+
          Centrifugate the bacterial culture, &gt;12 000 g in a microcentrifuge for 2 minutes at room temperature. Repeat until there is no more media.
+
        </li>
+
        <li>
+
          Add to the pelleted cells:
+
          <ul>
+
            <li>250 &mu;L of Resuspension Solution and vortex</li>
+
            <li>250 &mu;L of Lysis Solution and invert the tube 4-6 times. WAIT 2 min</li>
+
            <li>350 &mu;L of Neutralization Solution and invert the tube 4-6 times.</li>
+
            <li>Lysis buffer must be neutralized before 5 minutes</li>
+
          </ul>
+
        </li>
+
        <li>Centrifuge 5 minutes.</li>
+
        <li>Transfer the supernatant to the Thermo Scientific GeneJET Spin Column. Centrifuge 1 minute</li>
+
        <li>Add 500 &mu;L of Wash Solution and centrifuge for 60 s and discard the flow-through</li>
+
         <li>Repeat step 5.</li>
+
         <li>Centrifuge empty column for 1 minute.</li>
+
        <li>Dry for 5 minutes </li>
+
        <li>Transfer the column into a new tube.</li>
+
        <li>Add 30 &mu;L of Elution Buffer to the column and incubate 2 minutes. </li>
+
        <li>Centrifuge 2 minutes.</li>
+
        <li>Collect the flow-through.</li>
+
      </ol>
+
    </div>
+
 
     </section>
 
     </section>
  
     <div class="article_offset" id="prot5"></div>
+
 
     <section class="protocols">
+
      
       <h1>Ligation <i class="fa fa-caret-down"></i><i class="fa fa-caret-up"></i></h1>
+
     <section style="padding-left:20%;">
      <div class="prot-inside">
+
       <img src="https://static.igem.org/mediawiki/2017/5/5c/T--INSA-UPS_France--design_harveyi.png" alt="" style="width:15%; position:absolute; top:10px; left:10px;">
       <h2>Introduction</h2>
+
       <h2><i>V. harveyi</i></h2>
 
       <p>
 
       <p>
         This protocol was taken on the <a href="https://www.neb.com/protocols/1/01/01/dna-ligation-with-t4-dna-ligase-m0202">NEB website</a>.
+
         Conjugation
 
       </p>
 
       </p>
      <h2>Materials</h2>
 
 
       <ul>
 
       <ul>
         <li>microcentrifuge tubes</li>
+
         <li> Conjugation test using a plasmid expressing RFP</li>
        <li>ice</li>
+
         </ul>
        <li>T4 DNA Ligase Buffer </li>
+
        <li>Vector DNA</li>
+
        <li>Insert DNA</li>
+
        <li>Heat inactivation</li>
+
        <li>nuclease-free water</li>
+
      </ul>
+
      <h2>Procedure</h2>
+
      <ol>
+
        <li>Thaw and resuspend the T4 DNA Ligase Buffer at room temperature (10X)</li>
+
        <li>
+
          In a microcentrifuge tube on ice:
+
          <i>Note: the table shows a ligation using a molar ratio of 1:10 vector to insert for the indicated DNA sizes./!\ T4 DNA Ligase should be added last. Note : usually put 1 &mu;l of vector vs. 3 &mu;l of insert DNA</i>
+
        </li>
+
         <li>Gently mix the reaction by pipetting up and down and microfuge briefly. </li>
+
        <li>For cohesive (sticky) ends, incubate at room temperature for 20 minutes.</li>
+
        <li>For blunt ends or single base overhangs, incubate at room temperature for 2 hours</li>
+
        <li>Heat inactivate at 65&deg;C for 10 minutes.</li>
+
        <li>Chill on ice and transform 5 &mu;l of the reaction into 50 &mu;l competent cells.</li>
+
      </ol>
+
    </div>
+
    </section>
+
 
+
    <div class="article_offset" id="prot5b"></div>
+
    <section class="protocols">
+
      <h1>Ligation with T4 DNA Ligase (M0202) <i class="fa fa-caret-down"></i><i class="fa fa-caret-up"></i></h1>
+
      <div class="prot-inside">
+
      <h2>Introduction</h2>
+
 
       <p>
 
       <p>
         Please see the <a href="https://www.neb.com/protocols/1/01/01/dna-ligation-with-t4-dna-ligase-m0202"> NEB website </a>for supporting information on this protocol.
+
         Diacetyl production
 
       </p>
 
       </p>
      <h2>Materials</h2>
 
 
       <ul>
 
       <ul>
         <li><a href="https://www.neb.com/products/b0202-t4-dna-ligase-reaction-buffer">10X T4 DNA Ligase Reaction Buffer</a></li>
+
         <li> Measurement by NMR of diacetyl in supernateant of <i> E. coli</i> and </i>V. harveyi</i> producing strains </li>
        <li><a href="https://www.neb.com/products/m0202-t4-dna-ligase">T4 DNA Ligase</a></li>
+
        </ul>
        <li>Vector DNA (4kb) </li>
+
        <li>Insert DNA (1kb) </li>
+
        <li>nuclease-free water</li>
+
      </ul>
+
      <h2>Procedure</h2>
+
      <p><i>Note: T4 DNA Ligase should be added last. The table shows a ligation using a molar ratio of 1:3 vector to insert for the indicated DNA sizes.  Use <a href="http://nebiocalculator.neb.com/#!/"> NEB calculator</a> to calculate molar ratios.</i></p>
+
      <ol>
+
        <li>Thaw the T4 DNA Ligase Buffer and resuspend at room temperature. <i>Tip: Alicuote the 10x buffer less concentrated so when thawing, the DTT gets soluble more easily.</i></li>
+
        <li>
+
          Set up the following reaction in a microcentrifuge tube on ice:
+
          <table>
+
            <tr>
+
              <th>Component</th>
+
              <th>Volume (&micro;L)</th>
+
            </tr>
+
            <tr>
+
              <td>10X T4 DNA Ligase Buffer</td>
+
              <td>2</td>
+
            </tr>
+
            <tr>
+
              <td>Vector DNA: 50 ng (0.020 pmol)</td>
+
              <td></td>
+
            </tr>
+
            <tr>
+
              <td>Insert DNA: 37.5 ng (0.060 pmol)</td>
+
              <td></td>
+
            </tr>
+
            <tr>
+
              <td>Nuclease-free water</td>
+
              <td>17</td>
+
            </tr>
+
            <tr>
+
              <td>T4 DNA Ligase</td>
+
              <td>1</td>
+
            </tr>
+
            <tr>
+
              <td>Total</td>
+
              <td>20</td>
+
            </tr>
+
          </table>
+
        </li>
+
        <li>Gently mix the reaction by pipetting up and down and microfuge briefly.</li>
+
        <li>For cohesive (sticky) ends, incubate at 16&deg;C overnight or room temperature for 10 minutes. For blunt ends or single base overhangs, incubate at 16&deg;C overnight or room temperature for 2 hours.</li>
+
        <li>Heat inactivate at 65 degrees C for 10 minutes.</li>
+
        <li>Chill on ice and transform 1-5 &mu;l of the reaction into 50 &mu;l competent cells. <i>Use 25 uL DH5&alpha; cells, and add 2 uL of reaction mixture.</i></li>
+
      </ol>
+
    </div>
+
     
+
 
     </section>
 
     </section>
 
+
      
     <div class="article_offset" id="prot6"></div>
+
     <section style="padding-left:20%;">
     <section class="protocols">
+
       <img src="https://static.igem.org/mediawiki/2017/2/2d/T--INSA-UPS_France--design_pichia.png" alt="" style="width:15%; position:absolute; top:10px; left:10px;">
       <h1>Transformation <i class="fa fa-caret-down"></i><i class="fa fa-caret-up"></i></h1>
+
       <h2><i>P. pastoris</i></h2>
      <div class="prot-inside">
+
      <h2>Introduction</h2>
+
      <p>We used Subcloning EfficiencyDH5&alpha; Competent Cells from thermofisher for transforming our cells. This protocol is based on the Thermofisher protocol for these cells.</p>
+
 
+
      <h2>Procedure</h2>
+
      <ol>
+
        <li>
+
          Thaw on ice one tube of DH5&alpha;TM cells. Place 1.5 ml microcentrifuge tubes on wet ice.
+
        </li>
+
        <li>
+
          Gently mix cells with the pipette tip and aliquot 50 &mu;l of cells for each transformation into a 1.5 ml microcentrifuge tube.
+
        </li>
+
        <li>
+
          Refreeze any unused cells in the dry ice/ethanol bath for 5 minutes before returning to the -80&deg;C freezer. Do not use liquid nitrogen.
+
        </li>
+
        <li>
+
          Add 1 to 5 &mu;l (1-10 ng) of DNA to the cells and mix gently. Do not mix by pipetting up and down.
+
        </li>
+
        <li>
+
          Incubate tubes on ice for 30 minutes.
+
        </li>
+
        <li>
+
          Heat shock cells for 20 seconds in a 42&deg;C water bath without shaking.
+
        </li>
+
        <li>
+
          Place tubes on ice for 2 minutes.
+
        </li>
+
        <li>
+
          Add 950 &mu;l of pre-warmed medium of choice to each tube.
+
        </li>
+
        <li>
+
          Incubate tubes at 37&deg;C for 1 hour at 225 rpm.
+
        </li>
+
        <li>
+
          Spread 20 &mu;l to 200 &mu;l from each transformation on pre-warmed selective plates. We recommend plating two different volumes to ensure that at least one plate will have well-spaced colonies.
+
        </li>
+
        <li>
+
          Store the remaining transformation reaction at +4&deg;C .Additional cells may be plated out the next day, if desired.
+
        </li>
+
        <li>
+
          Incubate plates overnight at 37&deg;C.
+
        </li>
+
      </ol>
+
    </div>
+
    </section>
+
 
+
    <div class="article_offset" id="prot6b"></div>
+
    <section class="protocols">
+
       <h1>Transformation (RbCl-method) <i class="fa fa-caret-down"></i><i class="fa fa-caret-up"></i></h1>
+
      <div class="prot-inside">
+
      <h2>Introduction</h2>
+
 
       <p>
 
       <p>
        This protocol was given by St&eacute;phanie. The aim is to make yourself Top10 competent cells.
+
          Diacetyl detection
       </p>     
+
       </p>
     
+
      <h2>Materials</h2>
+
 
       <ul>
 
       <ul>
         <li>2 * Steri cup 250mL</li>
+
         <li> <i> In vivo </i> functionality of pGAP using RFP reporter system </li>
         <li>TrisEDTA</li>
+
         <li><i> In vivo </i> functionality of ODR10/pFUS1 system  test using RFP reporter system </li>
 
       </ul>
 
       </ul>
 
      <h2>Procedure</h2>
 
      <h3>Media and Solutions</h3>
 
      <ol>
 
        <li>500 mL LB</li>
 
        <li>
 
          200 mL TFB1:
 
          <ul>
 
            <li>0.59 g KOAc (Cf=30 mM)</li>
 
            <li>2.42 g RbCl (100 mM)</li>
 
            <li>0.29 g CaCl2 2H2O (10 mM)</li>
 
            <li>1.98 g MnCl2 4H2O (50 mM)</li>
 
            <li>30 g Glycerol (15% wt/vol)</li>
 
            <li>Adjust to pH 5.8 with 0.2 M acetic acid (do not adjust pH with KOH). Add dH2O to 200 mL. Filter sterilize. Store refrigerated at 4&deg;C.</li>
 
          </ul>
 
        </li>
 
        <li>
 
          200 mL TFB2:
 
          <ul>
 
            <li>0.42 g MOPS (10 mM)</li>
 
            <li>2.21 g CaCl2 2H2O</li>
 
            <li>0.24 g RbCl (10 mM)</li>
 
            <li>30 g Glycerol (15% wt/vol)</li>
 
            <li>Adjust to pH 6.5 with KOH. Add dH2O to 200 mL. Filter sterilize. Store refrigerated at 4&deg;C.</li>
 
          </ul>
 
        </li>
 
      </ol>
 
      <h3>Preparation of Competent Cells</h3>
 
      <ol start="4">
 
        <li>Streak cells from frozen stock onto LB plate. Incubate O/N at 37&deg;C.</li>
 
        <li>Pick a single fresh colony to inoculate 5 mL of LB medium. Grow O/N at 37&deg;C. <i>Do not vortex cells at any time after this point in the procedure.</i></li>
 
        <li>Dilute 1 mL of culture into 50 mL LB medium prewarmed to 37&deg;C. Grow at 37&deg;C for 2 hours with agitation. Volumes can be scaled up 5X and all of the 5 mL overnight culture can be used.</li>
 
        <li>Transfer culture to sterile 50 mL tube. Chill on ice 10-15 minutes.</li>
 
        <li>Centrifuge for 10 mintutes at 2000 rpm at 4&deg;C. Immediately aspirate off all the supernatant. <i>Do not allow cells to warm above 4&deg;C at any time in this procedure.</i></li>
 
        <li>Resuspend cells in 10 mL of ice-cold TFB1 with gentle re-pipetting. Use chilled glass of plastic pipette.</li>
 
        <li>Incubate cells on ice for 5 minutes.</li>
 
        <li>Repeat step 8</li>
 
        <li>Resuspend cells in 2 mL of ice-cold TFB2 with gentle re-pipetting. Use micropipet tip (plastic).</li>
 
        <li>Incubate cells on ice for 15 minutes. Cells may be used for transformation or frozen. <i>To freeze: aliquot cells 100 &micro;L volumes into prechilled 0.5 mL microcentrifuge tubes (on ice). Freeze immediately on dry ice. Stire cells frozen at -80&deg;C.</i></li>
 
      </ol>
 
      <h3>Transformation of competent cells</h3>
 
      <ol start="14">
 
        <li>If starting with frozen competent cells, warm tube/cells by gently twirling between your fingers until just thawed (i.e., at ~0&deg;C). Then, immediately place on ice for about 5 minutes.</li>
 
        <li>
 
          Set up transformation as follows: <br />
 
          Add to 15 mL plastic round bottom tube on ice:
 
          <ul>
 
            <li>0-9 µL TE (Tris 10mM + EDTA 1mM)</li>
 
            <li>1-10 µL DNA (10-100 ng)</li>
 
            <li>10 &micro;L final volume &rarr; /!\ 10% max of the cell competent volume</li>
 
          </ul>
 
        </li>
 
        <li>Add 100 µL of competent cells and mix by gentle repipetting. <i>This method can be scaled down 2- to 4-fold. The maximum volume of DNA should be ~1/10 volume of cells and the maximum mass should be &lt;= 100 ng of DNA for 100 &micro;L of cells.</i></li>
 
        <li>Incubate cells on ice for 20-30 minutes.</li>
 
        <li>Heat shock the cells exactly 90 seconds at 42&deg;C.</li>
 
        <li>Return cells on ice 2 minutes.</li>
 
        <li>Add 1 mL of LB medium. Incubate at 37&deg;C for 45-60 minutes with slow gentle shaking. <i>For blue/white color selection, spread IPTG and X-gal on plates now and hold at 37&deg;C until use</i></li>
 
        <li>Plate 0.1 - 0.2 mL of transformed cells on LB-plate containing the appropriate antibiotic (adn IPTG and X-gal if needed). Incubate overnight at 37&deg;C. Place at 4&deg;C to store and/or enhance blue color. <i>Note: The next day, liquid cultures of the transformants can be left 8 hours before the miniprep. In the best-case scenario, do the liquid culture at 8am and do the miniprep at 4pm.</i></li>
 
      </ol>
 
      <h3>Testing competent cells</h3>
 
      <ol start="22">
 
        <li>Transform 100 &micro;L of cells with 1 &micro;L (10 pg) of pUC19 monomer (0.01 &micro;g/&micro;L).</li>
 
        <li>Plate 0.25 mL of transformation mixture. Incubate overnight at 37&deg;C.</li>
 
        <li>Count CFU and calculate efficiency. Efficiency =# of colonies per &micro;g =# of colonies X4 X 105. You should obtain 1-5 X 10<sup>7</sup>/&micro;g from competent cells after one freeze-thaw cycle.</li>
 
      </ol>
 
    </div>
 
    </section>
 
 
    <div class="article_offset" id="prot7"></div>
 
    <section class="protocols">
 
      <h1>Digestion <i class="fa fa-caret-down"></i><i class="fa fa-caret-up"></i></h1>
 
      <div class="prot-inside">
 
      <h2>Introduction</h2>
 
      <p>This protocol was extracted from the <a href="https://www.protocols.io/view/Single-temperature-Double-Digest-imsuj5">protocol from NEB website.</a></p>
 
      <h2>Materials</h2>
 
      <ul>
 
        <li>
 
          For analysis digestion:
 
          <ul>
 
            <li>Eppendorfs</li>
 
            <li>1 &mu;g of DNA </li>
 
            <li>1 &mu;L 10X buffer (most enzymes can be used in Cutsmart buffer, check on NEB website)</li>
 
            <li>1U enzyme pour 1 &mu;g ADN (0,5 &mu;L for 1 &mu;g DNA)</li>
 
            <li>H<sub>2</sub>O qsp 10 &mu;L</li>
 
            <li>heating plate</li>
 
          </ul>
 
        </li>
 
        <li>
 
          For preparative digestion:
 
          <ul>
 
            <li>Keep the same proportions and scale up for 30&micro;L of DNA on 100&micro;L final</li>
 
          </ul>
 
        </li>
 
        <li>If cut by the same Enzyme, please prepare a MIX with n+1 (n = number of sample)</li>
 
        <li>For gel migration, add 2 &mu;L of loading dye for each 10 &mu;L mix</li>
 
      </ul>
 
      <h2>Procedure</h2>
 
      <ol>
 
        <li>Mix all the elements</li>
 
        <li>Incubate 1h at enzyme specific temperature (usually 37&deg;C)</li>
 
        <li>Check if heat inactivation is required and do it accordingly <i>/!\ if inactivation is done at high temperature put on ice after inactivation and then centrifuge to keep the  evaporated water.</i></li>
 
      </ol>
 
    </div>
 
    </section>
 
 
    <div class="article_offset" id="prot8"></div>
 
    <section class="protocols">
 
      <h1>Electroporation <i class="fa fa-caret-down"></i><i class="fa fa-caret-up"></i></h1>
 
      <div class="prot-inside">
 
      <h2>Introduction</h2>
 
 
       <p>
 
       <p>
         Protocol from Lin-Cereghino, J., Wong, W., Xiong, S., Giang, W., Luong, L., Vu, J., Johnson, S. and Lin-Cereghino, G. (2005). Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris. <i>BioTechniques</i>, 38(1), pp.44-48.
+
         Antimicrobial peptides (AMPs)
 
       </p>
 
       </p>
      <h2>Materials</h2>
 
 
       <ul>
 
       <ul>
         <li>ice</li>
+
         <li>Verification of AMP genes expression by RT-PCR</li>
        <li>linearized plasmid (with AvrII)</li>
+
         <li>Verification of AMPs activity by toxicity assay</li>
        <li>competent cells from the protocol cell preparation</li>
+
        <li>electroporation apparatus</li>
+
        <li>1.0M sorbitol</li>
+
        <li>YPD</li>
+
         <li>plates with gradient of zeocin</li>
+
 
       </ul>
 
       </ul>
      <h2>Procedure</h2>
 
      <ol>
 
        <li>Mix approximately 4-8&mu;L (50&ndash;100 ng) of dialysed linearized plasmid DNA with 40 &mu;L of competent cells in an electroporation cuvette</li>
 
        <li>Incubate for 2 min on ice</li>
 
        <li>Pulse 1500V, 25&mu;F, 200&Omega; (You should have a Ꞇ between 4 and 5 ms. If it is &gt;5ms, there were too many ions in the mix. It can kill cells.) (was done previously with 1500V, 10&mu;F, 600&Omega; -&gt; worked)</li>
 
        <li>Resuspend immediately samples in 0.5 mL 1.0 M sorbitol and 0.5 mL YPD, incubate in a 30&deg;C shaker for 1h30, and then plate on media containing increasing concentrations of zeocin (100, 250, 500, or 1000 &mu;g/mL) for the selection of multicop</li>
 
      </ol>
 
    </div>
 
 
     </section>
 
     </section>
 
   
 
 
     <!-- fin section -->     
 
     <!-- fin section -->     
  
Line 1,015: Line 216:
 
       <a href="https://www.veolia.com/en"><img src="https://static.igem.org/mediawiki/2017/9/91/T--INSA-UPS_France--Logo_veolia.png" alt=""></a>
 
       <a href="https://www.veolia.com/en"><img src="https://static.igem.org/mediawiki/2017/9/91/T--INSA-UPS_France--Logo_veolia.png" alt=""></a>
 
       <a href="https://www.france-science.org/-Homepage-English-.html"><img src="https://static.igem.org/mediawiki/2017/1/1a/T--INSA-UPS_France--Logo_ambassade.jpg" alt=""></a>
 
       <a href="https://www.france-science.org/-Homepage-English-.html"><img src="https://static.igem.org/mediawiki/2017/1/1a/T--INSA-UPS_France--Logo_ambassade.jpg" alt=""></a>
 +
      <a href="https://www-lbme.biotoul.fr/"><img src="https://static.igem.org/mediawiki/2017/5/51/T--INSA-UPS_France--Logo_LBME.png" alt=""></a>
 +
      <a href="https://www6.toulouse.inra.fr/metatoul_eng/"><img src="https://static.igem.org/mediawiki/2017/1/16/T--INSA-UPS_France--Logo_metatoul.png" alt=""></a>
 
       <a href="http://www.univ-tlse3.fr/associations-+/do-you-have-a-project--378066.kjsp?RH=1238417866394"><img src="https://static.igem.org/mediawiki/2017/5/5b/T--INSA-UPS_France--Logo_fsdie.png" alt=""></a>
 
       <a href="http://www.univ-tlse3.fr/associations-+/do-you-have-a-project--378066.kjsp?RH=1238417866394"><img src="https://static.igem.org/mediawiki/2017/5/5b/T--INSA-UPS_France--Logo_fsdie.png" alt=""></a>
 
       <a href="http://en.univ-toulouse.fr/our-strengths"><img src="https://static.igem.org/mediawiki/2017/9/93/T--INSA-UPS_France--Logo_fsie.jpg" alt=""></a>
 
       <a href="http://en.univ-toulouse.fr/our-strengths"><img src="https://static.igem.org/mediawiki/2017/9/93/T--INSA-UPS_France--Logo_fsie.jpg" alt=""></a>
Line 1,034: Line 237:
 
   </main>
 
   </main>
  
 
+
<!--
 
+
   -->
 
+
 
+
<!-- C O N T E N T -->
+
 
+
 
+
 
+
<script type="text/javascript">
+
   $(document).on("click",".tab_name", function(){
+
      var target = $(this).data("target");
+
      $(this).removeClass('not-active');
+
      switch(target){
+
        case 1:
+
          $('#content-mod-1').removeClass('not-visible');
+
          $('#content-mod-2').addClass('not-visible');
+
          $('#content-mod-3').addClass('not-visible');
+
          $('#descr-mod-1').removeClass('not-visible');
+
          $('#descr-mod-2').addClass('not-visible');
+
          $('#descr-mod-3').addClass('not-visible');
+
          $('#tab-2').addClass('not-active');
+
          $('#tab-3').addClass('not-active');
+
          break;
+
        case 2:
+
          $('#content-mod-1').addClass('not-visible');
+
          $('#content-mod-2').removeClass('not-visible');
+
          $('#content-mod-3').addClass('not-visible');
+
          $('#descr-mod-1').addClass('not-visible');
+
          $('#descr-mod-2').removeClass('not-visible');
+
          $('#descr-mod-3').addClass('not-visible');
+
          $('#tab-1').addClass('not-active');
+
          $('#tab-3').addClass('not-active');
+
          break;
+
        case 3:
+
          $('#content-mod-1').addClass('not-visible');
+
          $('#content-mod-2').addClass('not-visible');
+
          $('#content-mod-3').removeClass('not-visible');
+
          $('#descr-mod-1').addClass('not-visible');
+
          $('#descr-mod-2').addClass('not-visible');
+
          $('#descr-mod-3').removeClass('not-visible');
+
          $('#tab-2').addClass('not-active');
+
          $('#tab-1').addClass('not-active');
+
          break;
+
      }
+
  });
+
</script>
+
 
+
<script type="text/javascript">
+
  $('.fa-caret-down').addClass("visible-fa");
+
  $('.fa-caret-up').removeClass("visible-fa");
+
  $(document).on("click",".protocols h1", function(){
+
 
+
    if($(this).parent('section').children('.prot-inside').hasClass("visible-prot-inside")){
+
      $('.fa-caret-up').removeClass("visible-fa");
+
      $('.fa-caret-down').addClass("visible-fa");
+
      $('.prot-inside').removeClass('visible-prot-inside');
+
    }
+
    else{
+
     
+
      $('.fa-caret-down').addClass("visible-fa");
+
      $('.fa-caret-up').removeClass("visible-fa");
+
      $(this).children('.fa-caret-up').addClass("visible-fa");
+
      $(this).children('.fa-caret-down').removeClass("visible-fa");
+
      $('.prot-inside').removeClass('visible-prot-inside');
+
      $(this).parent('section').children('.prot-inside').addClass("visible-prot-inside");
+
      var target=$(this).parent().prev().position().top;
+
      $('.main_content').animate({scrollTop: target }, 500);
+
    }
+
   
+
  });
+
 
+
</script>
+
  
 
</html>
 
</html>
 
 
{{INSA-UPS_France/General_script}}
 
{{INSA-UPS_France/General_script}}
 
{{INSA-UPS_France/Header_script}}
 
{{INSA-UPS_France/Header_script}}

Latest revision as of 19:36, 31 October 2017


Design

We created a synthetic consortium and demonstrated the power of such approach to fight against cholera disease. Our synthetic consortium involves three microorganism: i) an engineered E. coli to mimic V. cholerae ii) an engineered V. harveyi to sense the presence of the engineered E. coli and in repsonse to produce diacetyl iii) a yeast P. pastoris engineered to detect diacetyl and in response to produce antibacterial peptides (AMPs) in order to trigger lysis of Vibrio species. Here is presented a closer view of the molecular details for each micro-organism as well as an overview of our experimental plan.

Overview

Organisms

Escherichia coli

For safety reasons, the bacteria gram negative E. coli was chosen to mimic V. cholerae. E. coli is an easy organism to deal with, especially as it is well documented, easy to transform with exogenous DNA and easy to culture. The strain K-12 MG1655 was transformed with a plasmid allowing expression of the protein CqsA from V. cholerae, the enzyme responsible for the synthesis of CAI-1. However, as a proof of concept, we also transformed our E. coli strain with the gene coding for the CqsA of V. harveyi, a non-pathogen strain, producing the molecule C8-CAI-1 (an analogue of the V. cholerae CAI-1)1,2. C8-CAI1 is a carbohydrate chain based displaying an hydroxyl group on carbon 3 and ketone function on carbon 4. The CqsA synthetase from V. harveyi produce C8-CAI-1 from endogenous E. coli (S)-adenosylmethionine (SAM) and octanoyl-coenzyme. cqsA from both V. harveyi and V. cholerae were placed under the pLac promoter and we used plasmid pSB1C3 to maintain compatibility with the iGEM registry.

V. harveyi

V. harveyi is a gram negative bacteria, well studied for its quorum sensing system. This bacteria displays its own pathway for the detection of C8-CAI-1. The gene cqsS encodes for the sensor C8-CAI-1 and a single point mutation in its sequence allows V. harveyi to detect both C8-CAI-1 and CAI-1 from V. cholerae. To avoid auto-activation of V. harveyi, we used the JMH626 strain, in which the cqsA gene, coding the enzyme involved in the production C8-CAI-1, has been deleted. Furthermore, additional genes luxS and luxS coding for key enzymes involved in the expression of other quorum sensing molecules have been deleted. All these mutations make the strain JMH626 specific for detecting non-endogenous C8-CAI-1. V. harveyi is also able to regulate the activation of genes under the control of the promoter pQRR4, in a C8-CAI-1 concentration dependent manner 1. At high C8-CAI-1 concentration, the promoter is inactivated. Thus we added the inverter tetR/pTet to activate a gene of interest in presence of C8-CAI-1. The gene of interest is als that encodes for the acetolactate synthase (Als). this enzyme synthetized diacetyl from pyruvate3. Diacetyl is our ransmitter molecule (Figure 1).

The pBBR1MCS-44, a broad host range plasmid, was chosen to allow the transfer of the system into V. harveyi by conjugation (i.e. this is the only way to modify the V. harveyi chassis).

In conclusion, we designed a V. harveyi strain enable to detect both exogenous CAI-1 or C8-CAI-1, and to produce diacetyl as a molecular response.

P. pastoris

V. harveyi cannot not be used as the effector since production of antimicrobial peptides (AMPs) is lethal for Vibrio species. P. pastoris is a yeast commonly used in academic laboratories and industry for its high potential to produce protein. In addition, yeasts were previously described to produce a wide range of AMPs 5,6. Finally, a system allowing efficient communication between yeast and prokaryotes has already been decribed i.e. the diacetyl-dependant Odr-10 receptor system7. This system allows the expression of targets genes under the control of pFUS1 via the Ste12 pathway (Figure 2). For all these reason, we thus chose P. pastoris. We used the constitutive pGAP promoter to express the receptor Odr-10 in P. pastoris

To kill V. cholerae, we looked for a new and innovative antibiotic solution to limit the risk of acquired-resistance. We decided to use AMPs, that are small membrane disrupting molecules toxic for a large panel of microorganisms8. Here we selected AMPs from crocodiles. Crocodiles live in harsh environment and are known to possess an impressive defence system, that allows them to catch very few disease and antimicrobial peptides are part of it9. We focused on 3 different AMPs described to have the best efficiency against V. cholerae. Those AMPs are Leucrocin I10, D-NY1511 and cOT212. Leucrocine I possess one cationic charge for 7 amino acids. D-NY15 is its optimized counterpart with 4 cationic charges and a sequence of 15 amino-acid long. Finally, cOT2 is 29 amino acid long and possesses 6 cationic charges. These AMPs were placed under control of the pGAP constitutive promoter for preliminary tests and under pFUS1 promoter to promote their expression in response to diacetyl. The genetic constructions were inserted into the integrative pPICZα plasmid i.e. a good plasmid for protein production. The signal peptide α-factor was fused to the AMPs to allow for secretion of the peptides.

The action of these AMPs is the last event of our synthetic consortium.

Modules & Parts

Sense

To create our sensor strain, we took advantage of the intraspecies quorum sensing of V. cholerae: the CAI-1/CqsS system. To mimic this pathway, we made an E. coli producer strain of quorum-sensing molecules (i.e. CAI-1 and C8-CAI-1) and we express a modified CqsS* receptor in V. harveyi that can sense both CAI-1 and C8-CAI-1.

Transmit

In response to quorum sensing molecules, the sensor strain activates the pathway leading to the inhibition of the als gene placed under the control of pQRR4 promoter. The signal is inverted by the tetR/pTet system to trigger als gene expression and thus diacetyl production. Diacetyl in turn activates the Odr-10 receptor implemented in the yeast Pichia pastoris.

Respond

Once Odr-10 receptor sensed diacetyl, the pFUS1 promoter triggers expression of AMPs. After excretion, these AMPs can disrupt the membrane of the Vibrio species

Experimental plan

E. coli

Quorum sensing molecule production

  • Measurement of C8-CAI-1 & CAI-1in supernateant by NMR
  • Bioluminescence assay

V. harveyi

Conjugation

  • Conjugation test using a plasmid expressing RFP

Diacetyl production

  • Measurement by NMR of diacetyl in supernateant of E. coli and V. harveyi producing strains

P. pastoris

Diacetyl detection

  • In vivo functionality of pGAP using RFP reporter system
  • In vivo functionality of ODR10/pFUS1 system test using RFP reporter system

Antimicrobial peptides (AMPs)

  • Verification of AMP genes expression by RT-PCR
  • Verification of AMPs activity by toxicity assay