Difference between revisions of "Team:INSA-UPS France/test"

 
(69 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
 
{{INSA-UPS_France/Links_new}}
 
{{INSA-UPS_France/Links_new}}
 
{{INSA-UPS_France/Style_new}}
 
{{INSA-UPS_France/Style_new}}
 
{{INSA-UPS_France/Header_new}}
 
{{INSA-UPS_France/Header_new}}
<html>
 
<style>
 
  
.main_title{
 
  height:300px;
 
  font: 700 4em/1.5 'Quicksand', sans-serif;
 
  position:relative;
 
  letter-spacing: 0.1em;
 
  z-index:10;
 
  margin-bottom:50px;
 
  width:100%;
 
 
 
}
 
.main_title > div{
 
  width:100%;
 
  position:absolute;
 
  bottom:-10px;
 
  background:rgba(255,255,255,0.2);
 
  border-radius: 20px;
 
}
 
  
.main_title p{
+
<html>
   padding:30px;
+
<main class="site-main">
}
+
   <div class="main_content">
 +
  <div class="middle_container">
  
.main_title img{
+
   <div class="section_container">
   position:absolute;
+
  right:0;
+
  width:400px;
+
  bottom:-25px;
+
}
+
  
 +
    <section style="margin-top:200px;">
 +
      <h1 style="text-align: left;margin-top:-110px;font-size:5vw;letter-spacing: 1vw;">Design</h1>
 +
      <img style="width:25%;min-width: 260px; position:absolute;right:0;top:-200px; " src="https://static.igem.org/mediawiki/2017/e/e3/T--INSA-UPS_France--design_croco.png" alt="">
 +
      <p style="margin-top: 50px;">
 +
        We created a synthetic consortium and demonstrated the power of such approach to fight against cholera disease. Our synthetic consortium involves three microorganism: i) an engineered <i>E. coli</i> to mimic<i> V. cholerae</i> ii) an engineered </i>V. harveyi</i> to sense the presence of the engineered <i>E. coli</i> and in repsonse to produce diacetyl iii) a yeast <i>P. pastoris</i> engineered to detect diacetyl and in response to produce antibacterial peptides (AMPs) in order to trigger lysis of<i> Vibrio </i> species. Here is presented a closer view of the molecular details for each micro-organism as well as an overview of our experimental plan.
  
</style>
+
      </p>
 +
    </section>
  
  
  <main class="site-main">
+
    <section style="background: none;">
  <div class="main_content">
+
      <h1 style="text-align:left;">Overview</h1>
  <div class="middle_container">
+
      <img src="https://static.igem.org/mediawiki/2017/b/b8/T--INSA-UPS_France--description_loop.png" alt="" style="width:100%;">
 +
    </section>
  
  <div class="section_container">
+
    <section>
 +
      <h1 style="text-align: left;">Organisms</h1>
 +
      <h2><i>Escherichia coli</i></h2>
 +
      <p>
 +
        For safety reasons, the bacteria gram negative <i>E. coli</i> was chosen to mimic <i> V. cholerae</i>. <i>E. coli</i> is an easy organism to deal with, especially as it is well documented, easy to transform with exogenous DNA and easy to culture. The strain K-12 MG1655 was transformed with a plasmid allowing expression of the protein CqsA from<i> V. cholerae</i>, the enzyme responsible for the synthesis of CAI-1. However, as a proof of concept, we also transformed our <i>E. coli</i> strain with the gene coding for the CqsA of </i>V. harveyi</i>, a non-pathogen strain, producing the molecule C8-CAI-1 (an analogue of the<i> V. cholerae</i> CAI-1)<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/21219472/" target="_blank">1</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/15466044/" target="_blank">2</a></sup>. C8-CAI1 is a carbohydrate chain based displaying an hydroxyl group on carbon 3 and ketone function on carbon 4. The CqsA synthetase from </i>V. harveyi</i> produce C8-CAI-1 from endogenous <i>E. coli</i> (S)-adenosylmethionine (SAM) and octanoyl-coenzyme. <i> cqsA </i> from both <i>V. harveyi</i> and <i> V. cholerae</i> were placed under the pLac promoter and we used plasmid pSB1C3 to maintain compatibility with the iGEM registry.
  
    <div class="article_offset" id="protocols"></div>
 
    <div class="main_title">
 
      <div>
 
        <p>Protocols</p>
 
      </div>
 
      <img src="https://static.igem.org/mediawiki/2017/0/08/T--INSA-UPS_France--Experiments_croco.png" alt="">
 
    </div>
 
  
    <style>
 
      .protocols{
 
        margin-top:20px;
 
      }
 
      .protocols h1{
 
        margin:0px 0px 10px 0px;
 
        cursor:pointer;
 
      }
 
  
      .protocols h1 i.fa.visible-fa{
 
        display:inline-block;
 
      }
 
      .protocols h1 i.fa{
 
        display:none;
 
      }
 
      .prot-inside{
 
        display:none;
 
      }
 
      .prot-inside.visible-prot-inside{
 
        display:block;
 
      }
 
      .protocols ol{
 
        text-align: left;
 
      }
 
      .protocols table tr td{
 
        border:solid 1px #eee;
 
      }
 
    </style>
 
  
  <div class="article_offset" id="prot0">
+
</p>
       <section class="protocols">
+
       <img src="https://static.igem.org/mediawiki/2017/f/fc/T--INSA-UPS_France--design_plasmid-coli.png" alt="" style="width: 10%; position:absolute;bottom:0; left:10%;">
        <h1>Medium and antibiotics<i class="fa fa-caret-down"></i><i class="fa fa-caret-up"></i></h1>
+
      <p style="margin-left:15%;">
        <div class="prot-inside">
+
      </p>
          <h2>Introduction</h2>
+
    </section>
          <p>
+
            Here are listed antibiotics concentration and media recipe used during the experiments.
+
          </p>
+
<h2>LB medium</h2>
+
          <p>
+
                      <table>
+
            <tr>
+
              <th>Tryptone</th>
+
              <td>10 g/L</td>
+
            </tr>
+
            <tr>
+
              <th>Yeast extract</th>
+
              <td>5 g/L</td>
+
            </tr>
+
            <tr>
+
              <th>NaCl</th>
+
              <td>10 g/L</td>
+
            </tr>
+
            <tr>
+
              <th>Water</th>
+
              <td>Up to 1 L</td>
+
            </tr>
+
          </table>
+
          </p>
+
          <p>
+
For solid medium, add 15 g/L of agar.
+
Medium need to be autoclaved before use.
+
          </p>
+
  
<h2>LM medium</h2>
 
          <p>
 
                      <table>
 
            <tr>
 
              <th>Tryptone</th>
 
              <td>10 g/L</td>
 
            </tr>
 
            <tr>
 
              <th>Yeast extract</th>
 
              <td>5 g/L</td>
 
            </tr>
 
            <tr>
 
              <th>NaCl</th>
 
              <td>20 g/L</td>
 
            </tr>
 
            <tr>
 
              <th>Water</th>
 
              <td>Up to 1 L</td>
 
            </tr>
 
          </table>
 
          </p>
 
          <p>
 
For solid medium, add 15 g/L of agar.
 
Medium need to be autoclaved before use.
 
          </p>
 
  
<h2>M9 medium</h2>
+
   
          <p>
+
    <section>
                      <table>
+
      <h2><i>V. harveyi</i></h2>
            <tr>
+
      <p>
              <th><u>5X Salts</u></th>
+
        <i>V. harveyi</i> is a gram negative bacteria, well studied for its quorum sensing system. This bacteria displays its own pathway for the detection of C8-CAI-1. The gene <i>cqsS</i> encodes for the sensor C8-CAI-1 and a single point mutation in its sequence allows <i>V. harveyi</i> to detect both C8-CAI-1 and CAI-1 from <i> V. cholerae</i>. To avoid auto-activation of <i>V. harveyi</i>, we used the JMH626 strain, in which the <i> cqsA </i> gene, coding the enzyme involved in the production C8-CAI-1, has been deleted. Furthermore, additional genes <i>luxS</i> and <i>luxS</i> coding for key enzymes involved in the expression of other quorum sensing molecules have been deleted. All these mutations make the strain JMH626 specific for detecting non-endogenous C8-CAI-1. <i>V. harveyi</i> is also able to regulate the activation of genes under the control of the promoter pQRR4, in a C8-CAI-1 concentration dependent manner <sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/21219472/" target="_blank">1</a></sup>. At high C8-CAI-1 concentration, the promoter is inactivated. Thus we added the inverter tetR/pTet to activate a gene of interest in presence of C8-CAI-1. The gene of interest is <i>als</i> that encodes for the acetolactate synthase (Als). this enzyme synthetized diacetyl from pyruvate<sup><a href="http://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=vhr00650&keyword=diacetyl" target="_blank">3</a></sup>. Diacetyl is our ransmitter molecule (Figure 1).
              <td><b>For 1 L of final solution</b></td>
+
      </p>
              <td><b>[Final] in M9</b></td>
+
      <img src="https://static.igem.org/mediawiki/2017/f/fa/T--INSA-UPS_France--design_plasmid-harveyi.png" alt="" style="width: 10%; position:absolute;bottom:0; left:10%;">
            </tr>
+
      <p style="margin-left:15%;">
            <tr>
+
      The pBBR1MCS-4<sup><a href="http://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=vhr00650&keyword=diacetyl" target="_blank">4</a></sup>, a broad host range plasmid, was chosen to allow the transfer of the system into <i>V. harveyi</i> by conjugation (i.e. this is the only way to modify the <i>V. harveyi</i> chassis).  
              <th>Na<sub>2</sub>, H<sub>2</sub>PO<sub>4</sub>, 12 H<sub>2</sub>O</th>
+
      </p>
              <td>90 g</td>
+
<p style="margin-left:15%;">
              <td>18 g/L</td>
+
In conclusion, we designed a <i>V. harveyi</i> strain enable to detect both exogenous CAI-1 or C8-CAI-1, and to produce diacetyl as a molecular response.
            </tr>
+
  </p>
            <tr>
+
    </section>
              <th>KH<sub>2</sub>PO<sub>4</sub></th>
+
   
              <td>15.65 g</td>
+
    <section>
              <td>3.03 g/L</td>
+
      <h2><i>P. pastoris</i></h2>
            </tr>
+
      <p>
            <tr>
+
        <i>V. harveyi</i> cannot not be used as the effector since production of antimicrobial peptides (AMPs) is lethal for <i> Vibrio </i> species. <i>P. pastoris</i> is a yeast commonly used in academic laboratories and industry for its high potential to produce protein. In addition, yeasts were previously described to produce a wide range of AMPs <sup><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494115/
              <th>NaCl</th>
+
" target="_blank">5</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/23624708" target="_blank">6</a></sup>. Finally, a system allowing efficient communication between yeast and prokaryotes has already been decribed i.e. the diacetyl-dependant Odr-10 receptor system<sup><a href="https://2013.igem.org/Team:SCUT" target="_blank">7</a></sup>. This system allows the expression of targets genes under the control of pFUS1 via the Ste12 pathway (Figure 2). For all these reason, we thus chose <i>P. pastoris</i>. We used the constitutive pGAP promoter to express the receptor Odr-10 in <i>P. pastoris</i>
              <td>2.5 g</td>
+
              <td>0.5 g/L</td>
+
            </tr>
+
            <tr>
+
              <th>NH<sub>4</sub>Cl</th>
+
              <td>10.55 g</td>
+
              <td>2.11 g/L</td>
+
            </tr>
+
          </table>
+
          </p>
+
          <p>
+
                      <table>
+
            <tr>
+
              <th><u>MgSO<sub>4</sub> 1M</u></th>
+
              <td><b>For 50 mL of final solution</b></td>
+
              <td><b>[Final] in M9</b></td>
+
            </tr>
+
            <tr>
+
              <th> MgSO<sub>4</sub></th>
+
              <td>12.3 g</td>
+
              <td>0.49 g/L</td>
+
            </tr>
+
          </table>
+
          </p>
+
          <p>
+
          <table>
+
            <tr>
+
              <th><u>CaCl<sub>2</sub> 0.01M</u></th>
+
              <td><b>For 50 ùL of final solution</b></td>
+
              <td><b>[Final] in M9</b></td>
+
            </tr>
+
            <tr>
+
              <th> CaCl<sub>2</sub></th>
+
              <td>0.073 g</td>
+
              <td>4.38 mg/L</td>
+
            </tr>
+
          </table>
+
          </p>
+
          <p>
+
                      <table>
+
            <tr>
+
              <th><u>1000X Salts</u></th>
+
              <td><b>For 100 mL of final solution</b></td>
+
              <td><b>[Final] in M9</b></td>
+
            </tr>
+
            <tr>
+
              <th>Na<sub>2</sub>EDTA, 2 H<sub>2</sub>O</th>
+
              <td>1.5 g</td>
+
              <td>15 mg/L</td>
+
            </tr>
+
            <tr>
+
              <th>ZnSO<sub>4</sub>, 7 H<sub>2</sub>O </th>
+
              <td>0.45 g</td>
+
              <td>4.5 mg/L</td>
+
            </tr>
+
            <tr>
+
              <th>CoCl<sub>2</sub>, 6 H<sub>2</sub>O </th>
+
              <td>0.03 g</td>
+
              <td>0.3 mg/L</td>
+
            </tr>
+
            <tr>
+
              <th>MnCl<sub>2</sub>, 4 H<sub>2</sub>O</th>
+
              <td>1 g</td>
+
              <td>10 mg/L</td>
+
            </tr>
+
            <tr>
+
              <th>H<sub>3</sub>BO H<sub>3</sub> </th>
+
              <td>0.1 g</td>
+
              <td>1 mg/L</td>
+
            </tr>
+
            <tr>
+
              <th>Na<sub>2</sub>MoO H<sub>4</sub>, 2 H<sub>2</sub>O</th>
+
              <td>0.04 g</td>
+
              <td>0.4 mg/L</td>
+
            </tr>
+
            <tr>
+
              <th>FeSO<sub>4</sub>, 7 H<sub>2</sub>O</th>
+
              <td>0.3 g</td>
+
              <td>3 mg/L</td>
+
            </tr>
+
            <tr>
+
              <th> CuSO<sub>4</sub>, 5 H<sub>2</sub>O </th>
+
              <td>0.03 g</td>
+
              <td>0.3 mg/L</td>
+
            </tr>
+
          </table>
+
          </p>
+
          <p>
+
EDTA and ZnSO<sub>4</sub> are dissolved in 80 mL of mQ water and pH is adjusted to 6. Other compound are added and pH is maintained to 6. Once all compounds are dissolved, water is adjusted to 100 mL and pH to 4. Solution is filtered on 0.2 µm and stored at -4 &deg; C
+
          </p>
+
          <p>
+
                      <table>
+
            <tr>
+
              <th><u>100X thiamine</u></th>
+
              <td><b>For 10 mL of final solution</b></td>
+
              <td><b>[Final] in M9</b></td>
+
            </tr>
+
            <tr>
+
              <th> Hypochloride thiamine></th>
+
              <td>0.1 g</td>
+
              <td>0.1 g/L</td>
+
            </tr>
+
          </table>
+
          </p>
+
          <p>
+
pH is adjusted to 2 with HCl, solution is filtered (0.2 µm) and stored at -4 &deg; C. this product is light sensitive.
+
          </p>
+
          <p>
+
For 1 L of M9 media, all the following recipe are mixed together under sterile condition.
+
          </p>
+
                      <table>
+
            <tr>
+
              <th>Solution</th>
+
              <td><b>Sterilisation</b></td>
+
              <td><b>Volume</b></td>
+
            </tr>
+
            <tr>
+
              <th><b>5X salts</b></th>
+
              <td>autoclave</td>
+
              <td>200 mL</td>
+
            </tr>
+
            <tr>
+
              <th><b> MgSO<sub>4</sub> 1M </b></th>
+
              <td>autoclave</td>
+
              <td>2 mL</td>
+
            </tr>
+
            <tr>
+
              <th><b> CaCl<sub>2</sub> 0.01M </b></th>
+
              <td>autoclave</td>
+
              <td>3 mL</td>
+
            </tr>
+
            <tr>
+
              <th><b>1000X Salts </b></th>
+
              <td>filtration (0.2 µm)</td>
+
              <td>1 mL</td>
+
            </tr>
+
            <tr>
+
              <th><b>100X thiamine</b></th>
+
              <td>filtration (0.2 µm)</td>
+
              <td>10 mL</td>
+
            </tr>
+
            <tr>
+
              <th><b>Carbon source 40X</b></th>
+
              <td>filtration (0.2 µm)</td>
+
              <td>25 mL</td>
+
            </tr>
+
            <tr>
+
              <th><b>Water</b></th>
+
              <td>autoclave</td>
+
              <td>759 mL</td>
+
            </tr>
+
          </table>
+
          </p>
+
          <p>
+
  
<h2>YPB medium</h2>
+
      </p>
          <p>
+
      <img src="https://static.igem.org/mediawiki/2017/6/67/T--INSA-UPS_France--design_plasmid-pichia.png" alt="" style="width: 10%; position:absolute;bottom:0; left:10%;">
                      <table>
+
     
            <tr>
+
<p>
              <th>Baceriological peptone</th>
+
To kill<i> V. cholerae</i>, we looked for a new and innovative antibiotic solution to limit the risk of acquired-resistance. We decided to use AMPs, that are small membrane disrupting molecules toxic for a large panel of microorganisms<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/27837316" target="_blank">8</a></sup>. Here we selected AMPs from crocodiles. Crocodiles live in harsh environment and are known to possess an impressive defence system, that allows them to catch very few disease and antimicrobial peptides are part of it<sup><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3490821/" target="_blank">9</a></sup>. We focused on 3 different AMPs described to have the best efficiency against <i>V. cholerae</i>. Those AMPs are Leucrocin I<sup><a href="http://www.sciencedirect.com/science/article/pii/S0145305X10003071?via%3Dihub" target="_blank">10</a></sup>, D-NY15<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/24192554" target="_blank">11</a></sup> and cOT2<sup><a href="http://www.sciencedirect.com/science/article/pii/S0005273617300433" target="_blank">12</a></sup>. Leucrocine I possess one cationic charge for 7 amino acids. D-NY15 is its optimized counterpart with 4 cationic charges and a sequence of 15 amino-acid long. Finally, cOT2 is 29 amino acid long and possesses 6 cationic charges. These AMPs were placed under control of the pGAP constitutive promoter for preliminary tests and under pFUS1 promoter to promote their expression in response to diacetyl. The genetic constructions were inserted into the  integrative pPICZα plasmid i.e. a good plasmid for protein production. The signal peptide α-factor was fused to the AMPs to allow for secretion of the peptides.
              <td>20 g/L</td>
+
</p>
            </tr>
+
  <p style="margin-left:15%;">
            <tr>
+
The action of these AMPs is the last event of our synthetic consortium.
              <th>Yeast extract</th>
+
</p>
              <td>10 g/L</td>
+
    </section>
            </tr>
+
            <tr>
+
              <th>Glucose</th>
+
              <td>20 g/L</td>
+
            </tr>
+
            <tr>
+
              <th>Water</th>
+
              <td>Up to 1 L</td>
+
            </tr>
+
          </table>
+
          </p>
+
          <p>
+
For solid medium, add 15 g/L of agar.
+
Medium need to be autoclaved before use. Glucose is added after autoclave.
+
          </p>
+
  
<h2>Complete Minimal Medium + glutamine</h2>
+
    <style>
          <p>
+
      /* ASIDE NAV */
For CMM 2X
+
      .left_container{
                      <table>
+
        width:35%;
            <tr>
+
        float:left;
              <th>YNB without amino acid</th>
+
      }
              <td>50 mL</td>
+
      .left_container img{
            </tr>
+
        width:100%;
            <tr>
+
      }
              <th>Glucose 10%</th>
+
              <td>100 mL</td>
+
            </tr>
+
            <tr>
+
              <th>Adenine 1 mg/mL</th>
+
              <td>10 mL</td>
+
            </tr>
+
            <tr>
+
              <th>Histidine 10 mg/mL</th>
+
              <td>1 mL</td>
+
            </tr>
+
            <tr>
+
              <th>Leucine 10 mg/mL</th>
+
              <td>1 lL</td>
+
            </tr>
+
            <tr>
+
              <th>Isoleucine 10 mg/mL</th>
+
              <td>1 mL</td>
+
            </tr>
+
            <tr>
+
              <th>Lysine 10 mg/mL</th>
+
              <td>1.5 mL</td>
+
            </tr>
+
            <tr>
+
              <th>Methionine 10 mg/mL</th>
+
              <td>1 mL</td>
+
            </tr>
+
            <tr>
+
              <th>Phenylalanine 10 mg/mL</th>
+
              <td>2.5 mL</td>
+
            </tr>
+
            <tr>
+
              <th>Tryptophane 5 mg/mL</th>
+
              <td>2 mL</td>
+
            </tr>
+
            <tr>
+
              <th>Tyrosine 0.5 mg/mL</th>
+
              <td>30 mL</td>
+
            </tr>
+
            <tr>
+
              <th> Uracile 2 mg/mL </th>
+
              <td>5 mL</td>
+
            </tr>
+
            <tr>
+
              <th>Water</th>
+
              <td>45 mL</td>
+
            </tr>
+
          </table>
+
          </p>
+
          <p>
+
For CMM glutamine:
+
                      <table>
+
            <tr>
+
              <th>CMM 2X</th>
+
              <td>75 mL</td>
+
            </tr>
+
            <tr>
+
              <th>Glutamine 2%</th>
+
              <td>15 mL</td>
+
            </tr>
+
            <tr>
+
              <th>Water</th>
+
              <td>60 mL</td>
+
            </tr>
+
          </table>
+
          </p>
+
  
 +
    </style>
  
  
 +
    <h1 style="font-family: 'Quicksand', sans-serif;font-size:34pt;text-align: left;margin:20px 10%;">Modules &amp; Parts</h1>
  
<h2>Antibiotics</h2>
+
    <div class="left_container">
          <p>
+
    <div class="left_container__inside">
            Antibiotics are prepared as stock solution of 1000X to facilitate further utilization.
+
      <img style="height:100%;" src="https://static.igem.org/mediawiki/2017/a/a8/T--INSA-UPS_France--design_blupuriline.png" alt="">
          </p>
+
    </div>
          <p>
+
            <b>Materials</b>
+
          </p>
+
          <p>
+
          <ul>
+
            <li> Antibiotic powders (usually stocked as CMR products or at 4°C)</li>
+
            <li> Solvents (pipettes + falcon tube)</li>
+
            <li> Filtration kits </li>
+
            <li> Weighing instrument </li>
+
            <li> Steril Eppendorf tubes</li>
+
          </ul>
+
          </p>
+
          <p>
+
Procedure :
+
          </p>
+
          <p>
+
          <ol>
+
            <li> Under a safety cabinet, weight 0,5g of antibiotic powder and transfer it in a 50 mL falcon tube. </li>
+
            <li> Add 10 mL of the appropriate solvent, mix briefly. </li>
+
            <li> Under PSM, sterilize the antibiotics by filtration and distribute in sterile eppendorf tubes. Fill the seringue before using the filtration membrane.</li>
+
            <li> Annotate the tubes and store at -20°C in the appropriate box. </li>
+
            <li> Dilute 1000x the stock solution in your media to get the fine working concentration. (5μL in 5mL of LB media). </li>
+
            <li> Trash treatment : containers or vessel are not biological waste : use common trash and wash the reusable materials. Diluted antibiotics can be disposed of down the drain.</li>
+
          </ol>
+
          </p>
+
          <p>
+
          <table>
+
            <tr>
+
              <th><u>Antibiotic</u></th>
+
              <td><b>Abbreviation</b></td>
+
              <td><b>Solvent</b></td>
+
              <td><b>[1000X stock]</b></td>
+
 
+
              <td><b>[Culture] </b></td>
+
            </tr>
+
            <tr>
+
              <th>Ampicillin</th>
+
              <td>Amp</td>
+
              <td>water</td>
+
              <td>50 mg/mL</td>
+
              <td><b>50 µg/mL</b></td>
+
            </tr>
+
            <tr>
+
              <th>Chloramphenicol</th>
+
              <td>Cm</td>
+
              <td>ethanol</td>
+
              <td>25 mg/mL</td>
+
              <td><b>25 µg/mL</b></td>
+
            </tr>
+
            <tr>
+
              <th>Kanamycin</th>
+
              <td>Kan</td>
+
              <td>water</td>
+
              <td>50 mg/mL</td>
+
              <td><b>50 µg/mL</b></td>
+
            </tr>
+
            <tr>
+
              <th>Streptomycin</th>
+
              <td>Sm</td>
+
              <td>water</td>
+
              <td>50 mg/mL</td>
+
              <td><b>50 µg/mL</b></td>
+
            </tr>
+
            <tr>
+
              <th>Tetracycline</th>
+
              <td>Tet</td>
+
              <td>ethanol</td>
+
              <td>50 mg/mL</td>
+
              <td><b>50 µg/mL</b></td>
+
            </tr>
+
            <tr>
+
              <th>Zeocin</th>
+
              <td>Zeo</td>
+
              <td>water</td>
+
              <td>25 mg/mL</td>
+
              <td><b>50 µg/mL</b></td>
+
            </tr>
+
          </table>
+
          </p>
+
        </div>
+
      </section>
+
 
     </div>
 
     </div>
  
 +
    <style>
 +
    .right_container{
 +
        width:60%;
 +
        margin-left:40%;
 +
    }
 +
    section ul{
 +
      list-style-position: inside;
 +
    }
  
<div class="article_offset" id="prot0">
+
    .invisible-image{
       <section class="protocols">
+
       visibility: hidden;
        <h1>Cultivation conditions<i class="fa fa-caret-down"></i><i class="fa fa-caret-up"></i></h1>
+
    }
        <div class="prot-inside">
+
    </style>
          <h2><i>E.coli</i></h2>
+
 
          <p>
+
   
            Unless specified, E.coli K12 MG 1655 was grown at 37°C at 160 rpm and 37 °C for solid media
+
    <div class="right_container">
          <ul>
+
            <li> LB medium</li>
+
            <li> M9 medium</li>
+
          </ul>
+
          </p>
+
<h2><i>V. harveyi</i></h2>
+
          <p>
+
            Unless specified, V. harveyi BB120 and JMH626 were grown at 30°C and 160 RPM for liquid media and 30 °C for solid media.
+
          <ul>
+
            <li> LB medium</li>
+
            <li> LM medium</li>
+
          </ul>
+
          </p>
+
<h2><i>P. pastoris</i></h2>
+
          <p>
+
            Unless specified, P. pastoris was grown at 30°C and 160 RPM for liquid media and 30 °C for solid media
+
          <ul>
+
            <li> YBP medium</li>
+
            <li> CMM glutamine medium</li>
+
          </ul>
+
          </p>
+
        </div>
+
      </section>
+
    </div>
+
  
 
+
    <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt="" style="width:30%;">
  <div class="article_offset" id="prot1"></div>
+
    <section class="modules_design" style="border:solid 5px #ae3d3d;margin-top:0px;margin-bottom: 0px;">
    <section class="protocols">
+
       <h2 style="color:#ae3d3d;">Sense</h2>
      <h1>DNA manipulation <i class="fa fa-caret-down"></i><i class="fa fa-caret-up"></i></h1>
+
       <div class="prot-inside">
+
      <h2>PCR</h2>
+
 
       <p>
 
       <p>
        We used the <a href="https://tools.thermofisher.com/content/sfs/manuals/MAN0012393_Phusion_HighFidelity_DNAPolymerase_UG.pdf">Thermo Scientific Phusion High-Fidelity DNA Polymerase</a>. Amplification of templates with high GC content, high secondary structure, low template concentrations or long amplicons may require further optimization.
+
          To create our sensor strain, we took advantage of the intraspecies quorum sensing of <i>V. cholerae</i>: the <b>CAI-1/CqsS system</b>. To mimic this pathway, we made an <i>E. coli</i> producer strain of quorum-sensing molecules (i.e. CAI-1 and C8-CAI-1) and we express a modified CqsS* receptor in <i>V. harveyi</i> that can sense both CAI-1 and C8-CAI-1.
 
       </p>
 
       </p>
      <h5>Materials</h5>
+
 
      <ul>
+
    </section>
        <li>PCR thermocycler</li>
+
    <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt="" style="width:30%;">
        <li>PCR tubes</li>
+
    <section class="modules_design" style="border:solid 5px #468789;margin-top:0px;margin-bottom: 0px;">
        <li>nuclease-free water</li>
+
       <h2 style="color:#468789;">Transmit</h2>
        <li>dNTP</li>
+
        <li>Phusion HF Buffer (X5) or GC Buffer</li>
+
        <li>Primers (both forward and reverse)</li>
+
        <li>Template DNA</li>
+
        <li>Phusion polymerase</li>
+
      </ul>
+
       <h5>Procedure</h5>
+
 
       <p>
 
       <p>
        All components <b>should be mixed and centrifuged prior to use</b>. It is important to add Phusion DNA Polymerase last in order to prevent any primer degradation caused by the 3&acute;&rarr; 5&acute; exonuclease activity.  
+
      In response to quorum sensing molecules, the sensor strain activates the pathway leading to the inhibition of the <i>als</i> gene placed under the control of <b>pQRR4 promoter</b>. The signal is inverted by the <b>tetR/pTet</b> system to trigger <i>als</i> gene expression and thus diacetyl production. Diacetyl in turn activates the <b>Odr-10 receptor</b> implemented in the yeast <i>Pichia pastoris</i>.
 
       </p>
 
       </p>
 +
     
 +
   
 +
          </section>
 +
    <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt=""  style="width:30%;">
 +
    <section class="modules_design" style="border:solid 5px #f37b6f;margin-top:0px;margin-bottom: 0px;">
 +
      <h2 style="color:#f37b6f;">Respond</h2>
 
       <p>
 
       <p>
        Phusion DNA Polymerase may be diluted in 1X HF or GC Buffer just prior to use in order to reduce pipetting errors.
+
    Once Odr-10 receptor sensed diacetyl, the <b>pFUS1</b> promoter triggers expression of AMPs. After excretion, these AMPs can disrupt the membrane of the <i>Vibrio</i> species
 
       </p>
 
       </p>
 +
 +
    </section>
 +
    <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt=""  style="width:30%;">
 +
 +
 +
 +
 +
    </div>
 +
 +
    <section style="padding-left:20%;">
 +
      <h1 style="text-align: left;">Experimental plan</h1>
 +
      <img src="https://static.igem.org/mediawiki/2017/b/b3/T--INSA-UPS_France--design_coli.png" alt="" style="width:15%; position:absolute; top:10px; left:10px;">
 +
      <h2><i>E. coli</i></h2>
 
       <p>
 
       <p>
         Use of high quality, purified DNA templates greatly enhances the success of PCR.
+
         Quorum sensing molecule production
 
       </p>
 
       </p>
      <ol>
 
        <li>
 
          We recommend assembling all reaction components on ice and quickly transferring the reactions to a thermocycler preheated to the denaturation temperature (98&deg;C).
 
          <table>
 
            <tr>
 
              <th>Component</th>
 
              <th>50 &mu;L</th>
 
              <th>final concentration</th>
 
            </tr>
 
            <tr>
 
              <td>Nuclease-free water</td>
 
              <td>qs 50 &mu;L</td>
 
              <td></td>
 
            </tr>
 
            <tr>
 
              <td>Buffer Phusion HF (5X)</td>
 
              <td>10&mu;L</td>
 
              <td>1X</td>
 
            </tr>
 
            <tr>
 
              <td>10 mM dNTPs</td>
 
              <td>1 &mu;L</td>
 
              <td>200 &mu;M</td>
 
            </tr>
 
            <tr>
 
              <td>10 &mu;M Forward primer</td>
 
              <td>2.5 &mu;L</td>
 
              <td>0.5 &mu;M</td>
 
            </tr>
 
            <tr>
 
              <td>10 &mu;M Reverse Primer</td>
 
              <td>2.5 &mu;L</td>
 
              <td>0.5 &mu;M</td>
 
            </tr>
 
            <tr>
 
              <td> DNA template (10 ng/&mu;L)</td>
 
              <td>1 &mu;L</td>
 
              <td>10ng</td>
 
            </tr>
 
            <tr>
 
              <td>Phusion DNA Polymerase</td>
 
              <td>0.5 &mu;L</td>
 
              <td>1.0 U/0.5 &mu;L of reaction</td>
 
            </tr>
 
          </table>
 
          Notes: Gently mix the reaction. Collect all liquid to the bottom of the tube by a quick spin if necessary
 
        </li>
 
        <li>
 
          Transfer PCR tubes from ice to a PCR machine with the block preheated to 98&deg;C and begin thermocycling:
 
          <table>
 
            <tr>
 
              <th>Step</th>
 
              <th>Temperature</th>
 
              <th>Time</th>
 
            </tr>
 
            <tr>
 
              <td>Initial denaturation</td>
 
              <td>98&deg;C</td>
 
              <td>45 sec</td>
 
            </tr>
 
            <tr>
 
              <td rowspan="3">30 cycles</td>
 
              <td>98&deg;C</td>
 
              <td>15 sec</td>
 
            </tr>
 
            <tr>
 
              <td>55&deg;C</td>
 
              <td>30 sec</td>
 
            </tr>
 
            <tr>
 
              <td>72&deg;C</td>
 
              <td>30 sec/kb</td>
 
            </tr>
 
            <tr>
 
              <td>Final extension</td>
 
              <td>72&deg;C</td>
 
              <td>5 min</td>
 
            </tr>
 
            <tr>
 
              <td>Hold</td>
 
              <td>4&deg;C</td>
 
              <td>hold</td>
 
            </tr>
 
          </table>
 
          <table>
 
            <tr>
 
              <th>Parts</th>
 
              <th>Length</th>
 
              <th>Time of extension</th>
 
            </tr>
 
            <tr>
 
              <td>pGAP-cOT2 / pGAP-DNY15 / pGAP-Leucro / YFP / DsRed</td>
 
              <td>1 kb</td>
 
              <td>30 sec</td>
 
            </tr>
 
            <tr>
 
              <td>harveyi 1 / 2 / 3 / Vc and Vh</td>
 
              <td>2 kb</td>
 
              <td>60 sec</td>
 
            </tr>
 
            <tr>
 
              <td>Odr10-cOT2</td>
 
              <td>3 kb</td>
 
              <td>90 sec</td>
 
            </tr>
 
          </table>
 
        </li>
 
        <li>
 
          Then purify the products thanks to PCR purification kit
 
        </li>
 
      </ol>
 
      <p>
 
      <h2>PCR purification</h2>
 
      </p>
 
      <h5>Introduction</h5>
 
      <p>
 
        This protocol was extracted from <a href="https://tools.thermofisher.com/content/sfs/manuals/purelink_pcr_man.pdf">Invitrogen PureLink&reg; PCR Purification Kit</a>. Refer to this protocol for troubleshooting. Use the PureLink&reg; PCR Purification Kit to efficiently remove primers, dNTPs, enzymes, and salts from PCR products in less than 15 minutes. Use the kit with Binding Buffer High-Cutoff (B3) to remove primer dimers or short spurious PCR products. The purified PCR product is suitable for automated fluorescent DNA sequencing, restriction enzyme digestion, and cloning.
 
      </p>
 
      <h5>Materials</h5>
 
 
       <ul>
 
       <ul>
         <li>Binding Buffer (B2)</li>
+
         <li>Measurement of C8-CAI-1 & CAI-1in supernateant by NMR</li>
        <li>Binding Buffer High-Cutoff (B3)</li>
+
         <li>Bioluminescence assay</li>
        <li>Wash Buffer (W1)</li>
+
         </ul>
        <li>Elution Buffer; 10 mM Tris-HCl, pH 8.5 (E1)</li>
+
    </section>
        <li>PureLink&reg; PCR Spin Columns with Collection Tubes</li>
+
        <li>PureLink&reg; Elution Tubes (1.7 mL)</li>
+
        <li>50–100 &mu;L PCR product</li>
+
        <li>100% isopropanol</li>
+
        <li>96–100% ethanol</li>
+
        <li>Sterile, distilled water (pH>7.0)</li>
+
        <li>Microcentrifuge capable of achieving &gt;10,000 &times; g</li>
+
      </ul>
+
      <h5>Procedure</h5>
+
      <p><i>/!\ The PureLink® PCR Purification Kit buffers contain guanidine hydrochloride and isopropanol. Always wear a laboratory coat, disposable gloves, and eye protection when handling buffers.</i></p>
+
      <p><i>/!\ Do not add bleach or acidic solutions directly to solutions containing guanidine hydrochloride or sample preparation waste because it forms reactive compounds and toxic gases when mixed with bleach or acids.</i></p>
+
      <p>
+
        Follow the recommendations below to obtain the best results:
+
      </p>
+
      <ul>
+
        <li>Maintain a PCR volume of 50&ndash;100 &mu;L</li>
+
        <li>Save an aliquot of PCR products before purification to verify and check the amplicon on the gel</li>
+
        <li>Use a centrifuge at room temperature for all steps</li>
+
        <li>Pipet the Elution Buffer (E1) in the center of the column and perform a 1 minute incubation</li>
+
        <li>Always use sterile water with pH 7–8.5, if you are using water for elution</li>
+
      </ul>
+
      <ol>
+
        <li>
+
          <b>Before starting</b>. Add isopropanol to the Binding Buffers and ethanol to the Wash Buffer according to the following table. After adding isopropanol or ethanol, store all buffers at room temperature.
+
          <table>
+
            <tr>
+
              <th>Buffer</th>
+
              <th>Cat. no. K3100-01</th>
+
            </tr>
+
            <tr>
+
              <td>Binding Buffer (B2)</td>
+
              <td>10mL 100% isopropranol</td>
+
            </tr>
+
            <tr>
+
              <td>Binding Buffer HC (B3)</td>
+
              <td>2.3mL 100% isopropranol</td>
+
            </tr>
+
            <tr>
+
              <td>Wash Bufer (W1)</td>
+
              <td>64mL 96-100% isopropranol</td>
+
            </tr>
+
          </table>
+
        </li>
+
        <li><b>Binding DNA. </b></li>
+
        <li>Add 4 volumes of PureLink&reg; Binding Buffer (B2) with isopropanol (see before starting) or Binding Buffer HC (B3) with isopropanol (see before starting) to 1 volume of the PCR product (50&ndash;100 &mu;L). Mix well.</li>
+
        <li>Remove a PureLink&reg; Spin Column in a Collection Tube from the package.</li>
+
        <li>Add the sample with the appropriate Binding Buffer (from step 1 of this procedure) to the PureLink&reg; Spin Column.</li>
+
        <li>Centrifuge the column at room temperature at 10,000 &times; g for 1 minute.</li>
+
        <li>Discard the flow through and place the spin column into the collection tube.</li>
+
        <li><b>Washing DNA</b></li>
+
        <li>Add 650 &mu;L of Wash Buffer with ethanol (see before starting) to the column.</li>
+
        <li>Centrifuge the column at room temperature at 10,000 &times; g for 1 minute. Discard the flow through from the collection tube and place the column into the tube.</li>
+
        <li>Centrifuge the column at maximum speed at room temperature for 2&ndash;3 minutes to remove any residual Wash Buffer. Discard the collection tube. Then let the residual ethanol evaporate by placing the open column on the collection tube and let it sit for 5 mins.</li>
+
         <li><b>Eluting DNA.</b></li>
+
         <li>Place the spin column in a clean 1.7-mL PureLink&reg; Elution Tube supplied with the kit.</li>
+
        <li>Add 30 &mu;L of Elution Buffer (10 mM Tris-HCl, pH 8.5) or sterile, distilled water (pH &gt;7.0) to the center of the column.</li>
+
        <li>Incubate the column at room temperature for 1 minute.</li>
+
        <li>Centrifuge the column at maximum speed for 2 minutes.</li>
+
        <li>The elution tube contains the purified PCR product. Remove and discard the column. The recovered elution volume is ~48 &mu;L. Store the purified PCR product at &ndash;20&deg;C or use the PCR product for the desired downstream application.</li>
+
      </ol>
+
      </p>
+
      <p>
+
      <h2>Colony PCR</h2>
+
      </p>
+
      <h5>Introduction</h5>
+
      <p>This protocol was elaborated thanks to the help of Anthony Henras.</p>
+
      <h5>Materials</h5>
+
      <p>
+
        10 &mu;L of 0.02N NaOH / 1 PCR
+
      </p>
+
      <h5>Procedure</h5>
+
      <ol>
+
        <li>Resuspend the equivalent of the tip of a P1000 pipette of the colony in 10 &mu;L of 0.02N NaOH</li>
+
        <li>Mix well (vortex)</li>
+
        <li>Incubate 5 min at 95&deg;C and then chill on ice for 10 min at 4&deg;C (program the thermocycler to do so (Program YeastLysis))</li>
+
        <li>
+
          For each PCR mix: <br />
+
          <i>NOTE: mix on ice and put on the thermocycler directly after mixing</i>
+
          <table>
+
            <tr>
+
              <th>Component</th>
+
              <th>Volume (&mu;L)</th>
+
            </tr>
+
            <tr>
+
              <td>Previous cell extract</td>
+
              <td>2</td>
+
            </tr>
+
            <tr>
+
              <td>Taq Pol Buffer</td>
+
              <td>10</td>
+
            </tr>
+
            <tr>
+
              <td>Forward oligo 100 10 &mu;M</td>
+
              <td>0.5</td>
+
            </tr>
+
            <tr>
+
              <td>Reverse oligo 100 10 &mu;M</td>
+
              <td>0.5</td>
+
            </tr>
+
            <tr>
+
              <td>dNTP</td>
+
              <td>1</td>
+
            </tr>
+
            <tr>
+
              <td>H2O</td>
+
              <td>35.6</td>
+
            </tr>
+
            <tr>
+
              <td>Taq DNA polymerase</td>
+
              <td>0.4</td>
+
            </tr>
+
          </table>
+
        </li>
+
        <li>
+
          Put on a thermocycler and start this cycle:
+
          <table>
+
            <tr>
+
              <td></td>
+
              <td>95&deg;C</td>
+
              <td>5 min</td>
+
            </tr>
+
            <tr>
+
              <td rowspan="3">35 cycles</td>
+
              <td>95&deg;C</td>
+
              <td>30 sec</td>
+
            </tr>
+
            <tr>
+
              <td>55&deg;C</td>
+
              <td>1 min</td>
+
            </tr>
+
            <tr>
+
              <td>72&deg;C</td>
+
              <td>3 min</td>
+
            </tr>
+
            <tr>
+
              <td></td>
+
              <td>72&deg;C</td>
+
              <td>10 min</td>
+
            </tr>
+
            <tr>
+
              <td></td>
+
              <td>22&deg;C</td>
+
              <td>&infin;</td>
+
            </tr>
+
          </table>
+
        </li>
+
        <li>Migration on gel to check the results</li>
+
      </ol>
+
      </p>
+
      <p>
+
<h2> Gel extraction of DNA </h2>
+
      </p>
+
      <p>
+
<h5> Procedure </h5>
+
      </p>
+
      <p>
+
        <i>Please, before doing your preparative gel, use one sample to make an analityc one !</i>
+
      </p>
+
      <ol>
+
        <li>Equilibrate a water bath or heat block to 50&deg;C.</li>
+
        <li>
+
        Excise a minimal area of gel containing the DNA fragment of interest.<br />
+
       
+
          <ul>
+
            <li><b>Crucial:</b> To protect the UV box, it is a good idea to place the gel on a glass plate if available. </li>
+
            <li>Try to get as little excess gel around the band as possible.</li>
+
          </ul>
+
  
        </li>
+
 
        <li>Weigh the gel slice containing the DNA fragment using a scale sensitive to 0.001 g.</li>
+
   
        <li>
+
    <section style="padding-left:20%;">
          Add Gel Solubilization Buffer (L3) to the excised gel in the tube size indicated in the following table:
+
      <img src="https://static.igem.org/mediawiki/2017/5/5c/T--INSA-UPS_France--design_harveyi.png" alt="" style="width:15%; position:absolute; top:10px; left:10px;">
          <table>
+
      <h2><i>V. harveyi</i></h2>
            <tr>
+
              <th>Gel</th>
+
              <th>Tube</th>
+
              <th>Buffer L3 Volume</th>
+
            </tr>
+
            <tr>
+
              <td>&le;2% agarose</td>
+
              <td>1.7 mL polypropylene</td>
+
              <td>3:1 (i.e., 1.2 mL Buffer L3: 400 mg gel piece)</td>
+
            </tr>
+
            <tr>
+
              <td>&gt;2% agarose</td>
+
              <td>5 mL polypropylene</td>
+
              <td>6:1 (i.e., 2.4 mL Buffer L3: 400 mg gel piece)</td>
+
            </tr>
+
          </table>
+
        </li>
+
        <li>
+
          Place the tube with the gel slice and Buffer L3 into a 50&deg;C water bath or heat block. Incubate the tube at 50&deg;C for 10 minutes. Invert the tube every 3 minutes to mix and ensure gel dissolution.
+
          <ul>
+
            <li>Note: High concentration gels (&gt;2% agarose) or large gel slices may take longer than 10 minutes to dissolve.</li>
+
          </ul>
+
        </li>
+
        <li>
+
          After the gel slice appears dissolved, incubate the tube for an additional 5 minutes.
+
          <ul>
+
            <li>
+
              Optional: For optimal DNA yields, add 1 gel volume of isopropanol to the dissolved gel slice. Mix well.
+
            </li>
+
          </ul>
+
        </li>
+
        <li>
+
          <b>Before Starting:</b> Add ethanol to the Wash Buffer (W1) according to the label on the bottle.
+
        </li>
+
        <li>
+
          <b>Purifying DNA Using a Centrifuge</b>
+
        </li>
+
        <li>
+
          <b>Load.</b> Pipet the dissolved gel piece onto a Quick Gel Extraction Column inside a Wash Tube. Use 1 column per 400 mg of agarose gel.
+
          <ul>
+
            <li>
+
              Note: The column reservoir capacity is 850 &mu;L.
+
            </li>
+
          </ul>
+
        </li>
+
        <li>
+
          <b>Bind.</b> Centrifuge the column at &gt;12,000 &times; g for 1 minute. Discard the flow-through and place the column into the Wash Tube.
+
        </li>
+
        <li>
+
          <b>Wash.</b> Add 500 &mu;L Wash Buffer (W1) containing ethanol to the column.
+
        </li>
+
        <li>
+
          <b>Remove Buffer.</b> Centrifuge the column at &gt;12,000 &times; g for 1 minute. Discard the flow-through and place the column into the Wash Tube.
+
        </li>
+
        <li>
+
          <b>Remove Ethanol.</b> Centrifuge the column at maximum speed for 1–2 minutes. Discard the flow-through.
+
        </li>
+
        <li>
+
          <b>Elute.</b> Place the column into a Recovery Tube. Add 30 &mu;L Elution Buffer (E5) to the center of the column. Incubate the tube for 1 minute at room temperature.
+
        </li>
+
        <li>
+
          <b>Collect.</b> Centrifuge the tube at &gt;12,000 &times; g for 1 minute.
+
        </li>
+
        <li>
+
          <b>Store.</b> The elution tube contains the purified DNA. Store the purified DNA at 4&deg;C for immediate use or at &minus;20&deg;C for long-term storage.
+
        </li>
+
      </ol>
+
      </p>
+
 
       <p>
 
       <p>
<h2> Migration on agarose gel. </h2>
+
        Conjugation
 
       </p>
 
       </p>
      <p>
 
      <h5>Introduction</h5>
 
      <p>
 
        This protocol is the classical one used for electrophoresis. - You can adapt the concentration of agar according to the length of your fragment 1% agar if the DNA fragments are big 2% agar if the DNA fragments are small (the bigger fragment are sticked together) - Adapt the volume of the gel 15 to 30 mL for small gels and 150 to 200 mL for big gels
 
      </p>
 
      <h5>Procedure</h5>
 
      <ol>
 
        <li>
 
          Thoroughly rinse gel housing and well-comb with dH2O.
 
        </li>
 
        <li>
 
          Place gel mold perpendicular to flow direction, ensuring proper sealing of rubber gaskets.
 
        </li>
 
        <li>
 
          Add the calculated amounts of 0.5xTBE and agarose to a fresh Erlenmeyer flask.
 
        </li>
 
        <li>
 
          Heat in microwave until mixture can be dissolved.
 
          <ul>
 
            <li>
 
              <b>CRITICAL:</b> Do not let the mixture boil over and out of the flask. Typical heating time for 50mL in a 2.45GHz microwave oven at full power is 30s. USE HEAT GLOVES
 
            </li>
 
          </ul>
 
        </li>
 
        <li>
 
          Gently swirl until well mixed and gently swirling periodically until ~55&deg;C.
 
        </li>
 
        <li>
 
          Gently pour molten agarose gel into housing, avoiding air bubbles.
 
        </li>
 
        <li>
 
          Place desired well comb in desired position.
 
        </li>
 
        <li>
 
          Once gelled, carefully remove well comb in a uniform fashion.
 
        </li>
 
        <li>
 
          Remove gel mold and place in parallel direction to flow
 
          <ul>
 
            <li>
 
              <b>CRITICAL:</b> the deposit line has to be at the anode (negative pole)
 
            </li>
 
          </ul>
 
        </li>
 
        <li>
 
          Fill gel box with 0.5 xTAE until the gel is well covered.
 
        </li>
 
        <li>
 
          Place the ladder on the gel, the native and digested plasmid (write down the gel map)
 
          <ul>
 
            <li><b>TIP:</b> When loading the sample in the well, maintain positive pressure on the sample to prevent bubbles or buffer from entering the tip. </li>
 
          </ul>
 
        </li>
 
        <li>
 
          Run the electrophoresis for 20-30min at 100V until the dye line is approximately 80% of the way down the gel
 
        </li>
 
        <li>
 
          Turn OFF power, disconnect the electrodes from the power source, and then carefully remove the gel from the gel box.
 
        </li>
 
        <li>
 
          Place the gel into a container filled with 100 mL of TAE running buffer and 5 &mu;L of EtBr, place on a rocker for 20-30 mins, r
 
        </li>
 
        <li>
 
          Place the gel into a container filled with water and destain for 5 mins.
 
        </li>
 
        <li>
 
          Reaveal under UV lamp, visualize your DNA fragments
 
        </li>
 
      </ol>
 
      </p>
 
      <p>
 
<h2> Miniprep. </h2>
 
      </p>
 
      <p>
 
      <h5>Introduction</h5>
 
      <p>
 
        This protocol was taken from the <a href="https://tools.thermofisher.com/content/sfs/manuals/MAN0013117_GeneJET_Plasmid_Miniprep_UG.pdf">ThermoScientific GeneJET Plasmid Miniprep Kit</a>. Safety: Both the Lysis Solution and the Neutralization Solution contain irritants. <b>Wear gloves when handling these solutions.</b>
 
      </p>
 
      <h5>Procedure</h5>
 
 
       <ul>
 
       <ul>
         <li>
+
         <li> Conjugation test using a plasmid expressing RFP</li>
          Note: All steps should be carried out at room temperature. All centrifugations should be carried out in a microcentrifuge at &ge; 12 000 x g (10 000-14 000 rpm, depending on the rotor type).
+
         </ul>
        </li>
+
        <li>
+
          Be sure that the concentrated solutions have been diluted with the appropriated buffer
+
         </li>
+
      </ul>
+
      <ol>
+
        <li>
+
          Pick a single colony from a freshly streaked selective plate to inoculate 5mL of LB medium supplemented with the appropriate selection antibiotic.
+
        </li>
+
        <li>
+
          Incubate for 12-16 hours at 37&deg;C while shaking at 200-250 rpm
+
        </li>
+
        <li>
+
          Centrifugate the bacterial culture, &gt;12 000 g in a microcentrifuge for 2 minutes at room temperature. Repeat until there is no more media.
+
        </li>
+
        <li>
+
          Add to the pelleted cells:
+
          <ul>
+
            <li>250 &mu;L of Resuspension Solution and vortex</li>
+
            <li>250 &mu;L of Lysis Solution and invert the tube 4-6 times. WAIT 2 min</li>
+
            <li>350 &mu;L of Neutralization Solution and invert the tube 4-6 times.</li>
+
            <li>Lysis buffer must be neutralized before 5 minutes</li>
+
          </ul>
+
        </li>
+
        <li>Centrifuge 5 minutes.</li>
+
        <li>Transfer the supernatant to the Thermo Scientific GeneJET Spin Column. Centrifuge 1 minute</li>
+
        <li>Add 500 &mu;L of Wash Solution and centrifuge for 60 s and discard the flow-through</li>
+
        <li>Repeat step 5.</li>
+
        <li>Centrifuge empty column for 1 minute.</li>
+
        <li>Dry for 5 minutes </li>
+
        <li>Transfer the column into a new tube.</li>
+
        <li>Add 30 &mu;L of Elution Buffer to the column and incubate 2 minutes. </li>
+
        <li>Centrifuge 2 minutes.</li>
+
        <li>Collect the flow-through.</li>
+
      </ol>
+
      </p>
+
 
       <p>
 
       <p>
      <h2>Ligation</h2>
+
        Diacetyl production
 
       </p>
 
       </p>
      <p>
 
      <h5>Introduction</h5>
 
      <p>
 
        Please see the <a href="https://www.neb.com/protocols/1/01/01/dna-ligation-with-t4-dna-ligase-m0202"> NEB website </a>for supporting information on this protocol.
 
      </p>
 
      <h5>Materials</h5>
 
 
       <ul>
 
       <ul>
         <li><a href="https://www.neb.com/products/b0202-t4-dna-ligase-reaction-buffer">10X T4 DNA Ligase Reaction Buffer</a></li>
+
         <li> Measurement by NMR of diacetyl in supernateant of <i> E. coli</i> and </i>V. harveyi</i> producing strains </li>
        <li><a href="https://www.neb.com/products/m0202-t4-dna-ligase">T4 DNA Ligase</a></li>
+
         </ul>
         <li>Vector DNA (4kb) </li>
+
    </section>
        <li>Insert DNA (1kb) </li>
+
   
        <li>nuclease-free water</li>
+
    <section style="padding-left:20%;">
       </ul>
+
       <img src="https://static.igem.org/mediawiki/2017/2/2d/T--INSA-UPS_France--design_pichia.png" alt="" style="width:15%; position:absolute; top:10px; left:10px;">
      <h5>Procedure</h5>
+
      <h2><i>P. pastoris</i></h2>
      <p><i>Note: T4 DNA Ligase should be added last. The table shows a ligation using a molar ratio of 1:3 vector to insert for the indicated DNA sizes.  Use <a href="http://nebiocalculator.neb.com/#!/"> NEB calculator</a> to calculate molar ratios.</i></p>
+
      <ol>
+
        <li>Thaw the T4 DNA Ligase Buffer and resuspend at room temperature. <i>Tip: Alicuote the 10x buffer less concentrated so when thawing, the DTT gets soluble more easily.</i></li>
+
        <li>
+
          Set up the following reaction in a microcentrifuge tube on ice:
+
          <table>
+
            <tr>
+
              <th>Component</th>
+
              <th>Volume (&micro;L)</th>
+
            </tr>
+
            <tr>
+
              <td>10X T4 DNA Ligase Buffer</td>
+
              <td>2</td>
+
            </tr>
+
            <tr>
+
              <td>Vector DNA: 50 ng (0.020 pmol)</td>
+
              <td></td>
+
            </tr>
+
            <tr>
+
              <td>Insert DNA: 37.5 ng (0.060 pmol)</td>
+
              <td></td>
+
            </tr>
+
            <tr>
+
              <td>Nuclease-free water</td>
+
              <td>17</td>
+
            </tr>
+
            <tr>
+
              <td>T4 DNA Ligase</td>
+
              <td>1</td>
+
            </tr>
+
            <tr>
+
              <td>Total</td>
+
              <td>20</td>
+
            </tr>
+
          </table>
+
        </li>
+
        <li>Gently mix the reaction by pipetting up and down and microfuge briefly.</li>
+
        <li>For cohesive (sticky) ends, incubate at 16&deg;C overnight or room temperature for 10 minutes. For blunt ends or single base overhangs, incubate at 16&deg;C overnight or room temperature for 2 hours.</li>
+
        <li>Heat inactivate at 65 degrees C for 10 minutes.</li>
+
        <li>Chill on ice and transform 1-5 &mu;l of the reaction into 50 &mu;l competent cells. <i>Use 25 uL DH5&alpha; cells, and add 2 uL of reaction mixture.</i></li>
+
      </ol>
+
      </p>
+
 
       <p>
 
       <p>
      <h2>Chemical transformation (RbCl method)</h2>
+
          Diacetyl detection
 
       </p>
 
       </p>
      <p>
 
      <h5>Introduction</h5>
 
      <p>
 
        This protocol was given by St&eacute;phanie. The aim is to make yourself Top10 competent cells.
 
      </p>
 
      <h5>Materials</h5>
 
 
       <ul>
 
       <ul>
         <li>2 * Steri cup 250mL</li>
+
         <li> <i> In vivo </i> functionality of pGAP using RFP reporter system </li>
         <li>TrisEDTA</li>
+
         <li><i> In vivo </i> functionality of ODR10/pFUS1 system  test using RFP reporter system </li>
 
       </ul>
 
       </ul>
 
      <h2>Procedure</h2>
 
      <h3>Media and Solutions</h3>
 
      <ol>
 
        <li>500 mL LB</li>
 
        <li>
 
          200 mL TFB1:
 
          <ul>
 
            <li>0.59 g KOAc (Cf=30 mM)</li>
 
            <li>2.42 g RbCl (100 mM)</li>
 
            <li>0.29 g CaCl2 2H2O (10 mM)</li>
 
            <li>1.98 g MnCl2 4H2O (50 mM)</li>
 
            <li>30 g Glycerol (15% wt/vol)</li>
 
            <li>Adjust to pH 5.8 with 0.2 M acetic acid (do not adjust pH with KOH). Add dH2O to 200 mL. Filter sterilize. Store refrigerated at 4&deg;C.</li>
 
          </ul>
 
        </li>
 
        <li>
 
          200 mL TFB2:
 
          <ul>
 
            <li>0.42 g MOPS (10 mM)</li>
 
            <li>2.21 g CaCl2 2H2O</li>
 
            <li>0.24 g RbCl (10 mM)</li>
 
            <li>30 g Glycerol (15% wt/vol)</li>
 
            <li>Adjust to pH 6.5 with KOH. Add dH2O to 200 mL. Filter sterilize. Store refrigerated at 4&deg;C.</li>
 
          </ul>
 
        </li>
 
      </ol>
 
      <h3>Preparation of Competent Cells</h3>
 
      <ol start="4">
 
        <li>Streak cells from frozen stock onto LB plate. Incubate O/N at 37&deg;C.</li>
 
        <li>Pick a single fresh colony to inoculate 5 mL of LB medium. Grow O/N at 37&deg;C. <i>Do not vortex cells at any time after this point in the procedure.</i></li>
 
        <li>Dilute 1 mL of culture into 50 mL LB medium prewarmed to 37&deg;C. Grow at 37&deg;C for 2 hours with agitation. Volumes can be scaled up 5X and all of the 5 mL overnight culture can be used.</li>
 
        <li>Transfer culture to sterile 50 mL tube. Chill on ice 10-15 minutes.</li>
 
        <li>Centrifuge for 10 mintutes at 2000 rpm at 4&deg;C. Immediately aspirate off all the supernatant. <i>Do not allow cells to warm above 4&deg;C at any time in this procedure.</i></li>
 
        <li>Resuspend cells in 10 mL of ice-cold TFB1 with gentle re-pipetting. Use chilled glass of plastic pipette.</li>
 
        <li>Incubate cells on ice for 5 minutes.</li>
 
        <li>Repeat step 8</li>
 
        <li>Resuspend cells in 2 mL of ice-cold TFB2 with gentle re-pipetting. Use micropipet tip (plastic).</li>
 
        <li>Incubate cells on ice for 15 minutes. Cells may be used for transformation or frozen. <i>To freeze: aliquot cells 100 &micro;L volumes into prechilled 0.5 mL microcentrifuge tubes (on ice). Freeze immediately on dry ice. Stire cells frozen at -80&deg;C.</i></li>
 
      </ol>
 
      <h3>Transformation of competent cells</h3>
 
      <ol start="14">
 
        <li>If starting with frozen competent cells, warm tube/cells by gently twirling between your fingers until just thawed (i.e., at ~0&deg;C). Then, immediately place on ice for about 5 minutes.</li>
 
        <li>
 
          Set up transformation as follows: <br />
 
          Add to 15 mL plastic round bottom tube on ice:
 
          <ul>
 
            <li>0-9 µL TE (Tris 10mM + EDTA 1mM)</li>
 
            <li>1-10 µL DNA (10-100 ng)</li>
 
            <li>10 &micro;L final volume &rarr; /!\ 10% max of the cell competent volume</li>
 
          </ul>
 
        </li>
 
        <li>Add 100 µL of competent cells and mix by gentle repipetting. <i>This method can be scaled down 2- to 4-fold. The maximum volume of DNA should be ~1/10 volume of cells and the maximum mass should be &lt;= 100 ng of DNA for 100 &micro;L of cells.</i></li>
 
        <li>Incubate cells on ice for 20-30 minutes.</li>
 
        <li>Heat shock the cells exactly 90 seconds at 42&deg;C.</li>
 
        <li>Return cells on ice 2 minutes.</li>
 
        <li>Add 1 mL of LB medium. Incubate at 37&deg;C for 45-60 minutes with slow gentle shaking. <i>For blue/white color selection, spread IPTG and X-gal on plates now and hold at 37&deg;C until use</i></li>
 
        <li>Plate 0.1 - 0.2 mL of transformed cells on LB-plate containing the appropriate antibiotic (adn IPTG and X-gal if needed). Incubate overnight at 37&deg;C. Place at 4&deg;C to store and/or enhance blue color. <i>Note: The next day, liquid cultures of the transformants can be left 8 hours before the miniprep. In the best-case scenario, do the liquid culture at 8am and do the miniprep at 4pm.</i></li>
 
      </ol>
 
      <h3>Testing competent cells</h3>
 
      <ol start="22">
 
        <li>Transform 100 &micro;L of cells with 1 &micro;L (10 pg) of pUC19 monomer (0.01 &micro;g/&micro;L).</li>
 
        <li>Plate 0.25 mL of transformation mixture. Incubate overnight at 37&deg;C.</li>
 
        <li>Count CFU and calculate efficiency. Efficiency =# of colonies per &micro;g =# of colonies X4 X 105. You should obtain 1-5 X 10<sup>7</sup>/&micro;g from competent cells after one freeze-thaw cycle.</li>
 
      </ol>
 
      </p>
 
 
       <p>
 
       <p>
<h2> Enzymatic digestion of DNA. </h2>
+
        Antimicrobial peptides (AMPs)
 
       </p>
 
       </p>
      <p>
 
      <h5>Introduction</h5>
 
      <p>This protocol was extracted from the <a href="https://www.protocols.io/view/Single-temperature-Double-Digest-imsuj5">protocol from NEB website.</a></p>
 
      <h5>Materials</h5>
 
 
       <ul>
 
       <ul>
         <li>
+
         <li>Verification of AMP genes expression by RT-PCR</li>
          For analysis digestion:
+
         <li>Verification of AMPs activity by toxicity assay</li>
          <ul>
+
            <li>Eppendorfs</li>
+
            <li>1 &mu;g of DNA </li>
+
            <li>1 &mu;L 10X buffer (most enzymes can be used in Cutsmart buffer, check on NEB website)</li>
+
            <li>1U enzyme pour 1 &mu;g ADN (0,5 &mu;L for 1 &mu;g DNA)</li>
+
            <li>H<sub>2</sub>O qsp 10 &mu;L</li>
+
            <li>heating plate</li>
+
          </ul>
+
         </li>
+
        <li>
+
          For preparative digestion:
+
          <ul>
+
            <li>Keep the same proportions and scale up for 30&micro;L of DNA on 100&micro;L final</li>
+
          </ul>
+
        </li>
+
        <li>If cut by the same Enzyme, please prepare a MIX with n+1 (n = number of sample)</li>
+
        <li>For gel migration, add 2 &mu;L of loading dye for each 10 &mu;L mix</li>
+
 
       </ul>
 
       </ul>
      <h5>Procedure</h5>
 
      <ol>
 
        <li>Mix all the elements</li>
 
        <li>Incubate 1h at enzyme specific temperature (usually 37&deg;C)</li>
 
        <li>Check if heat inactivation is required and do it accordingly <i>/!\ if inactivation is done at high temperature put on ice after inactivation and then centrifuge to keep the  evaporated water.</i></li>
 
      </ol>
 
      </p>
 
      <p>
 
<h2> Electroporation of <i>P. pastoris.</i> </h2>
 
      </p>
 
      <p>
 
      <h5>Introduction</h5>
 
      <p>
 
        Protocol from Lin-Cereghino, J., Wong, W., Xiong, S., Giang, W., Luong, L., Vu, J., Johnson, S. and Lin-Cereghino, G. (2005). Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris. <i>BioTechniques</i>, 38(1), pp.44-48.
 
      </p>
 
      <h5>Materials</h5>
 
      <ul>
 
        <li>ice</li>
 
        <li>linearized plasmid (with AvrII)</li>
 
        <li>competent cells from the protocol cell preparation</li>
 
        <li>electroporation apparatus</li>
 
        <li>1.0M sorbitol</li>
 
        <li>YPD</li>
 
        <li>plates with gradient of zeocin</li>
 
      </ul>
 
      <h5>Procedure</h5>
 
      <ol>
 
        <li>Mix approximately 4-8&mu;L (50&ndash;100 ng) of dialysed linearized plasmid DNA with 40 &mu;L of competent cells in an electroporation cuvette</li>
 
        <li>Incubate for 2 min on ice</li>
 
        <li>Pulse 1500V, 25&mu;F, 200&Omega; (You should have a Ꞇ between 4 and 5 ms. If it is &gt;5ms, there were too many ions in the mix. It can kill cells.) (was done previously with 1500V, 10&mu;F, 600&Omega; -&gt; worked)</li>
 
        <li>Resuspend immediately samples in 0.5 mL 1.0 M sorbitol and 0.5 mL YPD, incubate in a 30&deg;C shaker for 1h30, and then plate on media containing increasing concentrations of zeocin (100, 250, 500, or 1000 &mu;g/mL) for the selection of multicop</li>
 
      </ol>
 
    </div>
 
 
     </section>
 
     </section>
 
 
<div class="article_offset" id="prot0">
 
      <section class="protocols">
 
        <h1>NMR analysis<i class="fa fa-caret-down"></i><i class="fa fa-caret-up"></i></h1>
 
        <div class="prot-inside">
 
          <h2>C8-CAI-1 analysis</h2>
 
          <p>
 
            This protocol is used to quantify C8-CAI-1 production by NMR spectroscopy.
 
          </p>
 
          <p>
 
Supernatant obtained by centrifugation of 50mL of total broth are freeze-dried, resuspended in 500µL of CDCl3, and spiked with 100 µL of TSP-d4 (1mM, in D2O) used as internal standard for quantification and as reference for chemical shifts. The resulting samples are analyzed at 280K by 1D 1H NMR on an Avance 800 MHz spectrometer (Bruker, Rheinstetten, Germany) equipped with a 5-mm z-gradient TPI probe, using a zgpr sequence with a 90° pulse of 7µs and a relaxation delay between scans of 5 s. A total of 64 scans were accumulated (128k data points with a spectral width of 10 ppm) after 4 dummy scans. All the spectra were acquired and processed on TopSpin 3.2 (Bruker).
 
          </p>
 
<h2>Diacetyl analysis</h2>
 
          <p>
 
            This protocol is used to quantify diacetyl production by NMR spectroscopy.
 
          </p>
 
          <p>
 
Supernatant (500µL) obtained by filtration of total broth (Sartolon polyamide 0.2µm, Sartorius) are spiked with 100 µL of TSP-d4 (1mM, in D2O) used as internal standard for quantification and as reference for chemical shifts. The resulting samples are analyzed at 280K by 1D 1H NMR on an Avance 500 MHz spectrometer (Bruker, Rheinstetten, Germany) equipped with a 5-mm z-gradient BBI probe, using a zgpr sequence for water suppression with a 90° pulse of 7µs and a relaxation delay between scans of 5 s. A total of 64 scans were accumulated (128k data points with a spectral width of 10 ppm) after 4 dummy scans. All the spectra were acquired and processed on TopSpin 3.2 (Bruker).          </p>
 
        </div>
 
      </section>
 
    </div>
 
 
 
 
<div class="article_offset" id="prot0">
 
      <section class="protocols">
 
        <h1>Solid Bioluminescence assay<i class="fa fa-caret-down"></i><i class="fa fa-caret-up"></i></h1>
 
        <div class="prot-inside">
 
          <h2>Introduction</h2>
 
          <p>
 
            This protocol is based on the Experimental Procedure provided in the following publication:
 
          </p>
 
          <p>
 
Ng W-L, Perez LJ, Wei Y, Kraml C, Semmelhack MF & Bassler BL (2011). “Signal production and detection specificity in Vibrio CqsA/CqsS quorum-sensing systems: Vibrio quorum-sensing systems.” Molecular Microbiology 79 1407–1417. <a href="https://www.ncbi.nlm.nih.gov/pubmed/21219472">https://www.ncbi.nlm.nih.gov/pubmed/21219472</a>
 
          <p>
 
          </p>
 
The aim is to detect the Vibrio harveyi quorum sensing molecule C8-CAI-1 in vivo from a spent culture fluid. Here, a clone of an Escherichia coli MG1655 strain able to synthesis the molecule is taken as an example. Please note that the whole procedure lasts 3 days.
 
          </p>
 
<h2>Materials</h2>
 
          <p>
 
          <ul>
 
            <li>Liquid LB medium</li>
 
            <li> Solid LB medium</li>
 
            <li> Sterile glucose solution </li>
 
            <li> Sterile IPTG solution, final concentration in culture: 0.5 mM</li>
 
          </ul>
 
          </p>
 
<h2>Procedure</h2>
 
          <p>
 
            <b>1<sup>st</sup> day.</b>
 
          </p>
 
          <p>
 
Liquid precultures of <i>E. coli</i>
 
          <ol>
 
            <li> Prepare 2 test tubes with 5 mL of liquid LB medium complemented with chloramphenicol (final concentration in the medium: 25 mg/L) and glucose (final concentration in the medium: 10 g/L). Vortex to mix all the components.</li>
 
            <li> From agar plates, inoculate one of the previous tubes with the <i>E. coli</i> MG1655 clone. Inoculate the other with the <i>E. coli</i> MG1655 negative control.</li>
 
            <li> Incubate the tubes over-night at 37°C with shaking (160 rpm). </li>
 
          </ol>
 
          </p>
 
          <p>
 
Liquid precultures of <i>V. harveyi</i>
 
          <ol>
 
            <li> Prepare 2 flasks with 10 mL of liquid LB medium.</li>
 
            <li> From agar plates, inoculate one of the previous flasks with V. harveyi JMH626. Inoculate the other with <i>V. harveyi</i> BB120.</li>
 
            <li> Incubate the flasks over-night at 30°C with shaking (160 rpm).</li>
 
          </ol>
 
          </p>
 
          <p>
 
            <b>2<sup>nd</sup> day.</b>
 
          </p>
 
          <p>
 
Expression cultures of <i>E. coli</i>
 
          <ol>
 
            <li> Measure OD of the 2 <i>E. coli</i> precultures at 600 nm.</li>
 
            <li> Prepare 2 flasks with 20 mL of liquid LB medium complemented with chloramphenicol (final concentration in the medium: 25 mg/L) and glucose (final concentration in the medium: 10 g/L).</li>
 
            <li> Vortex to mix all the components.</li>
 
            <li> From the precultures, inoculate one of flasks with the <i>E. coli</i> MG1655 clone at OD = 0.1 Inoculate the other with the <i>E. coli</i> MG1655 negative control at OD = 0.1.</li>
 
            <li> Incubate the flasks at 37°C with shaking (160 rpm).</li>
 
            <li> When OD = 0.3, put the flasks at 30°C with shaking (160 rpm) for 15 minutes.
 
Then, add IPTG (final concentration in the medium: 0.5 mM) and incubate at 30°C with shaking (160 rpm).</li>
 
            <li> When OD = 0.9, retrieve the supernatants as follows:
 
centrifugate all the cultures at maximum speed for 10 min.
 
filter the resulting supernatants through a 0.2 µm filter.</li>
 
            <li> Store both supernatants at -20°C for subsequent use.</li>
 
          </ol>
 
          </p>
 
          <p>
 
Expression culture of <i>V. harveyi</i> BB120
 
          <ol>
 
            <li> Measure OD of the <i>V. harveyi</i> BB120 preculture at 600 nm.</li>
 
            <li> Prepare 2 flasks with 20 mL of liquid LB medium.</li>
 
            <li> From the preculture, inoculate the previous flasks at OD = 0.1</li>
 
            <li> Incubate at 30°C with shaking (160 rpm).</li>
 
            <li> Check bioluminescence regularly. When V. harveyi BB120 shows bright bioluminescence, retrieve the supernatant of one the cultures as follows:
 
centrifugate the whole culture at maximum speed for 10 min
 
filter the resulting supernatants through a 0.2 µm filter.</li>
 
            <li> Store the supernatant at -20°C for subsequent use.
 
Keep the other <i>V. harveyi</i> BB120 culture at 30°C with shaking (160 rpm).</li>
 
            <li>Puce 1</li>
 
            <li>Puce 1</li>
 
            <li>Puce 1</li>
 
            <li>Puce 1</li>
 
          </ol>
 
          </p>
 
          <p>
 
Expression culture of <i>V. harveyi</i> JMH626
 
          <ol>
 
            <li> Measure OD of the <i>V. harveyi</i> JMH626 preculture at 600 nm.</li>
 
            <li> Prepare 4 flasks with 10 mL of liquid LB medium.</li>
 
            <li> From the preculture, inoculate the previous flasks at OD = 0.1</li>
 
            <li> Incubate at 30°C with shaking (160 rpm) until OD = 0.6. </li>
 
            <li> Centrifugate the 4 cultures at 4500 rpm for 6 min.</li>
 
            <li> Discard the resulting supernatant and resuspend each of the pellets with 5 mL of liquid LB medium.</li>
 
            <li> Add 5 mL of the supernatants obtained previously.
 
one flask must be complemented with the E. coli MG1655 clone supernatant.
 
one flask must be complemented with the E. coli MG1655 negative control supernatant.
 
one flask must be complemented with the V. harveyi BB120 supernatant.
 
one flask must be complemented with additional liquid LB medium.
 
</li>
 
            <li> Prepare 3 LB agar plates and divide each of them into 5 identical zones. </li>
 
            <li> On the plates, drop-off 70 µL of each of the V. harveyi JMH626 resuspended cultures.
 
On the fifth zone, drop-off 70 µL of the last V. harveyi BB120 liquid culture .</li>
 
            <li> Incubate the 3 plates at 30°C over-night.</li>
 
          </ol>
 
          </p>
 
          <p>
 
<b>3<sup>rd</sup> day</b>
 
          <ol>
 
            <li> Observe each of the plates in total darkness.</li>
 
          </ol>
 
          </p>
 
        </div>
 
      </section>
 
    </div>
 
 
 
 
<div class="article_offset" id="prot0">
 
      <section class="protocols">
 
        <h1>Triparental conjugation<i class="fa fa-caret-down"></i><i class="fa fa-caret-up"></i></h1>
 
        <div class="prot-inside">
 
          <h2>Introduction</h2>
 
          <p>
 
            4 days of experimentations: start the culture in liquid media on monday ! The construction you want to conjugate must be into the conjugative plasmid.
 
          </p>
 
<h2>Materials</h2>
 
          <p>
 
<b>Plates</b>
 
          <ul>
 
            <li>1 plate of LB - Cm </li>
 
            <li>1 plate of LB - Spec</li>
 
            <li>1 plate of LB - Gen or 1 plate of LB - Amp (depends on the donor)</li>
 
            <li>1 plate of LB</li>
 
            <li>1 plate of LB - Cmp + Gen or 1 plate of LB - Cmp + Amp (depends on the donor)</li>
 
          </ul>
 
          </p>
 
          <p>
 
<b>Strains</b>
 
          <ul>
 
            <li> Recipient strain <i>V. harveyi</i> JMH626</li>
 
            <li> Helper strain <i>E. coli</i> containing pRK2073 helper plasmid </li>
 
            <li> Donor strain <i>E. coli</i> containing pBBR1MCS5 - genta conjugative plasmid, or donor strain E. coli containing pBBR1MCS4 - ampi conjugative plasmid.</li>
 
          </ul>
 
          </p>
 
          <p>
 
<b>Other</b>
 
          <ul>
 
            <li> LB liquid media (for the culture overnight and to resuspend)</li>
 
            <li> Membranes for the conjugative culture</li>
 
          </ul>
 
          </p>
 
<h2>Procedure</h2>
 
          <p>
 
<!-- https://drive.google.com/drive/u/0/folders/0B0KMDfevnIlKYWVhV1JlWWNwQWc triparental-->
 
          </p>
 
        </div>
 
      </section>
 
    </div>
 
 
 
 
 
<div class="article_offset" id="prot0">
 
      <section class="protocols">
 
        <h1>Fluorescence microscopy<i class="fa fa-caret-down"></i><i class="fa fa-caret-up"></i></h1>
 
        <div class="prot-inside">
 
          <h2>Introduction</h2>
 
          <p>
 
            Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
 
          </p>
 
<h2>Materials</h2>
 
          <p>
 
            Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
 
          </p>
 
<h2>Procedure</h2>
 
          <p>
 
            Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
 
          </p>
 
        </div>
 
      </section>
 
    </div>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<div class="article_offset" id="prot0">
 
      <section class="protocols">
 
        <h1>Protein production<i class="fa fa-caret-down"></i><i class="fa fa-caret-up"></i></h1>
 
        <div class="prot-inside">
 
          <h2>Introduction</h2>
 
          <p>
 
            Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
 
          </p>
 
<h2>Materials</h2>
 
          <p>
 
            Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
 
          </p>
 
<h2>Procedure</h2>
 
          <p>
 
            Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
 
          </p>
 
        </div>
 
      </section>
 
    </div>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<div class="article_offset" id="prot0">
 
      <section class="protocols">
 
        <h1>Plate reader<i class="fa fa-caret-down"></i><i class="fa fa-caret-up"></i></h1>
 
        <div class="prot-inside">
 
          <h2>Introduction</h2>
 
          <p>
 
            Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
 
          </p>
 
<h2>Materials</h2>
 
          <p>
 
            Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
 
          </p>
 
<h2>Procedure</h2>
 
          <p>
 
            Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
 
          </p>
 
        </div>
 
      </section>
 
    </div>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<div class="article_offset" id="prot0">
 
      <section class="protocols">
 
        <h1>Semi quantitative RT PCR<i class="fa fa-caret-down"></i><i class="fa fa-caret-up"></i></h1>
 
        <div class="prot-inside">
 
          <h2> RNA extraction </h2>
 
          <p>
 
<h5>Culture of P.pastoris SMD1168H</h5>
 
          <ul>
 
            <li> Cells are centrifuged max speed and washed with sterilized water </li>
 
            <li> Another centrifugation max speed and the supernatant is removed </li>
 
            <li> Pellets are freeze at -80°C overnight </li>
 
          </ul>
 
          </p>
 
          <p>
 
          <ol>
 
            <li>500 µl of GTC mix + 500 µl of Water/Phenol + 1 ml of ice-cold glass beads are added to each falcon </li>
 
            <li>2 min of vortex full power and then chill on ice for 1 min, this step is repeated 2 more times </li>
 
            <li>Add 7.5 ml of GTC mix and 7,5 ml of Water/phenol </li>
 
            <li>1 min of vortex full speed and then 5 min of incubation at 65°C </li>
 
            <li>Add 7.5 ml of CH3Cl + 4 ml of NaAc 100mM in TE </li>
 
            <li>1 min of vortex full power </li>
 
            <li>centrifugation 4000 rpm, 5 min at 4°C </li>
 
            <li>12 ml of the aqueous phase is extracted and transferred into a new falcon containing 6 ml of Water/phenol + 6 ml of CH3Cl </li>
 
            <li> centrifugation 4000 rpm, 5 min at 4°C </li>
 
            <li>10 ml of the aqueous phase are extracted and transferred into a new falcon containing 5 ml of Water/phenol + 5 ml of CH3Cl </li>
 
            <li>1 min of vortex full speed </li>
 
            <li>The aqueous phase is collected (5 ml) and 3 volume of Ethanol are added (25ml)</li>
 
            <li> centrifugation 4000rpm, 20 min at 4°C and the supernatant is thrown away</li>
 
            <li>Add 5 ml of Ethanol 70%</li>
 
            <li>centrifugation 4000rpm, 1 min at 4°C and the supernatant is thrown away (this step is repeated 2 more times)</li>
 
            <li>ARNs are dried and diluted in 200 µl of water </li>
 
            <li>Nanodrop quantification </li>
 
          </ol>
 
          </p>
 
          <p>
 
<h2> Reverse transcriptions</h2>
 
          </p>
 
          <p>
 
RT reactions using total RNAs extracted from Pichia pastoris cells transformed with plasmids pPIC-DNY15 or pPIC (empty vector).
 
          </p>
 
          <p>
 
          <ul>
 
            <li> Reactions using 1 µg of total RNAs (1.5 ml microtube):</li>
 
          <ol>
 
            <li>2 µl Primer DNY15-RT-r (1 µM = 1 pmol/µl)</li>
 
            <li>1 µl Total RNAs (1 µg/µl)</li>
 
            <li>1 µl dNTP mix (10 mM each)</li>
 
            <li>8 µl MQ H2O </li>
 
          </ol>
 
            <li> Reactions using 5 µg of total RNAs:</li>
 
          <ol>
 
            <li>2 µl Primer DNY15-RT-r, 1 µM (= 1 pmol/µl)</li>
 
            <li>5 µl Total RNAs (1 µg/µl)</li>
 
            <li>1 µl dNTP mix (10 mM each)</li>
 
            <li>4 µl MQ H2O </li>
 
          </ol>
 
            <li> Mix gently with vortex </li>
 
            <li> Incubate 5 min at 65°C (water bath)</li>
 
            <li> Chill immediately on ice and incubate for 5 min </li>
 
            <li> Pulse spin at 4°C and add the following:</li>
 
          <ul>
 
            <li>4 µl 5X First-Strand Buffer </li>
 
            <li>2 µl 100 mM DTT </li>
 
            <li>1 µl RNasin (40 U./µl, Promega)</li>
 
          </ul>
 
            <li> Mix with vortex gently </li>
 
            <li> Incubate 2 min at 42°C (Thermomixer Eppendorf)</li>
 
            <li> Add 1 µl SuperScript II RT (Invitrogen, reference 18064-022)</li>
 
            <li> Mix by pipeting gently up & down </li>
 
            <li> Incubate 1 hour at 42°C </li>
 
            <li> Inactivate the reaction by heating at 70°C for 15 min (water bath)</li>
 
          </ul>
 
          </p>
 
          <p>
 
<h2> qPCR reactions </h2>
 
          </p>
 
          <ul>
 
            <li>2 µl RT mix</li>
 
            <li>0.5 µl primer DNY15-RT-f (12 µM = 100 ng/µl)</li>
 
            <li>0.5 µl primer DNY15-RT-r (12 µM = 100 ng/µl)</li>
 
            <li>4.5 µl MQ H2O </li>
 
            <li>7.5 µl IQ SYBR Green Supermix (Biorad, reference 1725006CUST)</li>
 
            <li> PCR program (CFX96 Touch Real-Time PCR detection system)</li>
 
          <ul>
 
            <li>95°C 3 min </li>
 
            <li>95°C 15 sec </li>
 
            <li>40X 60°C 30 sec </li>
 
            <li>72°C 30 sec </li>
 
          </ul>
 
            <li> Melting curve from 60°C to 95°C, 0.5°C/cycle, 5 sec </li>
 
          </ul>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<div class="article_offset" id="prot0">
 
      <section class="protocols">
 
        <h1>On plate toxicity assay<i class="fa fa-caret-down"></i><i class="fa fa-caret-up"></i></h1>
 
        <div class="prot-inside">
 
          <h2>Introduction</h2>
 
          <p>
 
            Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
 
          </p>
 
<h2>Materials</h2>
 
          <p>
 
            Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
 
          </p>
 
<h2>Procedure</h2>
 
          <p>
 
            Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
 
          </p>
 
        </div>
 
      </section>
 
    </div>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<div class="article_offset" id="prot0">
 
      <section class="protocols">
 
        <h1>Freeze drying<i class="fa fa-caret-down"></i><i class="fa fa-caret-up"></i></h1>
 
        <div class="prot-inside">
 
          <h2>Introduction</h2>
 
          <p>
 
            Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
 
          </p>
 
<h2>Materials</h2>
 
          <p>
 
            Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
 
          </p>
 
<h2>Procedure</h2>
 
          <p>
 
            Lorem ipsum dolor sit amet, consectetur adipisicing elit. Harum, perspiciatis unde quasi enim ab repellendus deleniti vel earum, facere aspernatur magnam! Maiores in, eos at id! Necessitatibus eligendi modi, unde.
 
          </p>
 
        </div>
 
      </section>
 
    </div>
 
 
 
 
   
 
 
     <!-- fin section -->     
 
     <!-- fin section -->     
  
Line 1,765: Line 216:
 
       <a href="https://www.veolia.com/en"><img src="https://static.igem.org/mediawiki/2017/9/91/T--INSA-UPS_France--Logo_veolia.png" alt=""></a>
 
       <a href="https://www.veolia.com/en"><img src="https://static.igem.org/mediawiki/2017/9/91/T--INSA-UPS_France--Logo_veolia.png" alt=""></a>
 
       <a href="https://www.france-science.org/-Homepage-English-.html"><img src="https://static.igem.org/mediawiki/2017/1/1a/T--INSA-UPS_France--Logo_ambassade.jpg" alt=""></a>
 
       <a href="https://www.france-science.org/-Homepage-English-.html"><img src="https://static.igem.org/mediawiki/2017/1/1a/T--INSA-UPS_France--Logo_ambassade.jpg" alt=""></a>
 +
      <a href="https://www-lbme.biotoul.fr/"><img src="https://static.igem.org/mediawiki/2017/5/51/T--INSA-UPS_France--Logo_LBME.png" alt=""></a>
 +
      <a href="https://www6.toulouse.inra.fr/metatoul_eng/"><img src="https://static.igem.org/mediawiki/2017/1/16/T--INSA-UPS_France--Logo_metatoul.png" alt=""></a>
 
       <a href="http://www.univ-tlse3.fr/associations-+/do-you-have-a-project--378066.kjsp?RH=1238417866394"><img src="https://static.igem.org/mediawiki/2017/5/5b/T--INSA-UPS_France--Logo_fsdie.png" alt=""></a>
 
       <a href="http://www.univ-tlse3.fr/associations-+/do-you-have-a-project--378066.kjsp?RH=1238417866394"><img src="https://static.igem.org/mediawiki/2017/5/5b/T--INSA-UPS_France--Logo_fsdie.png" alt=""></a>
 
       <a href="http://en.univ-toulouse.fr/our-strengths"><img src="https://static.igem.org/mediawiki/2017/9/93/T--INSA-UPS_France--Logo_fsie.jpg" alt=""></a>
 
       <a href="http://en.univ-toulouse.fr/our-strengths"><img src="https://static.igem.org/mediawiki/2017/9/93/T--INSA-UPS_France--Logo_fsie.jpg" alt=""></a>
Line 1,784: Line 237:
 
   </main>
 
   </main>
  
 
+
<!--
 
+
   -->
 
+
 
+
<!-- C O N T E N T -->
+
 
+
 
+
 
+
<script type="text/javascript">
+
   $(document).on("click",".tab_name", function(){
+
      var target = $(this).data("target");
+
      $(this).removeClass('not-active');
+
      switch(target){
+
        case 1:
+
          $('#content-mod-1').removeClass('not-visible');
+
          $('#content-mod-2').addClass('not-visible');
+
          $('#content-mod-3').addClass('not-visible');
+
          $('#descr-mod-1').removeClass('not-visible');
+
          $('#descr-mod-2').addClass('not-visible');
+
          $('#descr-mod-3').addClass('not-visible');
+
          $('#tab-2').addClass('not-active');
+
          $('#tab-3').addClass('not-active');
+
          break;
+
        case 2:
+
          $('#content-mod-1').addClass('not-visible');
+
          $('#content-mod-2').removeClass('not-visible');
+
          $('#content-mod-3').addClass('not-visible');
+
          $('#descr-mod-1').addClass('not-visible');
+
          $('#descr-mod-2').removeClass('not-visible');
+
          $('#descr-mod-3').addClass('not-visible');
+
          $('#tab-1').addClass('not-active');
+
          $('#tab-3').addClass('not-active');
+
          break;
+
        case 3:
+
          $('#content-mod-1').addClass('not-visible');
+
          $('#content-mod-2').addClass('not-visible');
+
          $('#content-mod-3').removeClass('not-visible');
+
          $('#descr-mod-1').addClass('not-visible');
+
          $('#descr-mod-2').addClass('not-visible');
+
          $('#descr-mod-3').removeClass('not-visible');
+
          $('#tab-2').addClass('not-active');
+
          $('#tab-1').addClass('not-active');
+
          break;
+
      }
+
  });
+
</script>
+
 
+
<script type="text/javascript">
+
  $('.fa-caret-down').addClass("visible-fa");
+
  $('.fa-caret-up').removeClass("visible-fa");
+
  $(document).on("click",".protocols h1", function(){
+
 
+
    if($(this).parent('section').children('.prot-inside').hasClass("visible-prot-inside")){
+
      $('.fa-caret-up').removeClass("visible-fa");
+
      $('.fa-caret-down').addClass("visible-fa");
+
      $('.prot-inside').removeClass('visible-prot-inside');
+
    }
+
    else{
+
     
+
      $('.fa-caret-down').addClass("visible-fa");
+
      $('.fa-caret-up').removeClass("visible-fa");
+
      $(this).children('.fa-caret-up').addClass("visible-fa");
+
      $(this).children('.fa-caret-down').removeClass("visible-fa");
+
      $('.prot-inside').removeClass('visible-prot-inside');
+
      $(this).parent('section').children('.prot-inside').addClass("visible-prot-inside");
+
      var target=$(this).parent().prev().position().top;
+
      $('.main_content').animate({scrollTop: target }, 500);
+
    }
+
   
+
  });
+
 
+
</script>
+
  
 
</html>
 
</html>
 
 
{{INSA-UPS_France/General_script}}
 
{{INSA-UPS_France/General_script}}
 
{{INSA-UPS_France/Header_script}}
 
{{INSA-UPS_France/Header_script}}

Latest revision as of 19:36, 31 October 2017


Design

We created a synthetic consortium and demonstrated the power of such approach to fight against cholera disease. Our synthetic consortium involves three microorganism: i) an engineered E. coli to mimic V. cholerae ii) an engineered V. harveyi to sense the presence of the engineered E. coli and in repsonse to produce diacetyl iii) a yeast P. pastoris engineered to detect diacetyl and in response to produce antibacterial peptides (AMPs) in order to trigger lysis of Vibrio species. Here is presented a closer view of the molecular details for each micro-organism as well as an overview of our experimental plan.

Overview

Organisms

Escherichia coli

For safety reasons, the bacteria gram negative E. coli was chosen to mimic V. cholerae. E. coli is an easy organism to deal with, especially as it is well documented, easy to transform with exogenous DNA and easy to culture. The strain K-12 MG1655 was transformed with a plasmid allowing expression of the protein CqsA from V. cholerae, the enzyme responsible for the synthesis of CAI-1. However, as a proof of concept, we also transformed our E. coli strain with the gene coding for the CqsA of V. harveyi, a non-pathogen strain, producing the molecule C8-CAI-1 (an analogue of the V. cholerae CAI-1)1,2. C8-CAI1 is a carbohydrate chain based displaying an hydroxyl group on carbon 3 and ketone function on carbon 4. The CqsA synthetase from V. harveyi produce C8-CAI-1 from endogenous E. coli (S)-adenosylmethionine (SAM) and octanoyl-coenzyme. cqsA from both V. harveyi and V. cholerae were placed under the pLac promoter and we used plasmid pSB1C3 to maintain compatibility with the iGEM registry.

V. harveyi

V. harveyi is a gram negative bacteria, well studied for its quorum sensing system. This bacteria displays its own pathway for the detection of C8-CAI-1. The gene cqsS encodes for the sensor C8-CAI-1 and a single point mutation in its sequence allows V. harveyi to detect both C8-CAI-1 and CAI-1 from V. cholerae. To avoid auto-activation of V. harveyi, we used the JMH626 strain, in which the cqsA gene, coding the enzyme involved in the production C8-CAI-1, has been deleted. Furthermore, additional genes luxS and luxS coding for key enzymes involved in the expression of other quorum sensing molecules have been deleted. All these mutations make the strain JMH626 specific for detecting non-endogenous C8-CAI-1. V. harveyi is also able to regulate the activation of genes under the control of the promoter pQRR4, in a C8-CAI-1 concentration dependent manner 1. At high C8-CAI-1 concentration, the promoter is inactivated. Thus we added the inverter tetR/pTet to activate a gene of interest in presence of C8-CAI-1. The gene of interest is als that encodes for the acetolactate synthase (Als). this enzyme synthetized diacetyl from pyruvate3. Diacetyl is our ransmitter molecule (Figure 1).

The pBBR1MCS-44, a broad host range plasmid, was chosen to allow the transfer of the system into V. harveyi by conjugation (i.e. this is the only way to modify the V. harveyi chassis).

In conclusion, we designed a V. harveyi strain enable to detect both exogenous CAI-1 or C8-CAI-1, and to produce diacetyl as a molecular response.

P. pastoris

V. harveyi cannot not be used as the effector since production of antimicrobial peptides (AMPs) is lethal for Vibrio species. P. pastoris is a yeast commonly used in academic laboratories and industry for its high potential to produce protein. In addition, yeasts were previously described to produce a wide range of AMPs 5,6. Finally, a system allowing efficient communication between yeast and prokaryotes has already been decribed i.e. the diacetyl-dependant Odr-10 receptor system7. This system allows the expression of targets genes under the control of pFUS1 via the Ste12 pathway (Figure 2). For all these reason, we thus chose P. pastoris. We used the constitutive pGAP promoter to express the receptor Odr-10 in P. pastoris

To kill V. cholerae, we looked for a new and innovative antibiotic solution to limit the risk of acquired-resistance. We decided to use AMPs, that are small membrane disrupting molecules toxic for a large panel of microorganisms8. Here we selected AMPs from crocodiles. Crocodiles live in harsh environment and are known to possess an impressive defence system, that allows them to catch very few disease and antimicrobial peptides are part of it9. We focused on 3 different AMPs described to have the best efficiency against V. cholerae. Those AMPs are Leucrocin I10, D-NY1511 and cOT212. Leucrocine I possess one cationic charge for 7 amino acids. D-NY15 is its optimized counterpart with 4 cationic charges and a sequence of 15 amino-acid long. Finally, cOT2 is 29 amino acid long and possesses 6 cationic charges. These AMPs were placed under control of the pGAP constitutive promoter for preliminary tests and under pFUS1 promoter to promote their expression in response to diacetyl. The genetic constructions were inserted into the integrative pPICZα plasmid i.e. a good plasmid for protein production. The signal peptide α-factor was fused to the AMPs to allow for secretion of the peptides.

The action of these AMPs is the last event of our synthetic consortium.

Modules & Parts

Sense

To create our sensor strain, we took advantage of the intraspecies quorum sensing of V. cholerae: the CAI-1/CqsS system. To mimic this pathway, we made an E. coli producer strain of quorum-sensing molecules (i.e. CAI-1 and C8-CAI-1) and we express a modified CqsS* receptor in V. harveyi that can sense both CAI-1 and C8-CAI-1.

Transmit

In response to quorum sensing molecules, the sensor strain activates the pathway leading to the inhibition of the als gene placed under the control of pQRR4 promoter. The signal is inverted by the tetR/pTet system to trigger als gene expression and thus diacetyl production. Diacetyl in turn activates the Odr-10 receptor implemented in the yeast Pichia pastoris.

Respond

Once Odr-10 receptor sensed diacetyl, the pFUS1 promoter triggers expression of AMPs. After excretion, these AMPs can disrupt the membrane of the Vibrio species

Experimental plan

E. coli

Quorum sensing molecule production

  • Measurement of C8-CAI-1 & CAI-1in supernateant by NMR
  • Bioluminescence assay

V. harveyi

Conjugation

  • Conjugation test using a plasmid expressing RFP

Diacetyl production

  • Measurement by NMR of diacetyl in supernateant of E. coli and V. harveyi producing strains

P. pastoris

Diacetyl detection

  • In vivo functionality of pGAP using RFP reporter system
  • In vivo functionality of ODR10/pFUS1 system test using RFP reporter system

Antimicrobial peptides (AMPs)

  • Verification of AMP genes expression by RT-PCR
  • Verification of AMPs activity by toxicity assay