Difference between revisions of "Team:INSA-UPS France/test"

 
(42 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
{{INSA-UPS_France/Links_new}}
 
{{INSA-UPS_France/Links_new}}
 +
{{INSA-UPS_France/Style_new}}
 
{{INSA-UPS_France/Header_new}}
 
{{INSA-UPS_France/Header_new}}
 +
  
 
<html>
 
<html>
 +
<main class="site-main">
 +
  <div class="main_content">
 +
  <div class="middle_container">
  
<style>  
+
  <div class="section_container">
/* Clear the default wiki settings */
+
  
.subnav{
+
    <section style="margin-top:200px;">
  margin:0!important;
+
      <h1 style="text-align: left;margin-top:-110px;font-size:5vw;letter-spacing: 1vw;">Design</h1>
}
+
      <img style="width:25%;min-width: 260px; position:absolute;right:0;top:-200px; " src="https://static.igem.org/mediawiki/2017/e/e3/T--INSA-UPS_France--design_croco.png" alt="">
 
+
      <p style="margin-top: 50px;">
  #home_logo, #sideMenu { display:none; }
+
        We created a synthetic consortium and demonstrated the power of such approach to fight against cholera disease. Our synthetic consortium involves three microorganism: i) an engineered <i>E. coli</i> to mimic<i> V. cholerae</i> ii) an engineered </i>V. harveyi</i> to sense the presence of the engineered <i>E. coli</i> and in repsonse to produce diacetyl iii) a yeast <i>P. pastoris</i> engineered to detect diacetyl and in response to produce antibacterial peptides (AMPs) in order to trigger lysis of<i> Vibrio </i> species. Here is presented a closer view of the molecular details for each micro-organism as well as an overview of our experimental plan.
  #sideMenu, #top_title, .patrollink  {display:none;}
+
  #content { width:100%; padding:0px;  margin-top:-7px; margin-left:0px; line-height: normal;background-color:#212121;}
+
body {font-size:medium;}
+
  #bodyContent h1, #bodyContent h2, #bodyContent h3, #bodyContent h5 { margin-bottom: 0px; border-bottom:none !important;}
+
#globalWrapper{
+
    font-size:100%;
+
  }
+
  
p{
+
      </p>
  padding:0;
+
    </section>
}
+
table{
+
  background:none;
+
}
+
ul{
+
  list-style-image: none;
+
}
+
  
  
/* GENERAL STYLE */
+
    <section style="background: none;">
*{
+
      <h1 style="text-align:left;">Overview</h1>
  margin:0;
+
      <img src="https://static.igem.org/mediawiki/2017/b/b8/T--INSA-UPS_France--description_loop.png" alt="" style="width:100%;">
  padding:0;
+
    </section>
}
+
  body {
+
  margin: 0;
+
  font: 400 16px/1.5 "Quicksand", sans-serif;
+
}
+
a {
+
    -moz-transition: 0.2s ease-in-out;
+
    -webkit-transition: 0.2s ease-in-out;
+
  transition: 0.2s ease-in-out;
+
}
+
  
main{
+
    <section>
  position:relative;
+
      <h1 style="text-align: left;">Organisms</h1>
  overflow:hidden;
+
      <h2><i>Escherichia coli</i></h2>
  height:100%;
+
      <p>
}
+
        For safety reasons, the bacteria gram negative <i>E. coli</i> was chosen to mimic <i> V. cholerae</i>. <i>E. coli</i> is an easy organism to deal with, especially as it is well documented, easy to transform with exogenous DNA and easy to culture. The strain K-12 MG1655 was transformed with a plasmid allowing expression of the protein CqsA from<i> V. cholerae</i>, the enzyme responsible for the synthesis of CAI-1. However, as a proof of concept, we also transformed our <i>E. coli</i> strain with the gene coding for the CqsA of </i>V. harveyi</i>, a non-pathogen strain, producing the molecule C8-CAI-1 (an analogue of the<i> V. cholerae</i> CAI-1)<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/21219472/" target="_blank">1</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/15466044/" target="_blank">2</a></sup>. C8-CAI1 is a carbohydrate chain based displaying an hydroxyl group on carbon 3 and ketone function on carbon 4. The CqsA synthetase from </i>V. harveyi</i> produce C8-CAI-1 from endogenous <i>E. coli</i> (S)-adenosylmethionine (SAM) and octanoyl-coenzyme. <i> cqsA </i> from both <i>V. harveyi</i> and <i> V. cholerae</i> were placed under the pLac promoter and we used plasmid pSB1C3 to maintain compatibility with the iGEM registry.
  
.main_content{
 
  position:fixed;   
 
  top:90px;
 
  right:0px;
 
  left:0px;
 
  bottom:0px;
 
  
  background-image: linear-gradient(45deg, #4296c1 0%, #e4efe9 100%);
 
}
 
.middle_container{ 
 
  padding-bottom: 80px;
 
}
 
  
.section_container{
 
  width:60%;
 
  min-width: 600px;
 
  max-width: 1100px;
 
  min-height:100%;
 
  position:relative;
 
  margin:0px auto;
 
}
 
  
section{
+
</p>
  background-color: rgba(255,255,255,0.2);
+
      <img src="https://static.igem.org/mediawiki/2017/f/fc/T--INSA-UPS_France--design_plasmid-coli.png" alt="" style="width: 10%; position:absolute;bottom:0; left:10%;">
  padding:40px 80px;
+
      <p style="margin-left:15%;">
  text-align: center;
+
      </p>
  position:relative;
+
    </section>
}
+
  
  
/* HOME SECTIONS */  
+
   
.home_section {
+
    <section>
  vertical-align: middle;
+
      <h2><i>V. harveyi</i></h2>
  text-align: center;
+
      <p>
 
+
        <i>V. harveyi</i> is a gram negative bacteria, well studied for its quorum sensing system. This bacteria displays its own pathway for the detection of C8-CAI-1. The gene <i>cqsS</i> encodes for the sensor C8-CAI-1 and a single point mutation in its sequence allows <i>V. harveyi</i> to detect both C8-CAI-1 and CAI-1 from <i> V. cholerae</i>. To avoid auto-activation of <i>V. harveyi</i>, we used the JMH626 strain, in which the <i> cqsA </i> gene, coding the enzyme involved in the production C8-CAI-1, has been deleted. Furthermore, additional genes <i>luxS</i> and <i>luxS</i> coding for key enzymes involved in the expression of other quorum sensing molecules have been deleted. All these mutations make the strain JMH626 specific for detecting non-endogenous C8-CAI-1. <i>V. harveyi</i> is also able to regulate the activation of genes under the control of the promoter pQRR4, in a C8-CAI-1 concentration dependent manner <sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/21219472/" target="_blank">1</a></sup>. At high C8-CAI-1 concentration, the promoter is inactivated. Thus we added the inverter tetR/pTet to activate a gene of interest in presence of C8-CAI-1. The gene of interest is <i>als</i> that encodes for the acetolactate synthase (Als). this enzyme synthetized diacetyl from pyruvate<sup><a href="http://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=vhr00650&keyword=diacetyl" target="_blank">3</a></sup>. Diacetyl is our ransmitter molecule (Figure 1).
}
+
       </p>
.home_section h1{
+
       <img src="https://static.igem.org/mediawiki/2017/f/fa/T--INSA-UPS_France--design_plasmid-harveyi.png" alt="" style="width: 10%; position:absolute;bottom:0; left:10%;">
  text-align: center;
+
      <p style="margin-left:15%;">
  font-family: 'Quicksand', sans-serif;
+
      The pBBR1MCS-4<sup><a href="http://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=vhr00650&keyword=diacetyl" target="_blank">4</a></sup>, a broad host range plasmid, was chosen to allow the transfer of the system into <i>V. harveyi</i> by conjugation (i.e. this is the only way to modify the <i>V. harveyi</i> chassis).
  font-size: 36pt;
+
      </p>
}
+
<p style="margin-left:15%;">
.home {
+
In conclusion, we designed a <i>V. harveyi</i> strain enable to detect both exogenous CAI-1 or C8-CAI-1, and to produce diacetyl as a molecular response.
  background: white url("https://static.igem.org/mediawiki/2017/archive/5/5c/20171002220813%21T--INSA-UPS_France--home.png") no-repeat 50% 50%;
+
  </p>
  background-size: cover;
+
  min-height: 90vh;
+
}
+
.content_0 {
+
  background: #f3ead7 no-repeat 50% 50%;
+
  background-size: cover;
+
  padding-top:90px;
+
}
+
.content_1 {
+
  background: #99c18e no-repeat 50% 50%;
+
  background-size: cover;
+
}
+
.content_2 {
+
  background: #f3ead7 no-repeat 50% 50%;
+
  background-size: cover;
+
}
+
.content_3{
+
  background: #99c18e no-repeat 50% 50%;
+
  background-size: cover;
+
}
+
.content_4{
+
  background: #323537 no-repeat 50% 50%;
+
  background-size: cover;
+
}
+
 
+
</style>
+
 
+
 
+
  <main class="site-main">
+
 
+
    <section class="home_section home" id="home" style="position:relative;">
+
       <div class="container">
+
 
+
       <!-- FIRST IMAGE TO ANIMATE -->
+
      <div style="text-align: center;">
+
        <div style="width:100%;position:absolute; top:50pt;font-size:60pt;font-weight:700;">
+
        Croc'n Cholera
+
        </div>
+
        <div style="width:100%;position:absolute;font-size:40pt; color:#295a7f;top:120pt;">
+
        A synthetic microbial consortium
+
        </div>
+
      </div>
+
 
+
      </div>
+
 
     </section>
 
     </section>
 +
   
 +
    <section>
 +
      <h2><i>P. pastoris</i></h2>
 +
      <p>
 +
        <i>V. harveyi</i> cannot not be used as the effector since production of antimicrobial peptides (AMPs) is lethal for <i> Vibrio </i> species. <i>P. pastoris</i> is a yeast commonly used in academic laboratories and industry for its high potential to produce protein. In addition, yeasts were previously described to produce a wide range of AMPs <sup><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494115/
 +
" target="_blank">5</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/23624708" target="_blank">6</a></sup>. Finally, a system allowing efficient communication between yeast and prokaryotes has already been decribed i.e. the diacetyl-dependant Odr-10 receptor system<sup><a href="https://2013.igem.org/Team:SCUT" target="_blank">7</a></sup>. This system allows the expression of targets genes under the control of pFUS1 via the Ste12 pathway (Figure 2). For all these reason, we thus chose <i>P. pastoris</i>. We used the constitutive pGAP promoter to express the receptor Odr-10 in <i>P. pastoris</i>
  
   
+
      </p>
    <section class="home_section content_0" id="content_0" style="position:relative;">
+
      <img src="https://static.igem.org/mediawiki/2017/6/67/T--INSA-UPS_France--design_plasmid-pichia.png" alt="" style="width: 10%; position:absolute;bottom:0; left:10%;">
          <h1 style="margin-bottom: 100px;">Multiorganism approach: a new challenge for Synthetic Biology</h1>
+
     
          <img style="height:500px;max-height:90%;" src="https://static.igem.org/mediawiki/2017/7/77/T--INSA-UPS_France--home_frise.png" alt="">
+
<p>
 +
To kill<i> V. cholerae</i>, we looked for a new and innovative antibiotic solution to limit the risk of acquired-resistance. We decided to use AMPs, that are small membrane disrupting molecules toxic for a large panel of microorganisms<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/27837316" target="_blank">8</a></sup>. Here we selected AMPs from crocodiles. Crocodiles live in harsh environment and are known to possess an impressive defence system, that allows them to catch very few disease and antimicrobial peptides are part of it<sup><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3490821/" target="_blank">9</a></sup>. We focused on 3 different AMPs described to have the best efficiency against <i>V. cholerae</i>. Those AMPs are Leucrocin I<sup><a href="http://www.sciencedirect.com/science/article/pii/S0145305X10003071?via%3Dihub" target="_blank">10</a></sup>, D-NY15<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/24192554" target="_blank">11</a></sup> and cOT2<sup><a href="http://www.sciencedirect.com/science/article/pii/S0005273617300433" target="_blank">12</a></sup>. Leucrocine I possess one cationic charge for 7 amino acids. D-NY15 is its optimized counterpart with 4 cationic charges and a sequence of 15 amino-acid long. Finally, cOT2 is 29 amino acid long and possesses 6 cationic charges. These AMPs were placed under control of the pGAP constitutive promoter for preliminary tests and under pFUS1 promoter to promote their expression in response to diacetyl. The genetic constructions were inserted into the  integrative pPICZα plasmid i.e. a good plasmid for protein production. The signal peptide α-factor was fused to the AMPs to allow for secretion of the peptides.
 +
</p>
 +
  <p style="margin-left:15%;">
 +
The action of these AMPs is the last event of our synthetic consortium.
 +
</p>
 
     </section>
 
     </section>
  
 
     <style>
 
     <style>
       #content_1 table{
+
       /* ASIDE NAV */
         width:90%;
+
      .left_container{
         margin:0px auto;
+
         width:35%;
        margin-top:100px;
+
         float:left;
 
       }
 
       }
       #content_1 table tr td{
+
       .left_container img{
        text-align: center;
+
        padding:5px;
+
      }
+
      #content_1 table tr td img{
+
 
         width:100%;
 
         width:100%;
        max-width: 270px;
 
 
       }
 
       }
      #content_1 table tr td{
+
 
        font-family:'Merriweather', serif;
+
        font-size: 20pt;
+
      }
+
      #content_1 h1{
+
        margin-left:5%;
+
        font-family: 'Quicksand', sans-serif;
+
        font-size:30pt;
+
        margin:top:0;
+
      }
+
     
+
 
     </style>
 
     </style>
  
  
     <section class="home_section content_1" id="content_1">
+
     <h1 style="font-family: 'Quicksand', sans-serif;font-size:34pt;text-align: left;margin:20px 10%;">Modules &amp; Parts</h1>
      <h1>Biodiversity entails a lot of possibilities...</h1>
+
 
      <table>
+
    <div class="left_container">
        <tr>
+
    <div class="left_container__inside">
          <td><img src="https://static.igem.org/mediawiki/2017/a/af/T--INSA-UPS_France--home_quorum.png" alt=""></td>
+
      <img style="height:100%;" src="https://static.igem.org/mediawiki/2017/a/a8/T--INSA-UPS_France--design_blupuriline.png" alt="">
          <td><img src="https://static.igem.org/mediawiki/2017/c/cd/T--INSA-UPS_France--home_light.png" alt=""></td>
+
    </div>
          <td><img src="https://static.igem.org/mediawiki/2017/8/82/T--INSA-UPS_France--home_proteins.png" alt=""></td>
+
     </div>
          <td><img src="https://static.igem.org/mediawiki/2017/0/01/T--INSA-UPS_France--home_thermo.png" alt=""></td>
+
        </tr>
+
        <tr>
+
          <td>Quorum sensing</td>
+
          <td>Light sensitive</td>
+
          <td>Proteins secretion</td>
+
          <td>High thermostability</td>
+
        </tr>
+
      </table>
+
     </section>
+
  
 
     <style>
 
     <style>
      #content_2, #content_3{
+
    .right_container{
        text-align: center;
+
         width:60%;
        display:flex;
+
         margin-left:40%;
        flex-direction: row;
+
    }
      }
+
    section ul{
      .block{
+
       list-style-position: inside;
         width:50%;
+
    }
         display:flex;
+
        justify-content:center;
+
        align-items:center;
+
      }
+
      .block img{
+
        width:90%;
+
        margin:0 auto;
+
        max-width: 600px;
+
      }
+
      .text_block h1{
+
        font-family: 'Quicksand', sans-serif;
+
        font-size:3.5vw;
+
        font-weight:700;
+
       }
+
      .text_block p{
+
        font-family:'Merriweather', serif;
+
        text-align: justify;
+
        font-size:2.2vw;
+
        margin:40px 40px;
+
      }
+
     
+
      @media screen and (min-width: 1000px) {
+
        .text_block p {
+
          font-size: 20px;
+
          margin:100px;
+
        }
+
        .text_block h1{
+
          font-size:38px;
+
        }
+
      }
+
  
 +
    .invisible-image{
 +
      visibility: hidden;
 +
    }
 
     </style>
 
     </style>
 +
 
 +
   
 +
    <div class="right_container">
  
     <section class="home_section content_2" id="content_2">
+
     <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt="" style="width:30%;">
      <div class="block">
+
    <section class="modules_design" style="border:solid 5px #ae3d3d;margin-top:0px;margin-bottom: 0px;">
       <div class="block_content">
+
       <h2 style="color:#ae3d3d;">Sense</h2>
        <img src="https://static.igem.org/mediawiki/2017/8/88/T--INSA-UPS_France--home_blupuriloop.png" alt="" class="img_home">
+
      <p>
      </div>
+
          To create our sensor strain, we took advantage of the intraspecies quorum sensing of <i>V. cholerae</i>: the <b>CAI-1/CqsS system</b>. To mimic this pathway, we made an <i>E. coli</i> producer strain of quorum-sensing molecules (i.e. CAI-1 and C8-CAI-1) and we express a modified CqsS* receptor in <i>V. harveyi</i> that can sense both CAI-1 and C8-CAI-1.
      </div>
+
      </p>
      <div class="block text_block">
+
 
       <div class="block_content">
+
    </section>
        <h1>What if they could communicate?</h1>
+
    <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt="" style="width:30%;">
        <p>
+
    <section class="modules_design" style="border:solid 5px #468789;margin-top:0px;margin-bottom: 0px;">
          The living world offers a lot of possibilities, but their use is still limited in synthetic biology.
+
       <h2 style="color:#468789;">Transmit</h2>
        </p>
+
      <p>
        <p>
+
      In response to quorum sensing molecules, the sensor strain activates the pathway leading to the inhibition of the <i>als</i> gene placed under the control of <b>pQRR4 promoter</b>. The signal is inverted by the <b>tetR/pTet</b> system to trigger <i>als</i> gene expression and thus diacetyl production. Diacetyl in turn activates the <b>Odr-10 receptor</b> implemented in the yeast <i>Pichia pastoris</i>.
          Our idea is about taking advantages of the characteristics of single microorganisms by making them communicate with each other to get the appropriate response.
+
       </p>
        </p>
+
      </div>
+
       </div>
+
 
        
 
        
 +
   
 +
          </section>
 +
    <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt=""  style="width:30%;">
 +
    <section class="modules_design" style="border:solid 5px #f37b6f;margin-top:0px;margin-bottom: 0px;">
 +
      <h2 style="color:#f37b6f;">Respond</h2>
 +
      <p>
 +
    Once Odr-10 receptor sensed diacetyl, the <b>pFUS1</b> promoter triggers expression of AMPs. After excretion, these AMPs can disrupt the membrane of the <i>Vibrio</i> species
 +
      </p>
 +
 
     </section>
 
     </section>
 +
    <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt=""  style="width:30%;">
  
  
  
    <section class="home_section content_3" id="content_3">
 
  
      <div class="block text_block">
+
    </div>
      <div class="block_content">
+
        <h1>Our proof of concept : a fight against cholera</h1>
+
        <p>
+
          <i>V. cholerae</i> is responsible for cholera, a disease that contaminates water and affects people in developing countries, war zones and natural disaster zones.
+
        </p>
+
        <p>
+
        Our project is about creating a multi organisms system that is able to sense and wipe cholera out in contaminated water.
+
        </p>
+
      </div> 
+
      </div>
+
  
      <div class="block">
+
    <section style="padding-left:20%;">
       <div class="block_content">
+
       <h1 style="text-align: left;">Experimental plan</h1>
        <img src="https://static.igem.org/mediawiki/2017/archive/b/bc/20171003092137%21T--INSA-UPS_France--home_blupuriloop_crocncholera.png" alt="" class="img_home">
+
      <img src="https://static.igem.org/mediawiki/2017/b/b3/T--INSA-UPS_France--design_coli.png" alt="" style="width:15%; position:absolute; top:10px; left:10px;">
       </div>
+
       <h2><i>E. coli</i></h2>
       </div>  
+
       <p>
 
+
        Quorum sensing molecule production
        
+
       </p>
 +
      <ul>
 +
        <li>Measurement of C8-CAI-1 & CAI-1in supernateant by NMR</li>
 +
        <li>Bioluminescence assay</li>
 +
        </ul>
 
     </section>
 
     </section>
  
    <style>
 
      #content_4 img{
 
        width:150px;
 
      }
 
      /* FOOTER */
 
  
footer{
+
   
  position:relative;
+
    <section style="padding-left:20%;">
  text-align:center;
+
      <img src="https://static.igem.org/mediawiki/2017/5/5c/T--INSA-UPS_France--design_harveyi.png" alt="" style="width:15%; position:absolute; top:10px; left:10px;">
  margin-top:20px;
+
      <h2><i>V. harveyi</i></h2>
  background: #323537;
+
      <p>
  width:100%;
+
        Conjugation
}
+
      </p>
 +
      <ul>
 +
        <li> Conjugation test using a plasmid expressing RFP</li>
 +
        </ul>
 +
      <p>
 +
        Diacetyl production
 +
      </p>
 +
      <ul>
 +
        <li> Measurement by NMR of diacetyl in supernateant of <i> E. coli</i> and </i>V. harveyi</i> producing strains </li>
 +
        </ul>
 +
    </section>
 +
   
 +
    <section style="padding-left:20%;">
 +
      <img src="https://static.igem.org/mediawiki/2017/2/2d/T--INSA-UPS_France--design_pichia.png" alt="" style="width:15%; position:absolute; top:10px; left:10px;">
 +
      <h2><i>P. pastoris</i></h2>
 +
      <p>
 +
          Diacetyl detection
 +
      </p>
 +
      <ul>
 +
        <li> <i> In vivo </i> functionality of pGAP using RFP reporter system </li>
 +
        <li><i> In vivo </i> functionality of ODR10/pFUS1 system  test using RFP reporter system </li>
 +
      </ul>
 +
      <p>
 +
        Antimicrobial peptides (AMPs)
 +
      </p>
 +
      <ul>
 +
        <li>Verification of AMP genes expression by RT-PCR</li>
 +
        <li>Verification of AMPs activity by toxicity assay</li>
 +
      </ul>
 +
    </section>
 +
    <!-- fin section -->   
  
/* CONTACT ICONS */
+
  </div>
 +
  </div>
  
.icons_contact{ 
+
   <footer>
   display:inline-block;
+
      
  margin:40px 0;
+
     <div class="footer_sponsors">
}
+
 
+
.icons_contact > a{
+
  color:black;
+
  margin:10px;
+
  text-shadow:2px 2px 0px white;
+
}
+
 
+
#fbIcon:hover{
+
  color:#3b5998;
+
  text-shadow:2px 2px 0 #000000;
+
}
+
 
+
#twitterIcon:hover{
+
  color:#55acee;
+
  text-shadow:2px 2px 0 #000000;
+
}
+
 
+
#contactIcon:hover{
+
  color:#e5e5e5;
+
  text-shadow:2px 2px 0 #000000;
+
}
+
#instaIcon:hover{
+
  color:#8a3ab9;
+
  text-shadow:2px 2px 0 #000000;
+
}
+
 
+
/* SPONSORS IMG */
+
 
+
#content_4 img{
+
  max-height:50px;
+
  display:inline-block;
+
  margin:10px;
+
  opacity:0.5;
+
}
+
#content_4 img:hover{
+
  opacity:1;
+
}
+
     </style>
+
 
+
     <section class="home_section content_4" id="content_4" style="overflow:hidden;">
+
 
+
        <h1>Feel free to contact us or follow us on social media: </h1>
+
        <div class="icons_contact">
+
          <a id="fbIcon" href="https://www.facebook.com/IGEM-Toulouse-1604834019761538/?fref=ts"><i class="fa fa-facebook fa-4x"></i></a>
+
      <a id="twitterIcon" href="https://twitter.com/iGEM_Toulouse"><i class="fa fa-twitter fa-4x"></i></a>
+
      <a id="instaIcon" href="https://www.instagram.com/igem_toulouse/"><i class="fa fa-instagram fa-4x"></i></a>
+
      <a id="contactIcon" href="mailto:igem.toulouse@gmail.com"><i class="fa fa-envelope fa-4x"></i></a> 
+
        </div>
+
        <h1>We want to thank all our sponsors: </h1>
+
        <div class="sponsors">
+
 
           <a href="http://www.lisbp.fr/en/index.html"><img src="https://static.igem.org/mediawiki/2017/3/3e/T--INSA-UPS_France--Logo_lisbp.png" alt=""></a>
 
           <a href="http://www.lisbp.fr/en/index.html"><img src="https://static.igem.org/mediawiki/2017/3/3e/T--INSA-UPS_France--Logo_lisbp.png" alt=""></a>
 
           <a href="http://www.toulouse-white-biotechnology.com/en/"><img src="https://static.igem.org/mediawiki/2017/5/56/T--INSA-UPS_France--Logo_twb.png" alt=""></a>
 
           <a href="http://www.toulouse-white-biotechnology.com/en/"><img src="https://static.igem.org/mediawiki/2017/5/56/T--INSA-UPS_France--Logo_twb.png" alt=""></a>
Line 363: Line 216:
 
       <a href="https://www.veolia.com/en"><img src="https://static.igem.org/mediawiki/2017/9/91/T--INSA-UPS_France--Logo_veolia.png" alt=""></a>
 
       <a href="https://www.veolia.com/en"><img src="https://static.igem.org/mediawiki/2017/9/91/T--INSA-UPS_France--Logo_veolia.png" alt=""></a>
 
       <a href="https://www.france-science.org/-Homepage-English-.html"><img src="https://static.igem.org/mediawiki/2017/1/1a/T--INSA-UPS_France--Logo_ambassade.jpg" alt=""></a>
 
       <a href="https://www.france-science.org/-Homepage-English-.html"><img src="https://static.igem.org/mediawiki/2017/1/1a/T--INSA-UPS_France--Logo_ambassade.jpg" alt=""></a>
 
 
       <a href="https://www-lbme.biotoul.fr/"><img src="https://static.igem.org/mediawiki/2017/5/51/T--INSA-UPS_France--Logo_LBME.png" alt=""></a>
 
       <a href="https://www-lbme.biotoul.fr/"><img src="https://static.igem.org/mediawiki/2017/5/51/T--INSA-UPS_France--Logo_LBME.png" alt=""></a>
 
       <a href="https://www6.toulouse.inra.fr/metatoul_eng/"><img src="https://static.igem.org/mediawiki/2017/1/16/T--INSA-UPS_France--Logo_metatoul.png" alt=""></a>
 
       <a href="https://www6.toulouse.inra.fr/metatoul_eng/"><img src="https://static.igem.org/mediawiki/2017/1/16/T--INSA-UPS_France--Logo_metatoul.png" alt=""></a>
 
 
 
       <a href="http://www.univ-tlse3.fr/associations-+/do-you-have-a-project--378066.kjsp?RH=1238417866394"><img src="https://static.igem.org/mediawiki/2017/5/5b/T--INSA-UPS_France--Logo_fsdie.png" alt=""></a>
 
       <a href="http://www.univ-tlse3.fr/associations-+/do-you-have-a-project--378066.kjsp?RH=1238417866394"><img src="https://static.igem.org/mediawiki/2017/5/5b/T--INSA-UPS_France--Logo_fsdie.png" alt=""></a>
 
       <a href="http://en.univ-toulouse.fr/our-strengths"><img src="https://static.igem.org/mediawiki/2017/9/93/T--INSA-UPS_France--Logo_fsie.jpg" alt=""></a>
 
       <a href="http://en.univ-toulouse.fr/our-strengths"><img src="https://static.igem.org/mediawiki/2017/9/93/T--INSA-UPS_France--Logo_fsie.jpg" alt=""></a>
  
  
       <a href="https://www.crous-toulouse.fr/english/"><img src="https://static.igem.org/mediawiki/2017/3/37/T--INSA-UPS_France--Logo_crous.png" alt=""></a>
+
       <a href="https://www.crous-toulouse.fr/english/"><img src="https://static.igem.org/mediawiki/2017/3/37/T--INSA-UPS_France--Logo_crous.png" alt=""></a>  
        </div>
+
 
+
 
+
     
+
    </section>
+
  
 +
    </div>
 +
    <div class="icons">
 +
      <a id="fbIcon" href="https://www.facebook.com/IGEM-Toulouse-1604834019761538/?fref=ts"><i class="fa fa-facebook fa-3x"></i></a>
 +
      <a id="twitterIcon" href="https://twitter.com/iGEM_Toulouse"><i class="fa fa-twitter fa-3x"></i></a>
 +
      <a id="instaIcon" href="https://www.instagram.com/igem_toulouse/"><i class="fa fa-instagram fa-3x"></i></a>
 +
      <a id="contactIcon" href="mailto:igem.toulouse@gmail.com"><i class="fa fa-envelope fa-3x"></i></a> 
 +
    </div>
  
  
 +
  </footer>
 +
  </div>
 
   </main>
 
   </main>
  
<!-- C O N T E N T -->
+
<!--
 +
  -->
  
 
</html>
 
</html>
 
{{INSA-UPS_France/General_script}}
 
{{INSA-UPS_France/General_script}}
 
{{INSA-UPS_France/Header_script}}
 
{{INSA-UPS_France/Header_script}}

Latest revision as of 19:36, 31 October 2017


Design

We created a synthetic consortium and demonstrated the power of such approach to fight against cholera disease. Our synthetic consortium involves three microorganism: i) an engineered E. coli to mimic V. cholerae ii) an engineered V. harveyi to sense the presence of the engineered E. coli and in repsonse to produce diacetyl iii) a yeast P. pastoris engineered to detect diacetyl and in response to produce antibacterial peptides (AMPs) in order to trigger lysis of Vibrio species. Here is presented a closer view of the molecular details for each micro-organism as well as an overview of our experimental plan.

Overview

Organisms

Escherichia coli

For safety reasons, the bacteria gram negative E. coli was chosen to mimic V. cholerae. E. coli is an easy organism to deal with, especially as it is well documented, easy to transform with exogenous DNA and easy to culture. The strain K-12 MG1655 was transformed with a plasmid allowing expression of the protein CqsA from V. cholerae, the enzyme responsible for the synthesis of CAI-1. However, as a proof of concept, we also transformed our E. coli strain with the gene coding for the CqsA of V. harveyi, a non-pathogen strain, producing the molecule C8-CAI-1 (an analogue of the V. cholerae CAI-1)1,2. C8-CAI1 is a carbohydrate chain based displaying an hydroxyl group on carbon 3 and ketone function on carbon 4. The CqsA synthetase from V. harveyi produce C8-CAI-1 from endogenous E. coli (S)-adenosylmethionine (SAM) and octanoyl-coenzyme. cqsA from both V. harveyi and V. cholerae were placed under the pLac promoter and we used plasmid pSB1C3 to maintain compatibility with the iGEM registry.

V. harveyi

V. harveyi is a gram negative bacteria, well studied for its quorum sensing system. This bacteria displays its own pathway for the detection of C8-CAI-1. The gene cqsS encodes for the sensor C8-CAI-1 and a single point mutation in its sequence allows V. harveyi to detect both C8-CAI-1 and CAI-1 from V. cholerae. To avoid auto-activation of V. harveyi, we used the JMH626 strain, in which the cqsA gene, coding the enzyme involved in the production C8-CAI-1, has been deleted. Furthermore, additional genes luxS and luxS coding for key enzymes involved in the expression of other quorum sensing molecules have been deleted. All these mutations make the strain JMH626 specific for detecting non-endogenous C8-CAI-1. V. harveyi is also able to regulate the activation of genes under the control of the promoter pQRR4, in a C8-CAI-1 concentration dependent manner 1. At high C8-CAI-1 concentration, the promoter is inactivated. Thus we added the inverter tetR/pTet to activate a gene of interest in presence of C8-CAI-1. The gene of interest is als that encodes for the acetolactate synthase (Als). this enzyme synthetized diacetyl from pyruvate3. Diacetyl is our ransmitter molecule (Figure 1).

The pBBR1MCS-44, a broad host range plasmid, was chosen to allow the transfer of the system into V. harveyi by conjugation (i.e. this is the only way to modify the V. harveyi chassis).

In conclusion, we designed a V. harveyi strain enable to detect both exogenous CAI-1 or C8-CAI-1, and to produce diacetyl as a molecular response.

P. pastoris

V. harveyi cannot not be used as the effector since production of antimicrobial peptides (AMPs) is lethal for Vibrio species. P. pastoris is a yeast commonly used in academic laboratories and industry for its high potential to produce protein. In addition, yeasts were previously described to produce a wide range of AMPs 5,6. Finally, a system allowing efficient communication between yeast and prokaryotes has already been decribed i.e. the diacetyl-dependant Odr-10 receptor system7. This system allows the expression of targets genes under the control of pFUS1 via the Ste12 pathway (Figure 2). For all these reason, we thus chose P. pastoris. We used the constitutive pGAP promoter to express the receptor Odr-10 in P. pastoris

To kill V. cholerae, we looked for a new and innovative antibiotic solution to limit the risk of acquired-resistance. We decided to use AMPs, that are small membrane disrupting molecules toxic for a large panel of microorganisms8. Here we selected AMPs from crocodiles. Crocodiles live in harsh environment and are known to possess an impressive defence system, that allows them to catch very few disease and antimicrobial peptides are part of it9. We focused on 3 different AMPs described to have the best efficiency against V. cholerae. Those AMPs are Leucrocin I10, D-NY1511 and cOT212. Leucrocine I possess one cationic charge for 7 amino acids. D-NY15 is its optimized counterpart with 4 cationic charges and a sequence of 15 amino-acid long. Finally, cOT2 is 29 amino acid long and possesses 6 cationic charges. These AMPs were placed under control of the pGAP constitutive promoter for preliminary tests and under pFUS1 promoter to promote their expression in response to diacetyl. The genetic constructions were inserted into the integrative pPICZα plasmid i.e. a good plasmid for protein production. The signal peptide α-factor was fused to the AMPs to allow for secretion of the peptides.

The action of these AMPs is the last event of our synthetic consortium.

Modules & Parts

Sense

To create our sensor strain, we took advantage of the intraspecies quorum sensing of V. cholerae: the CAI-1/CqsS system. To mimic this pathway, we made an E. coli producer strain of quorum-sensing molecules (i.e. CAI-1 and C8-CAI-1) and we express a modified CqsS* receptor in V. harveyi that can sense both CAI-1 and C8-CAI-1.

Transmit

In response to quorum sensing molecules, the sensor strain activates the pathway leading to the inhibition of the als gene placed under the control of pQRR4 promoter. The signal is inverted by the tetR/pTet system to trigger als gene expression and thus diacetyl production. Diacetyl in turn activates the Odr-10 receptor implemented in the yeast Pichia pastoris.

Respond

Once Odr-10 receptor sensed diacetyl, the pFUS1 promoter triggers expression of AMPs. After excretion, these AMPs can disrupt the membrane of the Vibrio species

Experimental plan

E. coli

Quorum sensing molecule production

  • Measurement of C8-CAI-1 & CAI-1in supernateant by NMR
  • Bioluminescence assay

V. harveyi

Conjugation

  • Conjugation test using a plasmid expressing RFP

Diacetyl production

  • Measurement by NMR of diacetyl in supernateant of E. coli and V. harveyi producing strains

P. pastoris

Diacetyl detection

  • In vivo functionality of pGAP using RFP reporter system
  • In vivo functionality of ODR10/pFUS1 system test using RFP reporter system

Antimicrobial peptides (AMPs)

  • Verification of AMP genes expression by RT-PCR
  • Verification of AMPs activity by toxicity assay