JustInTime (Talk | contribs) |
|||
Line 199: | Line 199: | ||
<div class="row"> | <div class="row"> | ||
<h4 class="para col-lg-7"> After we experimentally demonstrated that biofilms trap NPs, we wanted to <b>test biofilms under conditions similar to a WWTP sedimentation tank</b>. Based on Boswell’s circular tank design, we built our own “sedimentation tanks” using clear plastic tubes, and attached biocarriers to a central spinning rotor. Three cylinders were set up: biofilm + distilled water, biofilm + AuNP, and AuNP solution alone. Here, we decided to grow biofilm directly onto biocarriers in the cylinders to minimize any disturbances. Finally, we turned on the rotor—set at a slow rotation speed—to simulate the mild movement of water in sedimentation tanks. <br><br> | <h4 class="para col-lg-7"> After we experimentally demonstrated that biofilms trap NPs, we wanted to <b>test biofilms under conditions similar to a WWTP sedimentation tank</b>. Based on Boswell’s circular tank design, we built our own “sedimentation tanks” using clear plastic tubes, and attached biocarriers to a central spinning rotor. Three cylinders were set up: biofilm + distilled water, biofilm + AuNP, and AuNP solution alone. Here, we decided to grow biofilm directly onto biocarriers in the cylinders to minimize any disturbances. Finally, we turned on the rotor—set at a slow rotation speed—to simulate the mild movement of water in sedimentation tanks. <br><br> | ||
− | In this simulation, we expected to see biofilms first attach and grow on the biocarriers, and then begin trapping NPs in the tanks. After about 30 hours of mixing, <b>the color of the AuNP solution started to change from purple to clear in the cylinder containing biofilm</b> (figure 5-8). This suggested that enough biofilm had adhered onto the biocarrier and began removing AuNPs in the solution. In contrast, the cylinder containing only AuNP solution did not change at all (timelapse video | + | In this simulation, we expected to see biofilms first attach and grow on the biocarriers, and then begin trapping NPs in the tanks. After about 30 hours of mixing, <b>the color of the AuNP solution started to change from purple to clear in the cylinder containing biofilm</b> (figure 5-8). This suggested that enough biofilm had adhered onto the biocarrier and began removing AuNPs in the solution. In contrast, the cylinder containing only AuNP solution did not change at all (timelapse video below shows the cylinders 36 hours after the start). As the biofilm-coated biocarrier removed AuNPs from solution, we also observed more purple aggregates of AuNP sticking to the rotating biofilm biocarrier. Here, <b>we demonstrate that our biofilm approach effectively removes NPs in a WWTP sedimentation tank model</b>. |
</h4> | </h4> | ||
<div class="image_container col-lg-5"> <img src="https://static.igem.org/mediawiki/2017/1/16/T--TAS_Taipei--Biofilm_vid_fig.jpg" alt="test" id="group"> | <div class="image_container col-lg-5"> <img src="https://static.igem.org/mediawiki/2017/1/16/T--TAS_Taipei--Biofilm_vid_fig.jpg" alt="test" id="group"> | ||
Line 213: | Line 213: | ||
<div class="row"> | <div class="row"> | ||
<h4 class="para col-lg-12"> | <h4 class="para col-lg-12"> | ||
− | + | ||
</h4> | </h4> | ||
</div> | </div> |
Revision as of 01:37, 1 November 2017
X
Project
Experiments
Modeling
Prototype
Human Practices
Safety
About Us
Attributions
Project
Experiment
Modeling
Prototype
Human Practice
Safety
About Us
Attributions
hi