Difference between revisions of "Team:SDSZ-China"

Line 13: Line 13:
 
padding: 0;
 
padding: 0;
 
background: #f3f4f4;
 
background: #f3f4f4;
}
+
}
p{font-family: Lato !important; font-size:17px !important}
+
p{font-family: Lato !important; font-size:17px !important}
h1{font-size:40-px !important;}
+
h1{font-size:40-px !important;}
body{font-family:Lato !important;}
+
body{font-family:Lato !important;}
h3{font-size:25-px}
+
h3{font-size:25-px}
 
     </style>
 
     </style>
  
Line 41: Line 41:
  
 
<div class="container" style='z-index:10;position:relative;'>
 
<div class="container" style='z-index:10;position:relative;'>
 +
<!--
 
<div class="row center-block" style = "text-align: left;">
 
<div class="row center-block" style = "text-align: left;">
 
<nav style='font-family:Lato;font-size:22px;background-color:#1C77C3;-webkit-transform: translateZ(0);z-index: 100;position: fixed;box-shadow: 0px 0px 10px black;'>
 
<nav style='font-family:Lato;font-size:22px;background-color:#1C77C3;-webkit-transform: translateZ(0);z-index: 100;position: fixed;box-shadow: 0px 0px 10px black;'>
Line 63: Line 64:
 
<div style='height:140px;'>
 
<div style='height:140px;'>
 
<img src="https://static.igem.org/mediawiki/2016/1/11/T--TAS_Taipei--TAS_Icon_Project.png">
 
<img src="https://static.igem.org/mediawiki/2016/1/11/T--TAS_Taipei--TAS_Icon_Project.png">
<h4><b>Cataracts</b> - the leading cause of blindness. Find out how we can non-invasively <b>treat</b> and <b>prevent</b> cataract formation.</b></h4>
+
<h4><b>Cataracts</b> - the leading cause of blindness. Find out how we can non-invasively <b>treat</b> and <b>prevent</b> cataract formation.</h4>
 
</div>
 
</div>
 
 
Line 184: Line 185:
 
</nav>
 
</nav>
 
</div>
 
</div>
<br>
+
<br>
<br>
+
<br>
<br>
+
<br>
<div class="row center-block" style = "padding:10px;width:90%;background-color:#07BEB8;box-shadow:0px 0px 5px black">
+
-->
 +
 
 +
<div class="row center-block" style = "padding:10px;width:90%;background-color:#07BEB8;box-shadow:0px 0px 5px black">
 
<div class="row" style = "text-align:center;">
 
<div class="row" style = "text-align:center;">
<div class="col-sm-2">
+
<div class="col-sm-2">
<a href="https://2016.igem.org/Team:TAS_Taipei" style='text-decoration: none'><img src="https://static.igem.org/mediawiki/2016/c/c6/T--TAS_Taipei--TAS_iGEM_Logo.png
+
<a href="https://2016.igem.org/Team:TAS_Taipei" style='text-decoration: none'><img src="https://static.igem.org/mediawiki/2016/c/c6/T--TAS_Taipei--TAS_iGEM_Logo.png
 
" alt="" style="width: 100px;"></a>
 
" alt="" style="width: 100px;"></a>
</div>
 
<div class="col-sm-8" style='text-align:center;'>
 
<a href="https://2016.igem.org/Team:TAS_Taipei" style='text-decoration: none;'>
 
<h2 style="font-family:'Lato';letter-spacing:10px;color: white; font-size: 60px;  margin-top: 0;  margin-bottom: 0;"><b>
 
C&#9678;UNTERACTS</b></h2>
 
</a>
 
</div>
 
<div class="col-sm-2">
 
<a href="https://igem.org/HS"><img src="https://static.igem.org/mediawiki/2016/6/6e/T--TAS_Taipei--TAS_Icon_Logo2.png" alt="" style="width: 100px;"></a>
 
</div>
 
 
</div>
 
</div>
</div>
+
<div class="col-sm-8" style='text-align:center;'>
<br>
+
<a href="https://2016.igem.org/Team:TAS_Taipei" style='text-decoration: none;'>
<div class="row card" id='bodycontainer' class='row'>
+
<h2 style="font-family:'Lato';letter-spacing:10px;color: white; font-size: 60px;  margin-top: 0; margin-bottom: 0;"><b>
<div class="col-sm-2" style='padding-left:5% padding-right:10%'>
+
C&#9678;UNTERACTS</b></h2>
<div id="category_navbar">
+
</a>
<ul class="nav nav-list" data-spy="affix" data-offset-top="160" style='-webkit-transform: translateZ(0);width:160px;margin-left:0' >
+
</div>
                       
+
<div class="col-sm-2">
                        <li><a href="#cataract">What are Cataracts?</a></li>
+
<a href="https://igem.org/HS"><img src="https://static.igem.org/mediawiki/2016/6/6e/T--TAS_Taipei--TAS_Icon_Logo2.png" alt="" style="width: 100px;"></a>
<li><a href="#solution">What is our Solution?</a></li>
+
</div>
                       
+
</div>
 +
</div>
 +
<br>
  
</ul>
+
<div class="row card" id='bodycontainer' class='row'>
</div>
+
<div class="col-sm-2" style='padding-left:5% padding-right:10%'>
 +
<div id="category_navbar">
 +
<ul class="nav nav-list" data-spy="affix" data-offset-top="160" style='-webkit-transform: translateZ(0);width:160px;margin-left:0' >
 +
                     
 +
                      <li><a href="#cataract">What are Cataracts?</a></li>
 +
<li><a href="#solution">What is our Solution?</a></li>
 +
                     
  
 +
</ul>
 
</div>
 
</div>
  
 +
</div>
  
<div class="col-sm-10" style="padding-right:5%">
 
<div class="row">
 
<div class="col-sm-12">
 
                        <body>
 
<h1 id='overview'>Background</h1>
 
                                                   
 
                        <p>Cataracts are the leading cause of blindness today, affecting 20 million people worldwide (World Health Organization). Half of Americans above 80 years old are affected by cataracts (National Eye Institute), and so are many animals! The National Eye Institute projects that in 30 years, the number of cataract patients will increase to 50 million (National Eye Institute).  </p>                           
 
    </div>
 
                </div>
 
  
 +
<div class="col-sm-10" style="padding-right:5%">
 +
<div class="row">
 +
<div class="col-sm-12">
 +
<h1 id='overview'>Background</h1>
 +
<p>Cataracts are the leading cause of blindness today, affecting 20 million people worldwide (World Health Organization). Half of Americans above 80 years old are affected by cataracts (National Eye Institute), and so are many animals! The National Eye Institute projects that in 30 years, the number of cataract patients will increase to 50 million (National Eye Institute).  </p>                   
 +
    </div>
 +
      </div>
  
  
                    <div class = "row">
 
              <div class="col-sm-12">
 
        <h2 id = 'cataract'>What are Cataracts?</h2>
 
                            <div class="row">
 
                                <div class="col-sm-6">
 
                                <p>
 
                                    The lens is mostly made of proteins called crystallins. Crystallin proteins are normally soluble, which keeps the lens clear and allows light entering the eye to focus. When these proteins are damaged, they form insoluble clumps (Truscott, 2005). This causes the clouding seen in cataractous lenses, which scatters light and in turn makes vision blurry (Figure 1.1).
 
  
                                </p>
+
                  <div class = "row">
                                </div>
+
              <div class="col-sm-12">
                                <figure class = "col-sm-6">
+
        <h2 id = 'cataract'>What are Cataracts?</h2>
        <img src="https://static.igem.org/mediawiki/2016/f/ff/T--TAS_Taipei--Normal_vs_Cataract_Model_cropped.png">
+
                          <div class="row">
                                    <figcaption class='darkblue'><b>Figure 1.1. </b>Cataracts scatter light coming through the lens, which blurs vision.
+
                              <div class="col-sm-6">
 +
                              <p>
 +
                                  The lens is mostly made of proteins called crystallins. Crystallin proteins are normally soluble, which keeps the lens clear and allows light entering the eye to focus. When these proteins are damaged, they form insoluble clumps (Truscott, 2005). This causes the clouding seen in cataractous lenses, which scatters light and in turn makes vision blurry (Figure 1.1).
 +
 
 +
                              </p>
 +
                              </div>
 +
                              <figure class = "col-sm-6">
 +
        <img src="https://static.igem.org/mediawiki/2016/f/ff/T--TAS_Taipei--Normal_vs_Cataract_Model_cropped.png">
 +
                                  <figcaption class='darkblue'><b>Figure 1.1. </b>Cataracts scatter light coming through the lens, which blurs vision.
 
</figcaption>
 
</figcaption>
      </figure>
+
      </figure>
                            </div>
+
                          </div>
                            <br><br>
+
                          <br><br>
                            <div class="row">
+
                          <div class="row">
                                <div class="col-sm-6">
+
                              <div class="col-sm-6">
                                <p>
+
                              <p>
                                    Cataracts can be caused by many factors, including radiation and diabetes, but the underlying cause is oxidative damage. Oxidative damage happens when unstable chemicals containing oxygen react with DNA, lipids, or proteins, disrupting cellular functions (Truscott, 2005). In the lens, crystallin proteins can be oxidized by hydrogen peroxide (H₂O₂), which is a reactive molecule produced during aerobic respiration (Giorgio et al., 2007). H₂O₂ reacts with protein residues and changes the shape of the protein. When two cysteine residues on separate proteins are oxidized by H₂O₂, for example, they can form a disulfide bond, which links these proteins together. The damaged proteins thus aggregate and form clumps in the lens (Truscott, 2005) (Figure 1.2).  
+
                                  Cataracts can be caused by many factors, including radiation and diabetes, but the underlying cause is oxidative damage. Oxidative damage happens when unstable chemicals containing oxygen react with DNA, lipids, or proteins, disrupting cellular functions (Truscott, 2005). In the lens, crystallin proteins can be oxidized by hydrogen peroxide (H₂O₂), which is a reactive molecule produced during aerobic respiration (Giorgio et al., 2007). H₂O₂ reacts with protein residues and changes the shape of the protein. When two cysteine residues on separate proteins are oxidized by H₂O₂, for example, they can form a disulfide bond, which links these proteins together. The damaged proteins thus aggregate and form clumps in the lens (Truscott, 2005) (Figure 1.2).  
+
 
+
 
                                </p>
+
                              </p>
                                </div>
+
                              </div>
                                <figure class = "col-sm-6">
+
                              <figure class = "col-sm-6">
        <img src="https://static.igem.org/mediawiki/2016/9/92/T--TAS_Taipei--Oxidative_Damage.jpeg">
+
        <img src="https://static.igem.org/mediawiki/2016/9/92/T--TAS_Taipei--Oxidative_Damage.jpeg">
                                    <figcaption class='darkblue'><b>Figure 1.2. </b>Oxidative damage by H₂O₂ can lead to proteins misfolding, breaking apart, and clumping.</figcaption>
+
                                  <figcaption class='darkblue'><b>Figure 1.2. </b>Oxidative damage by H₂O₂ can lead to proteins misfolding, breaking apart, and clumping.</figcaption>
                                </figure>
+
                              </figure>
                               
+
                             
                               
+
                             
                            </div>
+
                          </div>
 +
                     
 
                          
 
                          
                            
+
                           <br><br>
                            <br><br>
+
                          <div class="row">
                            <div class="row">
+
                              <div class="col-sm-12">
                                <div class="col-sm-12">
+
                              <p>
                                <p>
+
                                  <b>In the eye, a natural antioxidant called glutathione (GSH) exists,</b> which can convert H₂O₂ into water (Giblin, 2000). With age, however, GSH levels decrease, and oxidative damage caused by H₂O₂ increases. When there is more H₂O₂ in the lens than GSH can remove, crystallins become damaged (Figure 1.3). When GSH levels are low, H₂O₂ starts to oxidize crystallins and cause cataracts. As lens cells age, they move towards the nucleus and their GSH levels fall (Cvekl & Ashery-Padan, 2014), which may explain why the older cells in the lens nucleus are more prone to developing cataracts  
                                    <b>In the eye, a natural antioxidant called glutathione (GSH) exists,</b> which can convert H₂O₂ into water (Giblin, 2000). With age, however, GSH levels decrease, and oxidative damage caused by H₂O₂ increases. When there is more H₂O₂ in the lens than GSH can remove, crystallins become damaged (Figure 1.3). When GSH levels are low, H₂O₂ starts to oxidize crystallins and cause cataracts. As lens cells age, they move towards the nucleus and their GSH levels fall (Cvekl & Ashery-Padan, 2014), which may explain why the older cells in the lens nucleus are more prone to developing cataracts  
+
  
  
  
  
                                </p>
+
                              </p>
                                </div>
+
                              </div>
                            </div>
+
                           </div>
                           <br><br>
+
                        <br><br>
                            <div class="row">
+
                                <figure class = "col-sm-7">
+
        <img src="https://static.igem.org/mediawiki/2016/5/5d/T--TAS_Taipei--Antioxidant_Balance.jpeg">
+
                                    <figcaption class='darkblue'><b>Figure 1.3.</b> Antioxidants protects proteins from oxidative damage by H₂O₂ (left). When antioxidant levels are low, H₂O₂ damages crystallins and cataract develops (right).  </figcaption>
+
      </figure>
+
                                <div class="col-sm-1"></div>
+
                                <figure class = "col-sm-4">
+
        <img src="https://static.igem.org/mediawiki/2016/6/6c/T--TAS_Taipei--New_vs_Old_Cells.jpeg">
+
                                    <figcaption class='darkblue'><b>Figure 1.4.</b> Lens cells move towards the nucleus as they mature. Older cells have less GSH and are more susceptible to oxidative damage by H₂O₂. </figcaption>
+
      </figure>
+
                            </div>
+
                          <br><br>
+
 
                           <div class="row">
 
                           <div class="row">
                                <div class="col-sm-7">
+
                              <figure class = "col-sm-7">
                                <p>
+
        <img src="https://static.igem.org/mediawiki/2016/5/5d/T--TAS_Taipei--Antioxidant_Balance.jpeg">
                                    The current standard treatment for cataracts is surgery, which replaces the cloudy lens with a clear artificial lens. Surgery is effective, but like all surgeries, it is <b>invasive and requires professional equipment and trained surgeons.</b> These requirements add to the cost, which averages about $3,500 per eye in the US without insurance (Sigre, 2016), and is the biggest obstacle to solving cataracts worldwide. Through literature research, we found a molecule called 25-hydroxycholesterol (25HC) that can reverse protein aggregation. We hope to use this as an alternative to surgery to treat cataracts.  
+
                                  <figcaption class='darkblue'><b>Figure 1.3.</b> Antioxidants protects proteins from oxidative damage by H₂O₂ (left). When antioxidant levels are low, H₂O₂ damages crystallins and cataract develops (right).  </figcaption>
 +
      </figure>
 +
                              <div class="col-sm-1"></div>
 +
                              <figure class = "col-sm-4">
 +
        <img src="https://static.igem.org/mediawiki/2016/6/6c/T--TAS_Taipei--New_vs_Old_Cells.jpeg">
 +
                                  <figcaption class='darkblue'><b>Figure 1.4.</b> Lens cells move towards the nucleus as they mature. Older cells have less GSH and are more susceptible to oxidative damage by H₂O₂. </figcaption>
 +
      </figure>
 +
                          </div>
 +
                        <br><br>
 +
                        <div class="row">
 +
                              <div class="col-sm-7">
 +
                              <p>
 +
                                  The current standard treatment for cataracts is surgery, which replaces the cloudy lens with a clear artificial lens. Surgery is effective, but like all surgeries, it is <b>invasive and requires professional equipment and trained surgeons.</b> These requirements add to the cost, which averages about $3,500 per eye in the US without insurance (Sigre, 2016), and is the biggest obstacle to solving cataracts worldwide. Through literature research, we found a molecule called 25-hydroxycholesterol (25HC) that can reverse protein aggregation. We hope to use this as an alternative to surgery to treat cataracts.  
  
                                </p>
+
                              </p>
                                </div>
+
                              </div>
                              <figure class = "col-sm-5">
+
                            <figure class = "col-sm-5">
        <img src="https://static.igem.org/mediawiki/2016/e/e2/T--TAS_Taipei--Surgery_Cataract.jpeg">
+
        <img src="https://static.igem.org/mediawiki/2016/e/e2/T--TAS_Taipei--Surgery_Cataract.jpeg">
                                    <figcaption class='darkblue' style="font-color:red"><b>Figure 1.5.</b> Our goal is to replace surgery with noninvasive eye drops that prevent and treat cataracts.</figcaption>
+
                                  <figcaption class='darkblue' style="font-color:red"><b>Figure 1.5.</b> Our goal is to replace surgery with noninvasive eye drops that prevent and treat cataracts.</figcaption>
      </figure>
+
      </figure>
                            </div>
+
                          </div>
  
                        </div> <!-- Container -->
+
                      </div> <!-- Container -->
                    </div> <!-- Container -->
+
                  </div> <!-- Container -->
                   
+
                 
                   
+
                 
                   
+
                 
                  <div class = "row">
+
                <div class = "row">
              <div class="col-sm-12">
+
              <div class="col-sm-12">
        <h2 id = 'solution'>What is our Solution?</h2>
+
        <h2 id = 'solution'>What is our Solution?</h2>
                            <div class="row">
+
                          <div class="row">
                                <div class="col-sm-12">
+
                              <div class="col-sm-12">
                                <p>
+
                              <p>
                                    Our goal is to develop noninvasive, easy-to-use, and affordable eyedrops to prevent and treat cataracts (Figure 1.5).  
+
                                  Our goal is to develop noninvasive, easy-to-use, and affordable eyedrops to prevent and treat cataracts (Figure 1.5).  
                                </p>
+
                              </p>
                                </div>
+
                              </div>
                            </div>
+
                          </div>
                            <div class="row">
+
                          <div class="row">
                               
+
                             
                                <div class="col-sm-12">
+
                              <div class="col-sm-12">
                                <h3 id="prevention">Prevention</h3>
+
                              <h3 id="prevention">Prevention</h3>
                                <p>
+
                              <p>
                                    When GSH is present, H₂O₂ can oxidize GSH instead of crystallin proteins. When GSH becomes oxidized, a disulfide bond forms between two GSH molecules, which become oxidized glutathione (GSSG). Through literature research, we found an enzyme that recycles GSSG back into GSH. This enzyme is called glutathione reductase (GSR) (Ganea & Harding, 2006). As seen in Figure 1.6, GSR (green) recycles GSSG back into GSH, so that crystallin proteins remain protected. Even though GSR exists in the lens, its levels decrease with age, which leads to the development of cataracts (Michael & Bron, 2011). <b>Our goal is to independently produce and deliver GSR to the lens, so that cataract formation is prevented. </b>
+
                                  When GSH is present, H₂O₂ can oxidize GSH instead of crystallin proteins. When GSH becomes oxidized, a disulfide bond forms between two GSH molecules, which become oxidized glutathione (GSSG). Through literature research, we found an enzyme that recycles GSSG back into GSH. This enzyme is called glutathione reductase (GSR) (Ganea & Harding, 2006). As seen in Figure 1.6, GSR (green) recycles GSSG back into GSH, so that crystallin proteins remain protected. Even though GSR exists in the lens, its levels decrease with age, which leads to the development of cataracts (Michael & Bron, 2011). <b>Our goal is to independently produce and deliver GSR to the lens, so that cataract formation is prevented. </b>
  
                                </p>
+
                              </p>
                                </div>
+
                              </div>
                               
+
                             
                            </div>
+
                          </div>
                            <div class="row">
+
                               
+
                               
+
                               
+
                                    <div class="col-sm-4"><img src="https://static.igem.org/mediawiki/2016/b/b0/T--TAS_Taipei--ClearAnimation1.gif"></div>
+
                                   
+
                                    <div class="col-sm-4"><img src="https://static.igem.org/mediawiki/2016/3/30/T--TAS_Taipei--BlurredAnimation1.gif"></div>
+
                                   
+
                                    <div class="col-sm-4"><img src="https://static.igem.org/mediawiki/2016/7/7f/T--TAS_Taipei--AnimatinoLegend.gif"></div>
+
                                   
+
    <figure class = "col-sm-12"> 
+
                                    <figcaption class='darkblue'><b>Figure 1.6 </b>In a normal lens (left), GSR (enzyme, in green) converts GSSG into GSH. H₂O₂ oxidizes GSH instead of crystallin proteins, so that crystallin proteins remain protected, and the lens remains clear. In a cataractous lens (right), GSR levels are low so GSH cannot be remade. Since GSH is not present to protect proteins against H₂O₂, cataracts begin to develop. </figcaption>
+
                                </figure>
+
                               
+
                               
+
                               
+
                            </div>
+
                          <br><br>
+
                         
+
 
                           <div class="row">
 
                           <div class="row">
                               
+
                             
                                <div class="col-sm-8">
+
                             
                                <h3 id="treatment">Treatment</h3>
+
                             
                                <p>
+
                                  <div class="col-sm-4"><img src="https://static.igem.org/mediawiki/2016/b/b0/T--TAS_Taipei--ClearAnimation1.gif"></div>
                                    We also found a molecule that can restore solubility of protein clumps and lens transparency. It is called 25-hydroxycholesterol (25HC) (Makley et al., 2015). 25HC can be produced from cholesterol by the enzyme cholesterol 25-hydroxylase (CH25H) (Figure 1.7). Our goal is to independently produce and deliver CH25H to the lens, so that cataracts can be treated.  
+
                                 
+
                                  <div class="col-sm-4"><img src="https://static.igem.org/mediawiki/2016/3/30/T--TAS_Taipei--BlurredAnimation1.gif"></div>
                                </p>
+
                                 
                                </div>
+
                                  <div class="col-sm-4"><img src="https://static.igem.org/mediawiki/2016/7/7f/T--TAS_Taipei--AnimatinoLegend.gif"></div>
                                <figure class = "col-sm-4">
+
                                 
        <img src="https://static.igem.org/mediawiki/2016/7/7c/T--TAS_Taipei--CH25HRxnDescription.png">
+
    <figure class = "col-sm-12"> 
                                    <figcaption class='darkblue'><b>Figure 1.7. </b>CH25H (enzyme) converts cholesterol to 25HC, which can reverse protein clumps.
+
                                  <figcaption class='darkblue'><b>Figure 1.6 </b>In a normal lens (left), GSR (enzyme, in green) converts GSSG into GSH. H₂O₂ oxidizes GSH instead of crystallin proteins, so that crystallin proteins remain protected, and the lens remains clear. In a cataractous lens (right), GSR levels are low so GSH cannot be remade. Since GSH is not present to protect proteins against H₂O₂, cataracts begin to develop. </figcaption>
 +
                              </figure>
 +
                             
 +
                             
 +
                             
 +
                          </div>
 +
                        <br><br>
 +
                       
 +
                        <div class="row">
 +
                             
 +
                              <div class="col-sm-8">
 +
                              <h3 id="treatment">Treatment</h3>
 +
                              <p>
 +
                                  We also found a molecule that can restore solubility of protein clumps and lens transparency. It is called 25-hydroxycholesterol (25HC) (Makley et al., 2015). 25HC can be produced from cholesterol by the enzyme cholesterol 25-hydroxylase (CH25H) (Figure 1.7). Our goal is to independently produce and deliver CH25H to the lens, so that cataracts can be treated.  
 +
 
 +
                              </p>
 +
                              </div>
 +
                              <figure class = "col-sm-4">
 +
        <img src="https://static.igem.org/mediawiki/2016/7/7c/T--TAS_Taipei--CH25HRxnDescription.png">
 +
                                  <figcaption class='darkblue'><b>Figure 1.7. </b>CH25H (enzyme) converts cholesterol to 25HC, which can reverse protein clumps.
 
</figcaption>
 
</figcaption>
                                    </figure>
+
                                  </figure>
                                </div>
+
                              </div>
                               
+
                             
                            </div>
+
                          </div>
                         
+
                       
                         
+
                       
  
                        </div> <!-- Container -->
+
                      </div> <!-- Container -->
                    <br><br>
+
                  <br><br>
                    <div class = "row">
+
                  <div class = "row">
  <div class="col-sm-12">
+
  <div class="col-sm-12">
<h3>Citations</h3>
+
<h3>Citations</h3>
 
<p>Cvekl, A., & Ashery-Padan, R. (2014). The cellular and molecular mechanisms of vertebrate lens development. Development, 141(23), 4432-4447.
 
<p>Cvekl, A., & Ashery-Padan, R. (2014). The cellular and molecular mechanisms of vertebrate lens development. Development, 141(23), 4432-4447.
 
</p>
 
</p>
        <br>
+
        <br>
 
<p>Ganea, E. & Harding, J. J. (2006). Glutathione-related enzymes and the eye. Curr Eye Res., 31(1), 1–11
 
<p>Ganea, E. & Harding, J. J. (2006). Glutathione-related enzymes and the eye. Curr Eye Res., 31(1), 1–11
 
</p> <br>  
 
</p> <br>  
Line 396: Line 398:
 
</p> <br>
 
</p> <br>
 
<p></p> <br> <br>             
 
<p></p> <br> <br>             
  </div>
+
  </div>
    </div>
+
    </div>
 
+
</div>
                   
+
</div>
 
+
</div>
 
+
+
                   
+
</div>
+
 
+
</div>
+
    </div>
+
 
 
<br>
+
<br>
<br><br>
+
<br>
 +
<br>
  
 
<canvas id="canvas-container" style = "z-index:-1"></canvas>
 
<canvas id="canvas-container" style = "z-index:-1"></canvas>

Revision as of 09:21, 1 November 2017


Background - TAS Taipei iGEM Wiki


Background

Cataracts are the leading cause of blindness today, affecting 20 million people worldwide (World Health Organization). Half of Americans above 80 years old are affected by cataracts (National Eye Institute), and so are many animals! The National Eye Institute projects that in 30 years, the number of cataract patients will increase to 50 million (National Eye Institute).

What are Cataracts?

The lens is mostly made of proteins called crystallins. Crystallin proteins are normally soluble, which keeps the lens clear and allows light entering the eye to focus. When these proteins are damaged, they form insoluble clumps (Truscott, 2005). This causes the clouding seen in cataractous lenses, which scatters light and in turn makes vision blurry (Figure 1.1).

Figure 1.1. Cataracts scatter light coming through the lens, which blurs vision.


Cataracts can be caused by many factors, including radiation and diabetes, but the underlying cause is oxidative damage. Oxidative damage happens when unstable chemicals containing oxygen react with DNA, lipids, or proteins, disrupting cellular functions (Truscott, 2005). In the lens, crystallin proteins can be oxidized by hydrogen peroxide (H₂O₂), which is a reactive molecule produced during aerobic respiration (Giorgio et al., 2007). H₂O₂ reacts with protein residues and changes the shape of the protein. When two cysteine residues on separate proteins are oxidized by H₂O₂, for example, they can form a disulfide bond, which links these proteins together. The damaged proteins thus aggregate and form clumps in the lens (Truscott, 2005) (Figure 1.2).

Figure 1.2. Oxidative damage by H₂O₂ can lead to proteins misfolding, breaking apart, and clumping.


In the eye, a natural antioxidant called glutathione (GSH) exists, which can convert H₂O₂ into water (Giblin, 2000). With age, however, GSH levels decrease, and oxidative damage caused by H₂O₂ increases. When there is more H₂O₂ in the lens than GSH can remove, crystallins become damaged (Figure 1.3). When GSH levels are low, H₂O₂ starts to oxidize crystallins and cause cataracts. As lens cells age, they move towards the nucleus and their GSH levels fall (Cvekl & Ashery-Padan, 2014), which may explain why the older cells in the lens nucleus are more prone to developing cataracts



Figure 1.3. Antioxidants protects proteins from oxidative damage by H₂O₂ (left). When antioxidant levels are low, H₂O₂ damages crystallins and cataract develops (right).
Figure 1.4. Lens cells move towards the nucleus as they mature. Older cells have less GSH and are more susceptible to oxidative damage by H₂O₂.


The current standard treatment for cataracts is surgery, which replaces the cloudy lens with a clear artificial lens. Surgery is effective, but like all surgeries, it is invasive and requires professional equipment and trained surgeons. These requirements add to the cost, which averages about $3,500 per eye in the US without insurance (Sigre, 2016), and is the biggest obstacle to solving cataracts worldwide. Through literature research, we found a molecule called 25-hydroxycholesterol (25HC) that can reverse protein aggregation. We hope to use this as an alternative to surgery to treat cataracts.

Figure 1.5. Our goal is to replace surgery with noninvasive eye drops that prevent and treat cataracts.

What is our Solution?

Our goal is to develop noninvasive, easy-to-use, and affordable eyedrops to prevent and treat cataracts (Figure 1.5).

Prevention

When GSH is present, H₂O₂ can oxidize GSH instead of crystallin proteins. When GSH becomes oxidized, a disulfide bond forms between two GSH molecules, which become oxidized glutathione (GSSG). Through literature research, we found an enzyme that recycles GSSG back into GSH. This enzyme is called glutathione reductase (GSR) (Ganea & Harding, 2006). As seen in Figure 1.6, GSR (green) recycles GSSG back into GSH, so that crystallin proteins remain protected. Even though GSR exists in the lens, its levels decrease with age, which leads to the development of cataracts (Michael & Bron, 2011). Our goal is to independently produce and deliver GSR to the lens, so that cataract formation is prevented.

Figure 1.6 In a normal lens (left), GSR (enzyme, in green) converts GSSG into GSH. H₂O₂ oxidizes GSH instead of crystallin proteins, so that crystallin proteins remain protected, and the lens remains clear. In a cataractous lens (right), GSR levels are low so GSH cannot be remade. Since GSH is not present to protect proteins against H₂O₂, cataracts begin to develop.


Treatment

We also found a molecule that can restore solubility of protein clumps and lens transparency. It is called 25-hydroxycholesterol (25HC) (Makley et al., 2015). 25HC can be produced from cholesterol by the enzyme cholesterol 25-hydroxylase (CH25H) (Figure 1.7). Our goal is to independently produce and deliver CH25H to the lens, so that cataracts can be treated.

Figure 1.7. CH25H (enzyme) converts cholesterol to 25HC, which can reverse protein clumps.


Citations

Cvekl, A., & Ashery-Padan, R. (2014). The cellular and molecular mechanisms of vertebrate lens development. Development, 141(23), 4432-4447.


Ganea, E. & Harding, J. J. (2006). Glutathione-related enzymes and the eye. Curr Eye Res., 31(1), 1–11


Giblin, F. J. (2000). Glutathione: a vital lens antioxidant. Journal of Ocular Pharmacology and Therapeutics, 16(2), 121-135.


Giorgio, M., Trinei, M., Migliaccio, E., & Pelicci, P. (2007). Nature Reviews Molecular Cell Biology, 8(9), 722-8.


Makley, L. N., McMenimen, K. A., DeVree, B. T., Goldman, J. W., McGlasson, B. N., Rajagopal, P., Dunyak, B.M., McQuade, T.J., Thompson, A.D., Sunahara, R., Klevit, R.E., Andley, U.P., and Gestwicki, J.E. (2015). Pharmacological chaperone for α-crystallin partially restores transparency in cataract models. Science, 350(6261), 674-677.


Michael, R., & Bron, A. J. (2011). The ageing lens and cataract: a model of normal and pathological ageing. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 366(1568), 1278-1292.


National Eye Institute | Cataracts. (n.d.). Retrieved October 04, 2016, from https://nei.nih.gov/eyedata/cataract


Segre L (2016, Sept. 21). Cataract surgery cost. Retrieved from http://www.allaboutvision.com/conditions/cataract-surgery-cost.htm


Truscott, RJ (2005). Age-related nuclear cataract-oxidation is the key. Exp Eye Res., 80(5): 709-25.


World Health Organization | Priority eye diseases. (n.d.). Retrieved October 03, 2016, from http://www.who.int/blindness/causes/priority/en/index1.html







Prevention

GSR Eyedrop

Treatment

25HC Eyedrop

LOCS: 0      


Eyedrops




× Zoom out to see animation.          
Your screen resolution is too low unless you zoom out