|
|
Line 1: |
Line 1: |
− | {{TAS Taipei/CSS2}} {{TAS Taipei/Bootstrap}} {{TAS Taipei/BootstrapJS}}
| |
− | <html lang="en">
| |
| | | |
− | <head>
| |
− | <meta charset="UTF-8">
| |
− | <title>About Us</title>
| |
− | <link href='http://fonts.googleapis.com/css?family=Lato' rel='stylesheet' type='text/css'>
| |
− | <style type='text/css'>
| |
− | #top_title,
| |
− | #sideMenu {
| |
− | display: none !important;
| |
− | }
| |
− |
| |
− | #content {
| |
− | width: 100%;
| |
− | margin: 0;
| |
− | padding: 0;
| |
− | background: #f3f4f4;
| |
− | }
| |
− |
| |
− | .cv {
| |
− | box-shadow: 100px 0px 0 0px #fc9d9a;
| |
− | }
| |
− |
| |
− | .this_border {
| |
− | background-color: #fc9d9a;
| |
− | }
| |
− |
| |
− | </style>
| |
− | </head>
| |
− |
| |
− | <body>
| |
− | <div class="return">
| |
− | <h1>X</h1>
| |
− | </div>
| |
− | <div class="yellow">
| |
− | <div class="box right">
| |
− | <div class="box2 right project" href="https://2017.igem.org/Team:TAS_Taipei/Background">
| |
− | <img src="https://static.igem.org/mediawiki/2017/0/00/T--TAS_Taipei--Project_C.png" id="dna">
| |
− | <h6 class="navCap">Project</h6>
| |
− | </div>
| |
− | <div class="box2 right experiment" href="https://2017.igem.org/Team:TAS_Taipei/Experimental_Summary">
| |
− | <img src="https://static.igem.org/mediawiki/2017/b/b0/T--TAS_Taipei--Exp_C.png" id="dna">
| |
− | <h6 class="navCap">Experiments</h6>
| |
− | </div>
| |
− | <div class="box2 right modeling" href="https://2017.igem.org/Team:TAS_Taipei/Model">
| |
− | <img src="https://static.igem.org/mediawiki/2017/b/be/T--TAS_Taipei--Modeling_C.png" id="dna">
| |
− | <h6 class="navCap">Modeling</h6>
| |
− | </div>
| |
− | <div class="box2 right prototype" href="https://2017.igem.org/Team:TAS_Taipei/Applied_Design">
| |
− | <img src="https://static.igem.org/mediawiki/2017/2/2e/T--TAS_Taipei--Prototype_C.png" id="dna">
| |
− | <h6 class="navCap">Prototype</h6>
| |
− | </div>
| |
− | <div class="box2 right policy" href="https://2017.igem.org/Team:TAS_Taipei/Human_Practices">
| |
− | <img src="https://static.igem.org/mediawiki/2017/4/42/T--TAS_Taipei--HP2_C.png" id="dna">
| |
− | <h6 class="navCap">Human Practices</h6>
| |
− | </div>
| |
− | <div class="box2 right biosafety" href="https://2017.igem.org/Team:TAS_Taipei/Safety">
| |
− | <img src="https://static.igem.org/mediawiki/2017/b/b8/T--TAS_Taipei--Biosafety_C.png" id="dna">
| |
− | <h6 class="navCap">Safety</h6>
| |
− | </div>
| |
− | <div class="box2 right about" href="https://2017.igem.org/Team:TAS_Taipei/Team">
| |
− | <img src="https://static.igem.org/mediawiki/2017/1/1a/T--TAS_Taipei--About_Us_C.png" id="dna">
| |
− | <h6 class="navCap">About Us</h6>
| |
− | </div>
| |
− | <div class="box2 right acknowledgments" href="https://2017.igem.org/Team:TAS_Taipei/Attributions">
| |
− | <img src="https://static.igem.org/mediawiki/2017/5/52/T--TAS_Taipei--Attributions_C.png" id="dna">
| |
− | <h6 class="navCap">Attributions</h6>
| |
− | </div>
| |
− | </div>
| |
− | <div class="blue">
| |
− | <div class="box3 left project" href="https://2017.igem.org/Team:TAS_Taipei/Background">
| |
− | <h1>Project</h1>
| |
− | </div>
| |
− | <div class="box3 left experiment" href="https://2017.igem.org/Team:TAS_Taipei/Experimental_Summary">
| |
− | <h1>Experiment</h1>
| |
− | </div>
| |
− | <div class="box3 left modeling" href="https://2017.igem.org/Team:TAS_Taipei/Model">
| |
− | <h1>Modeling</h1>
| |
− | </div>
| |
− | <div class="box3 left prototype" href="https://2017.igem.org/Team:TAS_Taipei/Applied_Design">
| |
− | <h1>Prototype</h1>
| |
− | </div>
| |
− | <div class="box3 left policy" href="https://2017.igem.org/Team:TAS_Taipei/Human_Practices">
| |
− | <h1>Human Practice</h1>
| |
− | </div>
| |
− | <div class="box3 left biosafety" href="https://2017.igem.org/Team:TAS_Taipei/Safety">
| |
− | <h1>Safety</h1>
| |
− | </div>
| |
− | <div class="box3 left about" href="https://2017.igem.org/Team:TAS_Taipei/Team">
| |
− | <h1>About Us</h1>
| |
− | </div>
| |
− | <div class="box3 left acknowledgments" href="https://2017.igem.org/Team:TAS_Taipei/Attributions">
| |
− | <h1>Attributions</h1>
| |
− | </div>
| |
− | </div>
| |
− | </div>
| |
− | <box class="home">
| |
− | <img src="https://static.igem.org/mediawiki/2017/2/2b/T--TAS_Taipei--3home.svg" alt="Home" id="home" onclick="location.href='https://2017.igem.org/Team:TAS_Taipei';" style="cursor: pointer;">
| |
− | </box>
| |
− | <!--全版面大型看板開始-->
| |
− | <div class="jumbotron" id="modeling-jumbo">
| |
− | <div class="container">
| |
− | <h1>Modeling</h1>
| |
− | <h4>Computational Biology provides us insight on how to apply experimental data to real world applications!</h4>
| |
− | </div>
| |
− | <a href="#cv"><img src="https://static.igem.org/mediawiki/2017/4/4a/T--TAS_Taipei--Chevron_500px_200ppi.png" alt="test" id="chevron"></a>
| |
− | </div>
| |
− | <!--全版面大型看板結尾-->
| |
− | <div class="cv" id="cv">
| |
− | <div class="row">
| |
− | <nav class="pageNav col-lg-1" id="navbar">
| |
− | <ul class="nav">
| |
− | <li>
| |
− | <a href="#Intro" class="pageNavBig">INTRODUCTION</a>
| |
− | </li>
| |
− | <li>
| |
− | <a href="#PR" class="pageNavBig">PR TRAPPING MODEL</a>
| |
− | </li>
| |
− | <li>
| |
− | <a href="#LRI" class="pageNavSm">Ligand-receptor interaction</a>
| |
− | </li>
| |
− | <li>
| |
− | <a href="#bind" class="pageNavSm">Binding Constants</a>
| |
− | </li>
| |
− | <li>
| |
− | <a href="#floCalc" class="pageNavSm">Calculator</a>
| |
− | </li>
| |
− | <li>
| |
− | <a href="#app" class="pageNavSm">Example Application</a>
| |
− | </li>
| |
− | <li>
| |
− | <a href="#calc" class="pageNavSm">Calculations</a>
| |
− | </li>
| |
− | <li>
| |
− | <a href="#bio" class="pageNavBig">BIOFILM TRAPPING MODEL</a>
| |
− | </li>
| |
− | <li>
| |
− | <a href="#TR" class="pageNavSm">Biofilm/NP Trapping</a>
| |
− | </li>
| |
− | <li>
| |
− | <a href="#sig" class="pageNavSm">Trapping Capacity</a>
| |
− | </li>
| |
− | <li>
| |
− | <a href="#SAdet" class="pageNavSm">Trapping efficiency</a>
| |
− | </li>
| |
− | <li>
| |
− | <a href="#BioResults" class="pageNavSm">Example Application</a>
| |
− | </li>
| |
− | <li>
| |
− | <a href="#Ref" class="pageNavBig">REFERENCES</a>
| |
− | </li>
| |
− | </ul>
| |
− | </nav>
| |
− | <div class="white col-lg-2">
| |
− | hi
| |
− | </div>
| |
− | <div class="col-lg-10">
| |
− | <!-- header -->
| |
− | <header>
| |
− | <div class="row">
| |
− | <h1 class="name col-lg-12">MODELING</h1>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | Our models aim to facilitate the implementation of the two nanoparticle (NP) trapping aspects of our project:
| |
− | <ol>
| |
− | <li>Proteorhodopsin (PR)-expressing bacteria to trap citrate-coated NPs</li>
| |
− | <li>Biofilm-coated biocarriers to trap all other NPs</li>
| |
− | </ol>
| |
− | Using variables which are common to any wastewater treatment plant (WWTP) -- such as NP concentration, flow rate, and water retention time in each tank -- <b>we can determine the amount of bacteria or surface area of biofilm needed to reduce NP concentration in the treated effluent to a desired value.</b>
| |
− | </h4>
| |
− | </div>
| |
− | <div class="this_border row"></div>
| |
− | </header>
| |
− | <section class="main">
| |
− | <div class="row" id="Intro">
| |
− | <h1 class="col-lg-12 title2">INTRODUCTION</h1>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | We aim to implement our NP trapping systems in different steps of the wastewater treatment process. There are several factors that will affect the NP trapping efficiency for the proteorhodopsin (PR) bacteria and biofilm models. Our PR bacteria would be added to aeration tanks, where water movement is fast and turbulent, while our biofilm (attached to biocarriers), would be placed in the clarifier or sedimentation tanks, where water movement is calmer to prevent biofilm detachment.
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | Due to the lack of literature on our proposed NP-trapping techniques using PR and biofilm, experimental trials and our prototype design were integral to the modeling process. Experimental trapping rates from our prototype were used to fit our model to the current trapping abilities of our PR construct (BBa_K2229400) and our biofilm construct (BBa_K2229300). <b>After experimentally determining the rate constants for our PR bacteria and biofilm constructs, the mathematical models can be used to determine two objectives, given an initial NP concentration and a final target NP concentration.<br><br>
| |
− | <a href="#floCalc">Objective 1</a>: What PR bacteria concentration is needed in the aeration tanks?<br><br>
| |
− | <a href="#BiofilmCalculator">Objective 2</a>: How many biofilm-coated biocarriers are needed in the secondary sedimentation tank? </b>
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row" id="PR">
| |
− | <h1 class="title2 col-lg-12">PROTEORHODOPSIN TRAPPING MODEL</h1>
| |
− | </div>
| |
− | <div class="row" id="LRI">
| |
− | <h1 class="section-title col-lg-12">Proteorhodopsin and citrate binding modeled as a ligand-receptor interaction</h1>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | To model the binding of PR bacteria to CC-NPs, we used a coarse-grained model for ligand-receptor interaction (<i>Ruiz-Herrero et al.</i> 2013). The model is based on the chemical interaction between a freely diffusing ligand L (nanoparticle), and a cell membrane receptor R (PR bacteria), which combine to form a complex C (nanoparticle-loaded PR bacteria) in the following reaction scheme (figure 3-1):
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <div class="image_container col-lg-10 col-lg-offset-1">
| |
− | <img src="https://static.igem.org/mediawiki/2017/f/fa/T--TAS_Taipei--Reaction_Scheme.jpg" alt="test" id="group">
| |
− | <h4 class="subtitle"><b>Figure 4-1 Reaction scheme for PR bacteria and nanoparticles. </b> Our bacteria (R) and nanoparticles (L) bind with the affinity rate k(on) to form the complex C. Conversely, starting with the complex C, nanoparticles fall off bacteria with the dissociation rate k(off).<span class="subCred"> Figure: Justin Y.</span></h4>
| |
− | </div>
| |
− | </div><br>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | where k<sub>on</sub> is the binding rate constant of our PR bacteria to CC-NPs and k<sub>off</sub> is the rate constant of NPs dissociating from PR bacteria. L, R, and C are all functions of time because our PR bacteria bind to NPs over time, which decreases the concentration of free NPs (L) and available PR bacteria (R) while increasing the concentration of NP-loaded PR bacteria (C). Therefore, we can use the following differential equation to model the progression of NP trapping over time by our PR bacteria:
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <div class="image_container col-lg-6 col-lg-offset-3">
| |
− | <img src="https://static.igem.org/mediawiki/2017/5/52/T--TAS_Taipei--Equation1.PNG" alt="test" id="group">
| |
− | <h4 class="subtitle">Equation 1: Binding and Dissociation Model</h4>
| |
− | </div>
| |
− | </div><br>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | To determine the k<sub>on</sub> and k<sub>off</sub> rate constants, we fitted our model to match experiments (figures 4-3 and 4-4) that show a decrease in CC-AgNPs when mixed with a known concentration of our PR bacteria (BBa_K2229400). <b>Determining k<sub>on</sub> and k<sub>off</sub> rate constants will enable us to use equation 1 and inform WWTPs what concentration of PR bacteria is needed to treat their tanks given a starting NP concentration and desired final NP concentration.</b> Below, we will explain how we obtained both the k<sub>on</sub> and k<sub>off</sub> rate constants.
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row" id="bind">
| |
− | <h1 class="section-title col-lg-12">Determining NP binding rate (k<sub>on</sub>) and dissociation rate (k<sub>off</sub>) constants using experimental data</h1>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h1 class="section-title-2 col-lg-12">Binding-Only Model (k<sub>on</sub> only)</h1>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | We first determined k<sub>on</sub> while assuming a best-case scenario where NPs do not fall off of PR once they bind, which means that k<sub>off</sub is zero. Thus, our initial model can be described with the following equation:
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <div class="image_container col-lg-4 col-lg-offset-4">
| |
− | <img src="https://static.igem.org/mediawiki/2017/4/4a/T--TAS_Taipei--Equation2.PNG" id="group">
| |
− | <h4 class="subtitle">Equation 2: Binding-Only Model</h4>
| |
− | </div>
| |
− | </div><br>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | Since the time-dependent functions [L] and [R] for binding between CC-NPs and PR bacteria are unknown in literature, we used finite-difference methods (FDM) to model this equation. (Click <a href="#calc">here</a> to learn more about how we used FDM!)
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | We obtained k<sub>on</sub>, the binding rate constant, from experimental data where CC-AgNPs were mixed with a known concentration of our PR bacteria (BBa_K2229400) (figures 4-2 and 4-3 below).
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <div class="image_container col-lg-10 col-lg-offset-1">
| |
− | <img src="https://static.igem.org/mediawiki/2017/9/95/T--TAS_Taipei--3-2.jpg" id="group">
| |
− | <h4 class="subtitle"><b>Figure 4-2 The binding rate k<sub>on</sub for our PR bacteria was determined experimentally. </b> A known concentration of our PR bacteria (BBa_K2229400) was mixed with a known concentration of citrate-capped AgNPs, and the decrease in nanoparticle concentration over 5 hours was measured. By inputting the known bacteria and nanoparticle concentrations, we fitted our model to our experimental data to find k<sub>on</sub><span class="subCred"> Figure: Justin Y.</span>
| |
− | </div>
| |
− | </div><br>
| |
− | <div class="row">
| |
− | <div class="image_container col-lg-8 col-lg-offset-2">
| |
− | <img src="https://static.igem.org/mediawiki/2017/7/7e/T--TAS_Taipei--3-3.png" id="group">
| |
− | <h4 class="subtitle"><b>Figure 4-3 </b><span class="subCred">Experiment: Justin Y</span></h4>
| |
− | </div>
| |
− | </div><br>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | To find the k<sub>on</sub> value for our PR bacteria, we fitted our model to our experimental data (Click <a href="#rmse">here</a> to learn how we fit our model using RMSE!). 1.9×10-7 µL cells<sup>-1 </sup>hr<sup>-1</sup> was the k<sub>on</sub> value for which the Root Mean Squared Error (RMSE), a measure of the error between the model and the experiment, was the lowest. However, as Figure 4-3 shows, the Binding-Only Model does not reflect how the experimental data reaches an asymptote towards the end of 5 hours. One of the things that may account for this discrepancy between our Binding-Only Model and our experimental data is NPs falling off of the PR bacteria. As we show below, our revised model does a better job of describing the experimental data after accounting for this effect. Since our Binding-Only Model does not take the NP dissociation rate constant, k<sub>off</sub>, into account, we now needed to determine this value.
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h1 class="section-title-2 col-lg-12">Binding and Dissociation Model (k<sub>on</sub> and k<sub>off</sub>)</h1>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | For the first hour, few NPs are bound by the bacteria and there are many PR receptor sites open, so we assumed that the number of NPs falling off is negligible in the first hour. Thus, we assume that the dissociation rate, k<sub>off</sub>, is 0 from t = 0 to t = 1. Based on this assumption, we found a k<sub>on</sub> value that fitted our model to the first two points (the first hour) of our experimental data. As the yellow curve (step 2, figure 4-4 below) shows, the model fits the first two data points but falls below the experimental data as time goes on. We assumed that this discrepancy is due to NPs falling off the bacteria. Thus, our next step was finding a k<sub>off</sub> value that would fit our model to the asymptotic behavior of our experimental data. 0.32 hr<sup>-1</sup> was the k<sub>off</sub> value that yielded the lowest RMSE. (Click <a href="#rmse">here</a> to learn how we found k<sub>off</sub> using RMSE!). The green curve (step 3 figure 4-4 below) includes this k<sub>off</sub> value, and fits our experimental data much better with the lowest RMSE. Thus, our final Binding and Dissociation model includes both k<sub>on</sub> and k<sub>off</sub>.
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <div class="image_container col-lg-8 col-lg-offset-2">
| |
− | <img src="https://static.igem.org/mediawiki/2017/6/60/T--TAS_Taipei--3-4-new.png" id="group">
| |
− | <h4 class="subtitle"><b>Figure 4-4 </b><span class="subCred"></span></h4>
| |
− | </div>
| |
− | </div><br>
| |
− | <div class="row" id="floCalc">
| |
− | <h1 class="section-title col-lg-12">CC-NP Trapping by PR Bacteria Calculator</h1>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | We developed two calculators to help WWTPs use our PR bacteria to clean up CC-NPs.
| |
− | Calculator 1 allows WWTPs to input their NP concentration, their target NP concentration, and the time water spends in the tank to determine the initial PR bacteria concentration they need to add.
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | <table>
| |
− | <tbody>
| |
− | <tr>
| |
− | <td>Initial NP Concentration (micromolar)</td>
| |
− | <td><input type="number" id="Ltwo" value="0"></td>
| |
− | </tr>
| |
− | <tr>
| |
− | <td>Target NP Concentration (micromolar)</td>
| |
− | <td><input type="number" id="targetL" value="0"></td>
| |
− | </tr>
| |
− | <tr>
| |
− | <td>Retention Time (the amount of time water stays in the tank, hours)</td>
| |
− | <td><input type="number" id="ttwo" value="0"></td>
| |
− | </tr>
| |
− | <tr>
| |
− | <td><button onclick = "calculate3()">Calculate!</button></td>
| |
− | </tr>
| |
− | <tr><td colspan=2>Initial Bacteria Concentration Needed (# of bacteria/microliter):
| |
− | <span id="BacteriaResultConc"> </span>
| |
− | </tr>
| |
− | </tbody>
| |
− | </table>
| |
− | </form>
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | Calculator 2 allows WWTPs to input their NP concentration, PR bacteria concentration they plan to add, and the time water spends in the tank to determine the final NP concentration of the water leaving the tank.
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | <table>
| |
− | <tbody>
| |
− | <tr>
| |
− | <td>Initial NP Concentration (micromolar)</td>
| |
− | <td><input type="number" id="L" value="0"></td>
| |
− | </tr>
| |
− | <tr>
| |
− | <td>Initial Bacteria Concentration (# of cells/microliter)</td>
| |
− | <td><input type="number" id="R" value="0"></td>
| |
− | </tr>
| |
− | <tr>
| |
− | <td>Amount of time that can be used for the process (hours)</td>
| |
− | <td><input type="number" id="t" value="0"></td>
| |
− | </tr>
| |
− | <tr>
| |
− | <td><button onclick = "calculate2()">Calculate!</button></td>
| |
− | </tr>
| |
− | <tr><td colspan=2>Resulting NP Concentration (micromolar): <span id="NPResultConc"> </span>
| |
− | </tr>
| |
− | </tbody>
| |
− | </table>
| |
− | </form>
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row" id="app">
| |
− | <h1 class="section-title col-lg-12">Example Application of Completed Model</h1>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | We used our Binding and Dissociation model (in figure 4-5 below) to determine the trapping of CC-NP concentration over time by our PR bacteria using the k<sub>on</sub> and k<sub>off</sub> values above (3.5×10<sup>-7</sup> µL cells<sup>-1</sup> hr<sup>-1</sup> and 0.32 hr<sup>-1</sup> respectively) and time intervals of 0.1 hours (click <a href="#whenusing">here</a> to learn why).
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <div class="image_container col-lg-8 col-lg-offset-2">
| |
− | <img src="https://static.igem.org/mediawiki/2017/d/d3/T--TAS_Taipei--3-5.png" id="group">
| |
− | <h4 class="subtitle"><b>Figure 4-5 </b><span class="subCred"></span></h4>
| |
− | </div>
| |
− | </div><br>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | In this example, the initial conditions of L and R were set to the same values as our experimental trial, which means that [NP] = 1.078 µM and [PR bacteria] = 569600 cells/µL. Under these conditions, our model predicts that NP concentration after 5 hours is 0.693 µM (the percent difference of our modeled value from our experimental value (0.708 µM) is 2.19%). <b>WWTPs can obtain a graph like this one by inputting the variables specific to their treatment plant, such as initial NP concentration and how much time water spends in the tank. </b>
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row" id="calc">
| |
− | <h1 class="section-title col-lg-12">Calculation Explanations for FDM and RMSE</h1>
| |
− | </div>
| |
− | <div class="row" id="calc">
| |
− | <h1 class="section-title-2 col-lg-12">Finite-Difference Method (FDM) Explanation</h1>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | We used Euler’s Method to create our FDM model, and our formulas for the Binding-Only Model are shown below (table 4-1). As the table shows, by plugging in values for L and R at t = 0, a fixed value for k<sub>on</sub>, and the time interval Δt, dC/dt = Y<sub>1</sub> at t = 0 can be calculated. In other words, we can find the trapping rate at t = 0. As per FDM methods, we assume that the trapping rate is Y<sub>1</sub> for t = [0, t<sub>0</sub> + Δt] = [0, t<sub>1</sub>], so <img src="https://static.igem.org/mediawiki/2017/8/86/T--TAS_Taipei--FDM-inline.png" style="height: 25px; width: auto;"></img>= [NP] trapped during the time interval t = [0, t<sub>1</sub>]. Therefore, to find the new L at t = t<sub>1</sub>, we subtract (Δt)Y<sub>1</sub> from L<sub>0</sub> to get L<sub>1</sub>. The same process is done for R to find R<sub>1</sub> because the decrease in [NP] is directly proportional to the decrease in unsaturated bacteria. Then, using the new values L<sub>1</sub> and R<sub>1</sub> and the same values of k<sub>on</sub> and Δt, a new trapping rate Y<sub>2</sub> for t = [0, t<sub>1</sub> + Δt] = [0, t<sub>2</sub>] is calculated. This process is repeated for each subsequent value of t.
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <div class="image_container col-lg-10 col-lg-offset-1">
| |
− | <h4 class="subtitle"><b>Table 4-1 </b></h4>
| |
− | <img src="https://static.igem.org/mediawiki/2017/1/16/T--TAS_Taipei--Table-3-1.png" id="group">
| |
− | </div>
| |
− | </div><br>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | Table 4-2 shows a sample of our calculations for the Binding-Only Model using the formulas above, initial L and R conditions that match our experimental trial, the value of k<sub>on</sub> determined from experimental data, and Δt = 0.1 up to 1 hour.
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <div class="image_container col-lg-10 col-lg-offset-1">
| |
− | <h4 class="subtitle"><b>Table 4-2</b></h4>
| |
− | <img src="https://static.igem.org/mediawiki/2017/4/44/T--TAS_Taipei--Table-3-2.png" id="group">
| |
− | </div>
| |
− | </div><br>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | At t = 0, no NPs have been trapped and all PR bacteria are available, so we can set L = initial [NP] and R = initial [bacteria], and use these initial conditions to calculate subsequent values.
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | For our Binding and Dissociation Model, the formulas were modified to include the effect of k<sub>off</sub>, which is shown below (table 4-3). This shows one of the advantages of Euler’s Method and other FDM models ‒ the form of dC/dt is adaptable to further variables or complications, and the model can still provide results for complex equations.
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <div class="image_container col-lg-10 col-lg-offset-1">
| |
− | <h4 class="subtitle"><b>Table 4-3</b></h4>
| |
− | <img src="https://static.igem.org/mediawiki/2017/4/4e/T--TAS_Taipei--Table-3-3.png" id="group">
| |
− | </div>
| |
− | </div><br>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | Table 4-4 shows a sample of our calculations for the binding and dissociation model using the formulas above, initial L and R conditions that match our experimental trial, the values of k<sub>on</sub> and k<sub>off</sub> determined from fitting to experimental data, and Δt = 0.1 up to 1 hour.
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <div class="image_container col-lg-8 col-lg-offset-2">
| |
− | <h4 class="subtitle"><b>Table 4-4</b></h4>
| |
− | <img src="https://static.igem.org/mediawiki/2017/5/52/T--TAS_Taipei--Table-3-4.png" id="group">
| |
− | </div>
| |
− | </div><br>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12" id="whenusing">
| |
− | When using FDM, it is important to keep in mind that values after the set initial conditions are numerical approximations. This means that the larger the value of Δt, the more inaccurate the final result, as shown in figure 4-6.
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <div class="image_container col-lg-8 col-lg-offset-2">
| |
− | <img src="https://static.igem.org/mediawiki/2017/c/cc/T--TAS_Taipei--3-9-FDM.jpg" id="group">
| |
− | <h4 class="subtitle"><b>Figure 4-6 </b><span class="subCred">Figure: Justin Y.</span></h4>
| |
− | </div>
| |
− | </div><br>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | For example, Figure 4-7 below shows how the trapping curve changes with different values of Δt. Larger values of Δt result in a final [NP] that is too low. This is because trapping rate is fastest at the beginning (when there are more unbound NPs and unsaturated bacteria), and large values of Δt assume this faster trapping rate for a larger interval of time, thus resulting in a faster decrease in [NP] than if smaller values of Δt were used. To account for error caused by FDM, we ran our model with decreasing values of Δt until there was a negligible difference in final [NP], which was at Δt = 0.1. Since the error due to FDM is negligible for Δt = 0.1, our model used time intervals of Δt = 0.1 hours.
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <div class="image_container col-lg-8 col-lg-offset-2">
| |
− | <img src="https://static.igem.org/mediawiki/2017/a/a0/T--TAS_Taipei--3-10.png" id="group">
| |
− | <h4 class="subtitle"><b>Figure 4-7 </b></h4>
| |
− | </div>
| |
− | </div><br>
| |
− | <div class="row" id="rmse">
| |
− | <h1 class="section-title-2 col-lg-12">Minimizing Root Mean Square Error (RMSE) to find k<sub>on</sub> and k<sub>off</sub></h1>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | To determine the best fit of our model to our experimental data, we calculated the Root Mean Square Error (RMSE). We did this by squaring the difference between each experimental value and its respective modeling value, averaging these values, and finding the square root. The lower this RMSE value, the better the fit of our model to our experimental data.
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | For our binding-only model (the blue curve in Figure 4-4), the RMSE was calculated for all of the experimental data points, and we found an initial k<sub>on</sub> value that gave the lowest RMSE. For our binding and dissociation model, we first found a new k<sub>on</sub> value that fit the first two experimental data points, then found a k<sub>off</sub> value that fit the rest of the data points. To find the k<sub>on</sub> value, the RMSE was calculated for the first two points. To find the k<sub>off</sub> value, the RMSE was calculated for all the points.
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row" id="bio">
| |
− | <h1 class="title2 col-lg-12">BIOFILM TRAPPING MODEL</h1>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | Free-floating PR bacteria and biofilm have different characteristics, so we have to consider different variables in our biofilm trapping model. Our goal here is to use mathematical modeling to 1) <b>understand how biofilms interact with NPs</b>, and 2) use this information to <b>predict how many biofilm-coated biocarriers should be used in WWTP sedimentation tanks.</b>
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | Based on experiments described below, we first determined that biofilm surface area (SA) is the main factor affecting NP trapping rate. This led us to develop a biofilm trapping model which treats NPs as solutes in wastewater that get trapped as they are carried into the biofilm surface by the movement of water (as shown in Figure 4-8).
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <div class="image_container col-lg-8 col-lg-offset-2">
| |
− | <img src="https://static.igem.org/mediawiki/2017/f/f1/T--TAS_Taipei--NP_initial_final.jpg" id="group">
| |
− | <h4 class="subtitle"><b>Figure 4-8 </b><span class="subCred"> Figure: Justin Y.</span></h4>
| |
− | </div>
| |
− | </div><br>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | We modeled this interaction using a differential equation (click <a href="sig">here</a> to see how we derived this equation):
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <div class="image_container col-lg-6 col-lg-offset-3">
| |
− | <img src="https://static.igem.org/mediawiki/2017/2/2c/T--TAS_Taipei--JPei1.png" id="group">
| |
− | </div>
| |
− | </div><br>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | which relates the change in NP concentration to an effective trapping rate (k<sub>trap</sub>), the speed of the water carrying the NP into the biofilm (S<sub>water</sub>), the total surface area of biofilm (SA<sub>biofilm</sub>), and the total volume of the treatment container (V<sub>water total</sub>).
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | As with the PR bacteria model, we used FDM to solve this equation numerically. We ran experiments to find k<sub>trap</sub> based on experimentally controlled values of the other variables.
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | Finally, we developed two calculators to help WWTPs use our biofilm to clean up NPs.
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row" id="TR">
| |
− | <h1 class="section-title col-lg-12">Determining Key Parameters of Biofilm-NP Interaction</h1>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | To model our biofilm’s NP trapping rate, we first needed to determine the significance of various factors that would affect biofilm-NP interaction. Initially, we assumed that the <b>surface area (SA) and volume of the biofilm</b> would be the two major factors that affect trapping rate.
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h4 class="section-title-2 col-lg-12">
| |
− | Biofilm Volume vs NP Trapping
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | In our experiments, we observed that NPs were trapped in a matrix of biofilm (<a href="https://2017.igem.org/Team:TAS_Taipei/Experimental_Summary#CanTrap">see SEM images on Experimental Summary</a>), but we did not know how deep the NPs would travel into the biofilm layer. When we tested 4 different volumes of biofilm for their NP trapping abilities over a period of 5 hours (to mimic WWTP sedimentation tank conditions), we found that volumes greater than 1-1.5 mL—which covered the entire bottom of the cylindrical container—did not significantly improve NP trapping (<a href="https://2017.igem.org/Team:TAS_Taipei/Applied_Design#volume">see our experiment</a>). This led us to conclude that <b>NPs are not likely to travel through the entire biofilm layer</b>.
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h4 class="section-title-2 col-lg-12">
| |
− | Biofilm Depth vs NP Trapping
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | <i>Wanner et al.</i> (2006) previously reported that biofilms could only trap particles up to a depth of 200 μm. To see if our own biofilm constructs have a similar trapping depth, we analyzed our volume trial results by converting the biofilm volumes to depths. Since our biofilm is different from the ones used by <i>Wanner et al.</i>, it possibly has a different maximum depth for trapping NPs.
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | In our experiments, biofilm was added directly to the cylindrical containers, where volume can be found by the equation v=r<sup>2</sup>h. We tested 4 different biofilm volumes, so the height (<i>h</i>) or depth of the biofilm was found by plugging in known values for volume (<i>v</i>) and radius (<i>r</i>).
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row">
| |
− | <div class="image_container col-lg-8 col-lg-offset-2">
| |
− | <img src="https://static.igem.org/mediawiki/2017/0/01/T--TAS_Taipei--PercentAU.png" id="group">
| |
− | </div>
| |
− | </div><br>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | We found that more AuNPs were trapped when the biofilm increased from 500 to 1000 μm, but when the depth exceeded 1000 μm, the amount of AuNPs trapped by our biofilm remained similar (figure 4-9). Therefore, our experimental results agree with the general conclusion of <i>Wanner et al.</i> (2006) that when biofilm depth exceeds a certain limit, depth no longer impacts NP trapping. In future experiments, we made sure to use biofilm with a thickness over 1000 μm (1 mm) to ensure that the depth is not a factor affecting NP trapping.
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row" id="sig">
| |
− | <h1 class="section-title col-lg-12">Determining Equations of Biofilm’s NP-trapping interaction</h1>
| |
− | </div>
| |
− | <div class="row" id="SAdet">
| |
− | <h1 class="section-title col-lg-12">Surface Area</h1>
| |
− | </div>
| |
− | <div class="row" id="BioResults">
| |
− | <h1 class="section-title col-lg-12">Example Application</h1>
| |
− | </div>
| |
− | <div class="row" id="BiofilmCalculator">
| |
− | <h4 class="para col-lg-12">
| |
− | <table>
| |
− | <tbody>
| |
− | <tr>
| |
− | <td>Initial nanoparticle concentration (micromolar)</td>
| |
− | <td><input type="number" id="conc" value="0"></td>
| |
− | </tr>
| |
− | <tr>
| |
− | <td>Velocity of water in contact with biofilm (cm/sec)</td>
| |
− | <td><input type="number" id="velocity" value="0"></td>
| |
− | </tr>
| |
− | <tr>
| |
− | <td>Total Volume of Container (L)</td>
| |
− | <td><input type="number" id="volume" value="0"></td>
| |
− | </tr>
| |
− | <tr>
| |
− | <td>Time for biofilm to be in contact with NP solution (seconds)</td>
| |
− | <td><input type="number" id="biot" value="0"></td>
| |
− | </tr>
| |
− | <tr>
| |
− | <td>Surface Area of biofilm used</td>
| |
− | <td><input type="number" id="SA" value="0"></td>
| |
− | </tr>
| |
− | <tr>
| |
− | <td><button onclick = "calculate()">Calculate!</button></td>
| |
− | </tr>
| |
− | <tr><td colspan=2>Resulting Nanoparticle Concentration (micromolar): <span id="bioNPResultConc"> </span>
| |
− | </tr>
| |
− | </tbody>
| |
− | </table>
| |
− | </form>
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row" id="BiofilmCalculator2">
| |
− | <h4 class="para col-lg-12">
| |
− | <table>
| |
− | <tbody>
| |
− | <tr>
| |
− | <td>Initial NP concentration (micromolar)</td>
| |
− | <td><input type="number" id="Inconc" value="0"></td>
| |
− | </tr>
| |
− | <tr>
| |
− | <td>Target NP Concentration (micromolar)</td>
| |
− | <td><input type="number" id="targetConc" value="0"></td>
| |
− | </tr>
| |
− | <tr>
| |
− | <td>Velocity of Water in contact with Biofilm (cm/s)</td>
| |
− | <td><input type="number" id="velocity2" value="0"></td>
| |
− | </tr>
| |
− | <tr>
| |
− | <td>Total Volume of tank (L)</td>
| |
− | <td><input type="number" id="Vtwo" value="0"></td>
| |
− | </tr>
| |
− | <tr>
| |
− | <td>Total time biofilm is in contact with NP solution (s)</td>
| |
− | <td><input type="number" id="biottwo" value="0"></td>
| |
− | </tr>
| |
− | <tr>
| |
− | <td><button onclick = "calculate4()">Calculate!</button></td>
| |
− | </tr>
| |
− | <tr><td colspan=2>Surface Area of Biofilm Needed(cm<sup>2</sup>): <span id="bioNPResultSA"> </span>
| |
− | </tr>
| |
− | </tbody>
| |
− | </table>
| |
− | </form>
| |
− | </h4>
| |
− | </div>
| |
− | <div class="row" id="Ref">
| |
− | <h1 class="title2 col-lg-12">REFERENCES</h1>
| |
− | </div>
| |
− | <div class="row">
| |
− | <h4 class="para col-lg-12">
| |
− | Lorem ipsum dolor sit amet, consectetur adipisicing elit. Est sit odit dolorum illum nemo harum voluptatem sapiente consequuntur hic, earum quos facilis ea magnam, laudantium ipsam. Inventore labore non, accusantium nemo? Similique optio praesentium ad aliquam illo, ipsum, accusantium explicabo architecto molestias fugiat maiores. Optio pariatur, aliquam quia commodi dignissimos?
| |
− | </h4>
| |
− | </div>
| |
− | </section>
| |
− | </div>
| |
− | </div>
| |
− | </div>
| |
− | <script>
| |
− | $("a").on('click', function(event) {
| |
− | if (this.hash !== "") {
| |
− | event.preventDefault();
| |
− | var hash = this.hash;
| |
− | $('html, body').animate({
| |
− | scrollTop: $(hash).offset().top
| |
− | }, 300, function() {
| |
− | // Add hash (#) to URL when done scrolling (default click behavior)
| |
− | window.location.hash = hash;
| |
− | });
| |
− | }
| |
− | });
| |
− | calculate = function(){
| |
− | var conc = document.getElementById("conc").value;
| |
− | var v = document.getElementById("velocity").value;
| |
− | var SA = 1;
| |
− | var V = document.getElementById("volume").value;
| |
− | var t = document.getElementById("biot").value;
| |
− | var tint = 300;
| |
− | var ktrap = -0.000686;
| |
− | var dNPdt = (ktrap*conc*v*SA)/(1000*V);
| |
− | var resultConc = parseFloat(conc);
| |
− |
| |
− | for(var i = 0; i<(t/tint); i++){
| |
− | dNPdt = (ktrap*resultConc*v*SA)/(1000*V);
| |
− | resultConc = resultConc+tint*dNPdt;
| |
− | }
| |
− |
| |
− | document.getElementById("bioNPResultConc").innerHTML = resultConc;
| |
− | }
| |
− | calculate4 = function(){
| |
− | var conc = document.getElementById("Inconc").value;
| |
− | var targetConc = document.getElementById("targetConc").value;
| |
− | var startConc = parseFloat(conc);
| |
− | var V = document.getElementById("Vtwo").value;
| |
− | var v = document.getElementById("velocity2").value;
| |
− | var t = document.getElementById("biottwo").value;
| |
− | var SA = 1;
| |
− | var tint = 300;
| |
− | var ktrap = -0.00017331;
| |
− | var dNPdt = (ktrap*conc*v*SA)/(1000*V);
| |
− | var resultConc = parseFloat(conc);
| |
− |
| |
− | while(true){
| |
− | resultConc = startConc;
| |
− | for(var i = 0; i<(t/tint); i++){
| |
− | dNPdt = (ktrap*resultConc*v*SA)/(1000*V);
| |
− | resultConc = resultConc+tint*dNPdt;
| |
− | }
| |
− | if(Math.abs(resultConc-targetConc)>=0.01){
| |
− | if((resultConc-targetConc)>0){
| |
− | SA += 0.1;
| |
− | }else{
| |
− | SA -= 0.1;
| |
− | }
| |
− | }else{
| |
− | break;
| |
− | }
| |
− | }
| |
− |
| |
− |
| |
− | document.getElementById("bioNPResultSA").innerHTML = Math.round(SA*10000000)/10000000;
| |
− | }
| |
− | calculate2 = function(){
| |
− | var L = document.getElementById("L").value;
| |
− | var R = document.getElementById("R").value;
| |
− | var C = 0;
| |
− | var t = document.getElementById("t").value;
| |
− | var tStep = 0.1;
| |
− | var kOn = 0.00000035;
| |
− | var kOff = 0.32;
| |
− | var dcdt = kOn*L*R - kOff*C;
| |
− |
| |
− | for(var i = 0; i<(t/tStep); i++){
| |
− | dcdt = Math.round(((kOn*L*R)-(kOff*C))*10000000)/10000000;
| |
− | L = Math.round((L-(tStep*dcdt))*10000000)/10000000;
| |
− | R = Math.round((R-(tStep*dcdt))*10000000)/10000000;
| |
− | C = Math.round((C+(tStep*dcdt))*10000000)/10000000;
| |
− | }
| |
− |
| |
− | document.getElementById("NPResultConc").innerHTML = L;
| |
− | }
| |
− | calculate3 = function(){
| |
− | var L = document.getElementById("Ltwo").value;
| |
− | var StartL = L;
| |
− | var targetL = document.getElementById("targetL").value;
| |
− | var StartR = 500000;
| |
− | var C = 0;
| |
− | var t = document.getElementById("ttwo").value;
| |
− | var tStep = 0.1;
| |
− | var kOn = 0.00000035;
| |
− | var kOff = 0.32;
| |
− | var dcdt = kOn*L*R - kOff*C;
| |
− | var R = 0;
| |
− |
| |
− | while(true){
| |
− | R = StartR;
| |
− | L = StartL;
| |
− | for(var i = 0; i<(t/tStep); i++){
| |
− | dcdt = Math.round(((kOn*L*R)-(kOff*C))*100000000)/100000000;
| |
− | L = Math.round((L-(tStep*dcdt))*100000000)/100000000;
| |
− | R = Math.round((R-(tStep*dcdt))*100000000)/100000000;
| |
− | C = Math.round((C+(tStep*dcdt))*100000000)/100000000;
| |
− | }
| |
− | if(Math.round((Math.abs(L-targetL)*100000000)/100000000)>=0.0001){
| |
− | if((L-targetL)>0){
| |
− | StartR += 100;
| |
− | }else{
| |
− | StartR -= 100;
| |
− | }
| |
− | }else{
| |
− | break;
| |
− | }
| |
− | }
| |
− | document.getElementById("BacteriaResultConc").innerHTML = StartR;
| |
− | }
| |
− | $(function() {
| |
− | $('.yellow').removeClass('active');
| |
− | $('.yellow').mouseenter(function() {
| |
− | var windowsize = $(window).width();
| |
− | if (windowsize > 1020) {
| |
− | //if the window is greater than 1020px wide then hover
| |
− | $('.yellow').addClass('active');
| |
− | }
| |
− | $('.navCap').addClass('deactive');
| |
− | });
| |
− |
| |
− | $('.yellow').mouseleave(function() {
| |
− | var windowsize = $(window).width();
| |
− | if (windowsize > 1020) {
| |
− | //if the window is greater than 1020px wide then hover
| |
− | $('.yellow').removeClass('active');
| |
− | }
| |
− | $('.navCap').removeClass('deactive');
| |
− | });
| |
− |
| |
− | $('.box2').click(function() {
| |
− | var windowsize = $(window).width();
| |
− | if (windowsize < 1020) {
| |
− | //if the window is less than 1020px wide then turn on click for mobile.
| |
− | if ($('.yellow').hasClass('active')) {
| |
− | window.location = $(this).attr('href');
| |
− | } else {
| |
− | $('.yellow').addClass('active');
| |
− | $('.return').addClass('active');
| |
− | $('.home').addClass('deactive');
| |
− | }
| |
− | } else {
| |
− | window.location = $(this).attr('href');
| |
− | }
| |
− |
| |
− | })
| |
− |
| |
− | $('.box3').click(function() {
| |
− | var windowsize = $(window).width();
| |
− | if (windowsize < 1020) {
| |
− | //if the window is less than 1020px wide then turn on click for mobile.
| |
− | if ($('.yellow').hasClass('active')) {
| |
− | window.location = $(this).attr('href');
| |
− | } else {
| |
− | $('.yellow').addClass('active');
| |
− | $('.return').addClass('active');
| |
− | $('.home').addClass('deactive');
| |
− | }
| |
− | } else {
| |
− | window.location = $(this).attr('href');
| |
− | }
| |
− | })
| |
− |
| |
− | $('.return').click(function() {
| |
− | $('.yellow').removeClass('active');
| |
− | $('.return').removeClass('active');
| |
− | $('.home').removeClass('deactive');
| |
− | })
| |
− |
| |
− | $('.cv').click(function() {
| |
− | $('.yellow').removeClass('active');
| |
− | $('.return').removeClass('active');
| |
− | $('.home').removeClass('deactive');
| |
− | })
| |
− | $('.jumbotron').mouseenter(function() {
| |
− | $('.project').removeClass('active');
| |
− | $('.experiment').removeClass('active');
| |
− | $('.modeling').removeClass('active');
| |
− | $('.prototype').removeClass('active');
| |
− | $('.biosafety').removeClass('active');
| |
− | $('.about').removeClass('active');
| |
− | $('.policy').removeClass('active');
| |
− | $('.acknowledgments').removeClass('active');
| |
− | });
| |
− |
| |
− | $('.cv').mouseenter(function() {
| |
− | $('.project').removeClass('active');
| |
− | $('.experiment').removeClass('active');
| |
− | $('.modeling').removeClass('active');
| |
− | $('.prototype').removeClass('active');
| |
− | $('.biosafety').removeClass('active');
| |
− | $('.about').removeClass('active');
| |
− | $('.policy').removeClass('active');
| |
− | $('.acknowledgments').removeClass('active');
| |
− | });
| |
− |
| |
− | $('.project').mouseenter(function() {
| |
− | $('.project').addClass('active');
| |
− | $('.experiment').removeClass('active');
| |
− | $('.modeling').removeClass('active');
| |
− | $('.prototype').removeClass('active');
| |
− | $('.biosafety').removeClass('active');
| |
− | $('.about').removeClass('active');
| |
− | $('.policy').removeClass('active');
| |
− | $('.acknowledgments').removeClass('active');
| |
− | });
| |
− |
| |
− | $('.experiment').mouseenter(function() {
| |
− | $('.project').removeClass('active');
| |
− | $('.experiment').addClass('active');
| |
− | $('.modeling').removeClass('active');
| |
− | $('.prototype').removeClass('active');
| |
− | $('.biosafety').removeClass('active');
| |
− | $('.about').removeClass('active');
| |
− | $('.policy').removeClass('active');
| |
− | $('.acknowledgments').removeClass('active');
| |
− | });
| |
− |
| |
− | $('.modeling').mouseenter(function() {
| |
− | $('.project').removeClass('active');
| |
− | $('.experiment').removeClass('active');
| |
− | $('.modeling').addClass('active');
| |
− | $('.prototype').removeClass('active');
| |
− | $('.biosafety').removeClass('active');
| |
− | $('.about').removeClass('active');
| |
− | $('.policy').removeClass('active');
| |
− | $('.acknowledgments').removeClass('active');
| |
− | });
| |
− |
| |
− | $('.prototype').mouseenter(function() {
| |
− | $('.project').removeClass('active');
| |
− | $('.experiment').removeClass('active');
| |
− | $('.modeling').removeClass('active');
| |
− | $('.prototype').addClass('active');
| |
− | $('.biosafety').removeClass('active');
| |
− | $('.about').removeClass('active');
| |
− | $('.policy').removeClass('active');
| |
− | $('.acknowledgments').removeClass('active');
| |
− | });
| |
− |
| |
− | $('.biosafety').mouseenter(function() {
| |
− | $('.project').removeClass('active');
| |
− | $('.experiment').removeClass('active');
| |
− | $('.modeling').removeClass('active');
| |
− | $('.prototype').removeClass('active');
| |
− | $('.biosafety').addClass('active');
| |
− | $('.about').removeClass('active');
| |
− | $('.policy').removeClass('active');
| |
− | $('.acknowledgments').removeClass('active');
| |
− | });
| |
− |
| |
− | $('.about').mouseenter(function() {
| |
− | $('.project').removeClass('active');
| |
− | $('.experiment').removeClass('active');
| |
− | $('.modeling').removeClass('active');
| |
− | $('.prototype').removeClass('active');
| |
− | $('.biosafety').removeClass('active');
| |
− | $('.about').addClass('active');
| |
− | $('.policy').removeClass('active');
| |
− | $('.acknowledgments').removeClass('active');
| |
− | });
| |
− |
| |
− | $('.policy').mouseenter(function() {
| |
− | $('.project').removeClass('active');
| |
− | $('.experiment').removeClass('active');
| |
− | $('.modeling').removeClass('active');
| |
− | $('.prototype').removeClass('active');
| |
− | $('.biosafety').removeClass('active');
| |
− | $('.about').removeClass('active');
| |
− | $('.policy').addClass('active');
| |
− | $('.acknowledgments').removeClass('active');
| |
− | });
| |
− |
| |
− | $('.acknowledgments').mouseenter(function() {
| |
− | $('.project').removeClass('active');
| |
− | $('.experiment').removeClass('active');
| |
− | $('.modeling').removeClass('active');
| |
− | $('.prototype').removeClass('active');
| |
− | $('.biosafety').removeClass('active');
| |
− | $('.about').removeClass('active');
| |
− | $('.policy').removeClass('active');
| |
− | $('.acknowledgments').addClass('active');
| |
− | });
| |
− |
| |
− | })
| |
− |
| |
− | </script>
| |
− | </body>
| |
− |
| |
− | </html>
| |