Line 1,722: | Line 1,722: | ||
</h2> | </h2> | ||
+ | <h2 id="pfont"><u>The Square Wave Generator</u><br> | ||
+ | <br>With the goal of searching and employing high cooperativity repressors, we looked at a paper by Voigt et al (Nature Chem Biol. 2013), in which they reported 73 analogs of the TetR repressor, of which 16 of them were found to be perfectly orthogonal to each other. A few of these repressors had really high cooperativities, with the highest n value being 6.1 for the Orf2 repressor. | ||
+ | <br> | ||
+ | We therefore decided to use repressors which were orthogonal and had the highest possible cooperativity, to demonstrate computationally, how these could be used in simple devices such as NOT gates and novel collapsible AND gates (where once the output switches from 1 to 0, it cannot be switched back. Think of it as a fuse box, which melts if the input voltage goes higher than a certain point). This entire module was called the Basic Logic Assessment and Signaling Toolbox, or the BLAST Toolbox. | ||
+ | <br> | ||
+ | Having demonstrated these successfully, we moved ahead to our main aim, which was to engineer and demonstrate a square wave oscillator in E.coli. Square waves are commonly used in electrical circuits, and can have a wide array of applications in various areas in biology such as clock inputs for timing events, time dependent drug delivery, switching of metabolic pathways and shunt activation, and would also help understand variations of biological clocks such as the circadian clock, whose gene regulatory network still remains largely unknown. This has been discussed at length in the next section. <br> | ||
+ | </h2> | ||
</header> | </header> |
Revision as of 14:53, 1 November 2017
ABCDEFG