Difference between revisions of "Team:KUAS Korea/Design"

 
(16 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
<html>
 
<html>
 
<style>
 
<style>
 +
 +
font{
 +
font-family: "Avenir",sans-serif;}
 +
 
/*main colour*/
 
/*main colour*/
 
.navbar-default .navbar-brand,
 
.navbar-default .navbar-brand,
Line 55: Line 59:
 
}
 
}
 
</style>
 
</style>
<div class="container-fluid page-heading" style="background-image: url(https://static.igem.org/mediawiki/2016/8/8e/KakaoTalk_20161013_202522855.jpg)">
+
<body>
 +
<div class="container-fluid page-heading" style="background-image: url(https://static.igem.org/mediawiki/2017/5/5a/T--KUAS_Korea--BG_Design.jpg)">
 
     <h3>Design</h3>
 
     <h3>Design</h3>
 
</div>
 
</div>
Line 61: Line 66:
 
     <div class="row">
 
     <div class="row">
 
         <div class="col-md-10 col-md-offset-1">
 
         <div class="col-md-10 col-md-offset-1">
<h2>Design: Gelectricell</h2>
+
<h2>POO-robiotics</h2>
             <div class="section" id="design">
+
             <div class="section" id="description">
 
                 <div class="slim">
 
                 <div class="slim">
  
  
 +
<br>
 +
<h4> Detection System 1: HssR/S Mechanism </h4>
  
<p><font size=4>Our EMFC has 3 main systems.</font></p>  
+
<div class="image image-full">
 +
                        <img src="https://static.igem.org/mediawiki/2017/3/35/T--KUAS_Korea--HssRS.png">
 +
<br><br>
 +
<p><font size=4>The HssR and HssS mechanism of our project is as follows.</font></p>
 +
<p><font size=4>      ① If intestinal bleeding occurs for a variety of reasons, blood leak into the bowel.<br>
 +
② When heme in the blood binds to the HssS protein, it phosphorylates histidine 249 through autophosphorylation.<br>
 +
③ HssS transfers the phosphate group from its histidine 249 to aspartate 52 of HssR using transphosphorylation.<br>
 +
④ The phosphorylated HssR binds to the direct repeat sequence of the hrtAB promoter and initiates the reporter’s transcription.<br>
 +
      </font><br>
 +
</p>
 +
<br>
  
                        <div class="image image-full">
+
<h4> Detection System 2: HrtR Mechanism </h4>
                        <img src="https://static.igem.org/mediawiki/2016/d/d2/Korea_U_Seoul_figure1.jpeg">
+
                    </div>
+
  
 
+
<div class="image image-full">
 
+
                        <img src="https://static.igem.org/mediawiki/2017/a/a9/T--KUAS_Korea--HrtR.png">
 
+
<br><br>
<h4>1.Agar degradation</h4><br>
+
<p><font size=4>Also, the mechanism of heme detection using HrtR protein is as follows.</font></p>
 
+
<p><font size=4>① If intestinal bleeding occurs for a variety of reasons, blood leak into the bowel.<br>
<p><font size=4>We used 3 enzymes to degrade agar in our device which are, Agarase, NABH (Neoagarobiose hydrolase), and AHGD (anhydrogalactose dehydrogenase).</p>
+
② When heme binds to the HrtR protein, HrtR binds to the promoter in front of the hrtR sequence and promotes its own transcription.<br>
 
+
③ The reporter behind the hrtR sequence is transcribed together to determine the presence of heme detection.<br>
<p><font size=4>Agar is first degraded into neoagarobiose  by agarase. Neoagarosebiose is then degraded into D-galactose and 3.6-anhydro-L-galactose by NABH. 3.6-anhydro-L-galactose is then oxidized by NAD(P)+ dependent AHGD producing NAD(P)H.</font></p>
+
      </font><br>
 
+
</p>
<p><font size=4>All listed enzymes are displayed on the surface of <em>E.coli</em> BW25113 using <em>E.coli</em> surface display vector pATLIC.</font></p>
+
</font>
+
 
<br><br>
 
<br><br>
  
  
 
<h4>2. <em>Shewanella oneidensis</em> MR-1</h4><br>
 
<font size=4>
 
<p><em>Shewanella oneidensis</em> MR-1 is a bacteria that can reduce metal instead of oxygen, thus generating electricity in a battery device.</font></p>
 
 
<p><font size=4><em>Shewanella oneidesis</em> MR-1 is used in our device to generate electricity using D-galactose. However, <em>Shewanella oneidensis</em> MR-1 is known to be unable to use galactose as its carbon source. This is where co-cultured <em>E.coli</em> kicks in. <em>E.coli</em> BW25113 is able to utilize galactose to produce formate and acetate which <em>Shewanella oneidensis</em> MR-1 can utilize to generate electricity.</font></p>
 
</font><br><br>
 
 
 
<h4>3. Diaphorase</h4><br>
 
 
 
<p><font size=4>Diaphorase is a type of enzyme that can generate electricity using NAD(P)H as the source of electron. It is expressed in BL21(DE3) with protein expression vector pB3. Diaphorase is used in our device to generate electricity using NAD(P)H produced by AHGD.
 
</p></font>
 
</div></div>
 
 
 
 
<div class="section" id="">
 
<div id="references">
 
 
<h4>References</h4>
 
<ol class="references">
 
<li>Yun, Eun Ju, et al. "Production of 3, 6-anhydro-L-galactose from agarose by agarolytic enzymes of Saccharophagus degradans 2-40." Process biochemistry 46.1 (2011): 88-93.</li>
 
<li>Yun, Eun Ju, et al. "The novel catabolic pathway of 3, 6‐anhydro‐L‐galactose, the main component of red macroalgae, in a marine bacterium." Environmental microbiology 17.5 (2015): 1677-1688.</li>
 
<li>Ko, Hyeok-Jin, et al. "Functional cell surface display and controlled secretion of diverse agarolytic enzymes by <em>Escherichia coli</em> with a novel ligation-independent cloning vector based on the autotransporter YfaL." Applied and environmental microbiology 78.9 (2012): 3051-3058.</li>
 
<li>Wang, Victor Bochuan, et al. "Metabolite-enabled mutualistic interaction between <em>Shewanella oneidensis</em> and <em>Escherichia coli</em> in a co-culture using an electrode as electron acceptor." Scientific reports 5 (2015).</li>
 
<li>Zhu, Zhiguang, et al. "A high-energy-density sugar biobattery based on a synthetic enzymatic pathway." Nature communications 5 (2014).</li>
 
</ol>
 
</div></div></div></div>
 
 
</html>
 
</html>
  
 
{{:Team:KUAS_Korea/Templates/Sponsors}}
 
{{:Team:KUAS_Korea/Templates/Sponsors}}

Latest revision as of 15:17, 1 November 2017

Design

POO-robiotics


Detection System 1: HssR/S Mechanism



The HssR and HssS mechanism of our project is as follows.

① If intestinal bleeding occurs for a variety of reasons, blood leak into the bowel.
② When heme in the blood binds to the HssS protein, it phosphorylates histidine 249 through autophosphorylation.
③ HssS transfers the phosphate group from its histidine 249 to aspartate 52 of HssR using transphosphorylation.
④ The phosphorylated HssR binds to the direct repeat sequence of the hrtAB promoter and initiates the reporter’s transcription.


Detection System 2: HrtR Mechanism



Also, the mechanism of heme detection using HrtR protein is as follows.

① If intestinal bleeding occurs for a variety of reasons, blood leak into the bowel.
② When heme binds to the HrtR protein, HrtR binds to the promoter in front of the hrtR sequence and promotes its own transcription.
③ The reporter behind the hrtR sequence is transcribed together to determine the presence of heme detection.