(38 intermediate revisions by 5 users not shown) | |||
Line 22: | Line 22: | ||
<link rel="stylesheet" href="https://2017.igem.org/Template:Tsinghua-A/CSS/icomoon?action=raw&ctype=text/css"> | <link rel="stylesheet" href="https://2017.igem.org/Template:Tsinghua-A/CSS/icomoon?action=raw&ctype=text/css"> | ||
<!-- Bootstrap --> | <!-- Bootstrap --> | ||
− | <link rel="stylesheet" href="https://2017.igem.org/Template: | + | <link rel="stylesheet" href="https://2017.igem.org/Template:Tsinghua-A/CSS/bootstrap?action=raw&ctype=text/css"> |
<!-- Superfish --> | <!-- Superfish --> | ||
<link rel="stylesheet" href="https://2017.igem.org/Template:Tsinghua-A/CSS/superfish?action=raw&ctype=text/css"> | <link rel="stylesheet" href="https://2017.igem.org/Template:Tsinghua-A/CSS/superfish?action=raw&ctype=text/css"> | ||
Line 39: | Line 39: | ||
<style type="text/css"> | <style type="text/css"> | ||
− | + | #fh5co-hero { | |
− | min-height: | + | min-height: 13070px; |
− | background: #fff url() repeat ; | + | style:"background: #fff url(https://static.igem.org/mediawiki/2017/thumb/8/87/TsinghuaA-backgroundpartten.jpeg/240px-TsinghuaA-backgroundpartten.jpeg) repeat;" |
− | + | } | |
− | + | ||
− | } | + | |
.myTitle1 { | .myTitle1 { | ||
width:90%; | width:90%; | ||
Line 51: | Line 49: | ||
margin-bottom: 10px; | margin-bottom: 10px; | ||
font-size: 40px; | font-size: 40px; | ||
+ | margin-top: 30px | ||
} | } | ||
.myTitle2 { | .myTitle2 { | ||
Line 64: | Line 63: | ||
margin-bottom: 20px; | margin-bottom: 20px; | ||
font-size: 20px; | font-size: 20px; | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
text-align: left; | text-align: left; | ||
} | } | ||
Line 80: | Line 72: | ||
text-align: left; | text-align: left; | ||
} | } | ||
− | .myPic1 { | + | .myPic1 { |
font-size: 100px; | font-size: 100px; | ||
+ | |||
+ | margin-bottom: 15px; | ||
+ | |||
text-align: center; | text-align: center; | ||
+ | } | ||
+ | .myPic2 { | ||
+ | font-size: 100px; | ||
+ | |||
margin-bottom: 15px; | margin-bottom: 15px; | ||
− | + | ||
+ | text-align: center; | ||
} | } | ||
.myPicDis { | .myPicDis { | ||
− | + | width:90%; | |
− | + | margin-left: 5%; | |
top: 370px; | top: 370px; | ||
font-size: 15px; | font-size: 15px; | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
text-align: left; | text-align: left; | ||
} | } | ||
− | |||
− | |||
.myPicDis2 { | .myPicDis2 { | ||
margin-left: 10%; | margin-left: 10%; | ||
Line 112: | Line 103: | ||
position:absolute; | position:absolute; | ||
width:70%; | width:70%; | ||
− | height: | + | height:13070px; |
z-index:10000; | z-index:10000; | ||
top: 100px; | top: 100px; | ||
left: 15%; | left: 15%; | ||
− | background-color:white; | + | background-color: white; |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
} | } | ||
.mytable { | .mytable { | ||
Line 156: | Line 143: | ||
</aside> | </aside> | ||
<div id="fh5co-services-section" style="background: #fff url(https://static.igem.org/mediawiki/2017/thumb/8/87/TsinghuaA-backgroundpartten.jpeg/240px-TsinghuaA-backgroundpartten.jpeg) repeat;"></div> | <div id="fh5co-services-section" style="background: #fff url(https://static.igem.org/mediawiki/2017/thumb/8/87/TsinghuaA-backgroundpartten.jpeg/240px-TsinghuaA-backgroundpartten.jpeg) repeat;"></div> | ||
− | + | <div style="position:fixed; top: 80%; left: 90%;"><a href="#top"><img src="https://static.igem.org/mediawiki/2017/3/31/TsinghuaA-backtotop.png" width="80" height="80"></a></div> | |
− | + | <div class="background" id="apDiv_background"> | |
− | + | <div class="myTitle1" id="top" >Fluid model</div> | |
− | + | <div class="myTitle2" >I Introduction</div> | |
− | + | <div class="myPara" > The system we designed involves many kinds of relationships between populations and individuals. To help us understand these relationships better, we designed models to describe how the amount of E.coli and substance change with time.<br> | |
− | Concretely, to consider population interactions in a fluid environment, we designed a fluid model based on ODE. The system we considered here | + | Concretely, to consider population interactions in a fluid environment, we designed a fluid model based on ODE. The system we considered here has no substance exchange except for some gas, which is, however, not considered in our model. <br> |
− | What | + | What's more, we can use this model to help us design our experiment. (See more details at <a href="https://2017.igem.org/Team:Tsinghua-A/fluid_model/improved_gene_circuit"><font style="font-style:italic;">Improved gene circuit</font></a> and <a href="https://2017.igem.org/Team:Tsinghua-A/fluid_model/regulation_of_killing_ability"><font style="font-style:italic;">Regulation of killing ability</font></a>) <br> |
− | Furthermore, we found that it will be much easier to consider effects of some factors (Like initial number of each populations) on population interactions if we can visualize it. Therefore, we designed our game---Fluid E.coli War | + | Furthermore, we found that it will be much easier to consider the effects of some factors (Like the initial number of each populations) on population interactions if we can visualize it. Therefore, we designed our game---Fluid E.coli War based on our fluid model to satisfy our needs. What's more, the game can also help us realize educational purpose of our project and make public know more about synthetic biology! (<a href="https://2017.igem.org/Team:Tsinghua-A/Engagement">Exhibition at National Museum</a>) <br> |
Our game is made on the structure of html5. The small video below is Fluid E.coli War. | Our game is made on the structure of html5. The small video below is Fluid E.coli War. | ||
<br></div> | <br></div> | ||
− | + | <div class="myPic1" ><center><video src="https://static.igem.org/mediawiki/2017/f/f8/TsinghuaA-Fluidgameplay.MP4" width="400" height="300" controls="controls" style=" text-align:center"></video></center></div> | |
− | + | <div class="myPara" > See more details on <a href="https://2017.igem.org/Team:Tsinghua-A/fluid_game"><font style="font-style:italic;">Fluid E.coli War</font></a>.<br><br></div> | |
− | + | <div class="myTitle2" >II Gene circuit of six characters</div> | |
− | + | <div class="myPic1" ><img src="https://static.igem.org/mediawiki/2017/b/b7/Gene_circuit1.png" width="810.67" height="587"></div> | |
− | + | <div class="myPara" ><strong>Note: Here for simplicity, we hypothesize that this gene circuit is orthogonal.</strong><br><br></div> | |
− | + | <div class="myTitle2" >III ODE, explanation and parameter resource</div> | |
− | + | <div class="myPara" >Note: <br> | |
1. Subscript 1 indicate warrior I, subscript 2 indicate farmer I, subscript 3 indicate beggar I, subscript 4 indicate warrior I, subscript 5 indicate farmer II, subscript 6 indicate beggar II.<br> | 1. Subscript 1 indicate warrior I, subscript 2 indicate farmer I, subscript 3 indicate beggar I, subscript 4 indicate warrior I, subscript 5 indicate farmer II, subscript 6 indicate beggar II.<br> | ||
− | 2. Volume of medium (Vsys) here is 0.005L. Volume of E.coli(Vcell) is | + | 2. Volume of medium (Vsys) here is 0.005L. Volume of E.coli(Vcell) is 1μm<sup>3</sup><br><br> |
Detailed ODEs are shown below:<br> | Detailed ODEs are shown below:<br> | ||
<strong>1. Amount of population (cell/medium):</strong> | <strong>1. Amount of population (cell/medium):</strong> | ||
<br></div> | <br></div> | ||
− | + | <div class="myPic2" ><img src="https://static.igem.org/mediawiki/2017/6/60/Tsinghua-a-f_1.jpg"width="700px"></div> | |
− | + | <div class="myPic2" ><img src="https://static.igem.org/mediawiki/2017/f/ff/Tsinghua-a-f_1_2.jpg"width="700px"></div> | |
− | + | <div class="myPic2" ><img src="https://static.igem.org/mediawiki/2017/7/78/Tsinghua-a-f_2.jpg"width="700px"></div> | |
− | + | <div class="myPara" ><strong>2. Concentration of sucrose inside medium:S(sucrose/medium)1 medium=0.005L</strong><br></div> | |
− | + | <div class="myPic2" ><img src="https://static.igem.org/mediawiki/2017/1/12/Tsinghua-a-f_3.jpg"width="700px"></div> | |
− | + | <div class="myPara" ><strong>3. Concentration of invertase inside medium:Inv(invertase/medium)</strong><br></div> | |
− | + | <div class="myPic2" ><img src="https://static.igem.org/mediawiki/2017/0/0c/Tsinghua-a-f_4.jpg"width="700px"></div> | |
− | + | <div class="myPara" ><strong>4. Concentration of glucose + fructose inside medium: glu.(glucose/medium) 1 medium=0.005L</strong><br></div> | |
− | + | <div class="myPic2" ><img src="https://static.igem.org/mediawiki/2017/c/c3/Tsinghua-a-f_4_r.jpg"width="700px"></div> | |
− | + | <div class="myPara" ><strong>5. Carrying capacity:K<sub>n</sub></strong><br></div> | |
− | + | <div class="myPic2" ><img src="https://static.igem.org/mediawiki/2017/2/25/Tsinghua-a-f_5.jpg"width="700px"></div> | |
− | + | <div class="myPara" ><strong>6. Concentration of 3OC6HSL molecule inside cell:C<sub>6n</sub>. (C<sub>6</sub>/cell)</strong><br></div> | |
− | + | <div class="myPic2" ><img src="https://static.igem.org/mediawiki/2017/2/2e/Tsinghua-a-f_6.jpg"width="700px"></div> | |
− | + | <div class="myPara" ><strong>7. Concentration of 3OC12HSL molecule inside cell:C<sub>12n</sub>. (C<sub>12</sub>/cell)</strong><br></div> | |
− | + | <div class="myPic2" ><img src="https://static.igem.org/mediawiki/2017/6/62/Tsinghua-a-f_7.jpg"width="700px"></div> | |
− | + | <div class="myPara" ><strong>8. Concentration of 3OC6HSL molecule inside medium: C<sub>6e</sub> (C<sub>6</sub>/L)</strong><br></div> | |
− | + | <div class="myPic2" ><img src="https://static.igem.org/mediawiki/2017/7/75/Tsinghua-a-f_8.jpg"width="700px"></div> | |
− | + | <div class="myPara" ><strong>9. Concentration of 3OC12HSLinside medium C<sub>12e</sub>(C<sub>12</sub>/L)</strong><br></div> | |
− | + | <div class="myPic2" ><img src="https://static.igem.org/mediawiki/2017/c/cd/Tsinghua-a-f_9.jpg"width="700px"></div> | |
− | + | <div class="myPara" ><strong>10. Concentration of lacI inside cell:<i>lacI</i><sub>n</sub>.<i>lacI</i>/cell</strong><br></div> | |
− | + | <div class="myPic2" ><img src="https://static.igem.org/mediawiki/2017/a/a2/Tsinghua-a-f_10_1.jpg"width="700px"></div> | |
− | + | <div class="myPic2" ><img src="https://static.igem.org/mediawiki/2017/5/58/Tsinghua-a-f_10_2.jpg"width="700px"></div> | |
− | + | <div class="myPic2" ><img src="https://static.igem.org/mediawiki/2017/7/74/Tsinghua-a-f_10_3.jpg"width="700px"></div> | |
− | + | ||
− | + | <div class="myPic2" ><img src="https://static.igem.org/mediawiki/2017/f/f2/Tsinghua-a-f_10_4.jpg"width="700px"></div> | |
− | + | ||
− | + | <div class="myPara" ><strong>11.Concentration of CmR inside cell:<i>CmR</i><sub>n</sub>. <i>CmR</i>/cell</strong><br></div> | |
− | + | <div class="myPic2" ><img src="https://static.igem.org/mediawiki/2017/0/02/Tsinghua-a-f_11_1.jpg"width="700px"></div> | |
− | + | <div class="myPic2" ><img src="https://static.igem.org/mediawiki/2017/f/ff/Tsinghua-a-f_11_2.jpg"width="700px"></div> | |
− | + | <div class="myPara" ><strong>12.Concentration of LuxI inside warrior I. LuxI (LuxI/cell)</strong><br></div> | |
− | + | <div class="myPic2" ><img src="https://static.igem.org/mediawiki/2017/f/f6/Tsinghua-a-f_12.jpg"width="700px"></div> | |
− | + | <div class="myPara" ><strong>13.Concentration of LasI inside warrior II. LasI (LasI/cell)</strong><br></div> | |
− | + | <div class="myPic2" ><img src="https://static.igem.org/mediawiki/2017/f/f3/Tsinghua-a-f_13.jpg"width="700px"></div> | |
− | + | <div class="myPara" ><strong>14. Concentration of chloramphenicol inside cell: <i>Cm</i>. (<i>Cm</i>/cell)</strong><br></div> | |
− | + | <div class="myPic2" ><img src="https://static.igem.org/mediawiki/2017/6/66/Tsinghua-a-f_14.jpg"width="700px"></div> | |
− | + | <div class="myPara" ><strong>15.Concentration of chloramphenicol inside medium:Cm<sub>e</sub> (Cm/L)</strong><br></div> | |
− | + | <div class="myPic2" ><img src="https://static.igem.org/mediawiki/2017/9/98/Tsinghua-a-f_15.jpg"width="700px"></div> | |
− | + | <div class="myPara" ><br></div> | |
− | + | <div class="myTitle2" >IV Results</div> | |
− | + | <div class="myPara" > We extract part of this complete model and adapt it to our experiment results so that we can know how to design our experiment.<br> | |
− | + | ||
Concretely, we use our model to help us do things below:<br> | Concretely, we use our model to help us do things below:<br> | ||
− | (1)Design warriors that can be killed only by the warrior from the other group. See more at Improved gene circuit.<br> | + | (1)Design warriors that can be killed only by the warrior from the other group. See more at <a href="https://2017.igem.org/Team:Tsinghua-A/fluid_model/improved_gene_circuit">Improved gene circuit</a>.<br> |
− | (2)Design an easy way to regulate killing ability of warriors. See more at Regulation of killing abilities.<br> | + | (2)Design an easy way to regulate killing ability of warriors. See more at <a href="https://2017.igem.org/Team:Tsinghua-A/fluid_model/regulation_of_killing_ability">Regulation of killing abilities</a>.<br> |
− | What is more, we use this model to design a game---Fluid E.coli War to help us consider effects of some factors (Like initial number of each populations) on population interactions and make the public more interested in synthetic biology. (See more at Fluid E.coli War)<br> | + | What is more, we use this model to design a game---Fluid E.coli War to help us consider effects of some factors (Like initial number of each populations) on population interactions and make the public more interested in synthetic biology. (See more at <a href="https://2017.igem.org/Team:Tsinghua-A/fluid_game">Fluid E.coli War</a>)<br> |
<br></div> | <br></div> | ||
− | + | <div class="myTitle2" >V Discussion</div> | |
− | + | <div class="myPara" ><strong>Why we detect RFP intensity but not OD600 directly in simplified model used in experiment</strong><br> | |
− | When we look at the model, we will find | + | When we look at the model, we will find most part of the model uses hypothesis that is commonly used, like Volterra-Lotka equation or Michaelis-Menten equation, and they can be confirmed experimentally. However,some parts of it are not, like the hypothesis that the decreasing effect of chloramphenicol on population growth rate is proportional to the amount of chloramphenicol inside that character. This is not confirmed by our experiment yet. Therefore, it is still not reasonable now to detect OD600 directly in simplified model used in experiment design. What's more, using RFP intensity to detect LacI and thus killing effect is confirmed by our experiment---Killing Test and so we detect RFP intensity to indicate killing effect. <br><br> |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</div> | </div> | ||
− | + | <div class="myTitle2" >VI Reference</div> | |
− | + | <div class="myPara" >[1] Wolfenden R, Yuan Y. Rates of spontaneous cleavage of glucose, fructose, sucrose, and trehalose in water, and the catalytic proficiencies of invertase and trehalas[J]. Journal of the American Chemical Society, 2008, 130(24):7548.<br> | |
− | + | [2] Yadira B, Alejandro V, Jesus, P. Promoter and transcription factor dynamics tune protein mean and noise strength in a quorum sensing-based feedback synthetic circuit[DB/OL]. BioRxiv, 2017(2017-2-6)[2017-6-1]. https://www.biorxiv.org/content/early/2017/02/06/106229. DOI:10.1101/106229.<br> | |
− | + | [3] BioNumbers. [2017-6-1]. http://www.bionumbers.hms.harvard.edu/<br> | |
− | + | [4] Chen Y, Kim J K, Hirning A J, et al. SYNTHETIC BIOLOGY. Emergent genetic oscillations in a synthetic microbial consortium[J]. Science, 2015, 349(6251):986-9.<br> | |
− | <!-- END fh5co-page --> | + | [5] Pai A, You L. Optimal tuning of bacterial sensing potential[J]. Molecular Systems Biology, 2009, 5(1):286-286.<br> |
+ | [6] ETH_Zurich 2014: https://2014.igem.org/Team:ETH_Zurich/modeling/whole#Alternate_Design<br> | ||
+ | [7] Murray I A, Shaw W V. O-Acetyltransferases for chloramphenicol and other natural products.[J]. Antimicrobial Agents & Chemotherapy, 1997, 41(1):1.<br> | ||
+ | </div> | ||
+ | <div class="myPara" ><br><br></div> | ||
+ | <div class="myPic1" id="apDiv_figure1"> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/7/74/Great-sponsors.png" width="840.5" height="150"></div> | ||
+ | <div class="myPicDis"><a href="https://2017.igem.org/Team:Tsinghua-A">Home</a> Copyright© iGEM 2017 Tsinghua-A. All rights reserved. | Follow us: igem2017THU_A@163.com</div> | ||
+ | |||
+ | |||
+ | </div> | ||
+ | </div> | ||
+ | <!-- END fh5co-page --> | ||
− | + | </div> | |
− | + | <!-- END fh5co-wrapper --> | |
− | + | <!-- jQuery --> | |
− | + | <script src="https://2017.igem.org/Template:Tsinghua-A/JS/jquery.min?action=raw&ctype=text/javascript"></script> | |
− | + | <!-- jQuery Easing --> | |
− | + | <script src="https://2017.igem.org/Template:Tsinghua-A/JS/jquery.easing.1.3?action=raw&ctype=text/javascript"></script> | |
− | + | <!-- Bootstrap --> | |
− | + | <script src="https://2017.igem.org/Template:Tsinghua-A/JS/bootstrap?action=raw&ctype=text/javascript"></script> | |
− | + | <!-- Waypoints --> | |
− | + | <script src="https://2017.igem.org/Template:Tsinghua-A/JS/jquery.waypoints.min?action=raw&ctype=text/javascript"></script> | |
− | + | <!-- Superfish --> | |
− | + | <script src="https://2017.igem.org/Template:Tsinghua-A/JS/hoverIntent?action=raw&ctype=text/javascript"></script> | |
− | + | <script src="https://2017.igem.org/Template:Tsinghua-A/JS/superfish?action=raw&ctype=text/javascript"></script> | |
− | + | <!-- Flexslider --> | |
− | + | <script src="https://2017.igem.org/Template:Tsinghua-A/JS/jquery.flexslider-min?action=raw&ctype=text/javascript"></script> | |
− | + | <!-- Main JS (Do not remove) --> | |
− | + | <script src="https://2017.igem.org/Template:Tsinghua-A/JS/main?action=raw&ctype=text/javascript"></script> | |
− | + | <script src="fixed.js"></script> | |
− | + | </body> | |
</html> | </html> |
Latest revision as of 15:55, 1 November 2017
Fluid model
I Introduction
The system we designed involves many kinds of relationships between populations and individuals. To help us understand these relationships better, we designed models to describe how the amount of E.coli and substance change with time.
Concretely, to consider population interactions in a fluid environment, we designed a fluid model based on ODE. The system we considered here has no substance exchange except for some gas, which is, however, not considered in our model.
What's more, we can use this model to help us design our experiment. (See more details at Improved gene circuit and Regulation of killing ability)
Furthermore, we found that it will be much easier to consider the effects of some factors (Like the initial number of each populations) on population interactions if we can visualize it. Therefore, we designed our game---Fluid E.coli War based on our fluid model to satisfy our needs. What's more, the game can also help us realize educational purpose of our project and make public know more about synthetic biology! (Exhibition at National Museum)
Our game is made on the structure of html5. The small video below is Fluid E.coli War.
Concretely, to consider population interactions in a fluid environment, we designed a fluid model based on ODE. The system we considered here has no substance exchange except for some gas, which is, however, not considered in our model.
What's more, we can use this model to help us design our experiment. (See more details at Improved gene circuit and Regulation of killing ability)
Furthermore, we found that it will be much easier to consider the effects of some factors (Like the initial number of each populations) on population interactions if we can visualize it. Therefore, we designed our game---Fluid E.coli War based on our fluid model to satisfy our needs. What's more, the game can also help us realize educational purpose of our project and make public know more about synthetic biology! (Exhibition at National Museum)
Our game is made on the structure of html5. The small video below is Fluid E.coli War.
II Gene circuit of six characters
Note: Here for simplicity, we hypothesize that this gene circuit is orthogonal.
III ODE, explanation and parameter resource
Note:
1. Subscript 1 indicate warrior I, subscript 2 indicate farmer I, subscript 3 indicate beggar I, subscript 4 indicate warrior I, subscript 5 indicate farmer II, subscript 6 indicate beggar II.
2. Volume of medium (Vsys) here is 0.005L. Volume of E.coli(Vcell) is 1μm3
Detailed ODEs are shown below:
1. Amount of population (cell/medium):
1. Subscript 1 indicate warrior I, subscript 2 indicate farmer I, subscript 3 indicate beggar I, subscript 4 indicate warrior I, subscript 5 indicate farmer II, subscript 6 indicate beggar II.
2. Volume of medium (Vsys) here is 0.005L. Volume of E.coli(Vcell) is 1μm3
Detailed ODEs are shown below:
1. Amount of population (cell/medium):
2. Concentration of sucrose inside medium:S(sucrose/medium)1 medium=0.005L
3. Concentration of invertase inside medium:Inv(invertase/medium)
4. Concentration of glucose + fructose inside medium: glu.(glucose/medium) 1 medium=0.005L
5. Carrying capacity:Kn
6. Concentration of 3OC6HSL molecule inside cell:C6n. (C6/cell)
7. Concentration of 3OC12HSL molecule inside cell:C12n. (C12/cell)
8. Concentration of 3OC6HSL molecule inside medium: C6e (C6/L)
9. Concentration of 3OC12HSLinside medium C12e(C12/L)
10. Concentration of lacI inside cell:lacIn.lacI/cell
11.Concentration of CmR inside cell:CmRn. CmR/cell
12.Concentration of LuxI inside warrior I. LuxI (LuxI/cell)
13.Concentration of LasI inside warrior II. LasI (LasI/cell)
14. Concentration of chloramphenicol inside cell: Cm. (Cm/cell)
15.Concentration of chloramphenicol inside medium:Cme (Cm/L)
IV Results
We extract part of this complete model and adapt it to our experiment results so that we can know how to design our experiment.
Concretely, we use our model to help us do things below:
(1)Design warriors that can be killed only by the warrior from the other group. See more at Improved gene circuit.
(2)Design an easy way to regulate killing ability of warriors. See more at Regulation of killing abilities.
What is more, we use this model to design a game---Fluid E.coli War to help us consider effects of some factors (Like initial number of each populations) on population interactions and make the public more interested in synthetic biology. (See more at Fluid E.coli War)
Concretely, we use our model to help us do things below:
(1)Design warriors that can be killed only by the warrior from the other group. See more at Improved gene circuit.
(2)Design an easy way to regulate killing ability of warriors. See more at Regulation of killing abilities.
What is more, we use this model to design a game---Fluid E.coli War to help us consider effects of some factors (Like initial number of each populations) on population interactions and make the public more interested in synthetic biology. (See more at Fluid E.coli War)
V Discussion
Why we detect RFP intensity but not OD600 directly in simplified model used in experiment
When we look at the model, we will find most part of the model uses hypothesis that is commonly used, like Volterra-Lotka equation or Michaelis-Menten equation, and they can be confirmed experimentally. However,some parts of it are not, like the hypothesis that the decreasing effect of chloramphenicol on population growth rate is proportional to the amount of chloramphenicol inside that character. This is not confirmed by our experiment yet. Therefore, it is still not reasonable now to detect OD600 directly in simplified model used in experiment design. What's more, using RFP intensity to detect LacI and thus killing effect is confirmed by our experiment---Killing Test and so we detect RFP intensity to indicate killing effect.
When we look at the model, we will find most part of the model uses hypothesis that is commonly used, like Volterra-Lotka equation or Michaelis-Menten equation, and they can be confirmed experimentally. However,some parts of it are not, like the hypothesis that the decreasing effect of chloramphenicol on population growth rate is proportional to the amount of chloramphenicol inside that character. This is not confirmed by our experiment yet. Therefore, it is still not reasonable now to detect OD600 directly in simplified model used in experiment design. What's more, using RFP intensity to detect LacI and thus killing effect is confirmed by our experiment---Killing Test and so we detect RFP intensity to indicate killing effect.
VI Reference
[1] Wolfenden R, Yuan Y. Rates of spontaneous cleavage of glucose, fructose, sucrose, and trehalose in water, and the catalytic proficiencies of invertase and trehalas[J]. Journal of the American Chemical Society, 2008, 130(24):7548.
[2] Yadira B, Alejandro V, Jesus, P. Promoter and transcription factor dynamics tune protein mean and noise strength in a quorum sensing-based feedback synthetic circuit[DB/OL]. BioRxiv, 2017(2017-2-6)[2017-6-1]. https://www.biorxiv.org/content/early/2017/02/06/106229. DOI:10.1101/106229.
[3] BioNumbers. [2017-6-1]. http://www.bionumbers.hms.harvard.edu/
[4] Chen Y, Kim J K, Hirning A J, et al. SYNTHETIC BIOLOGY. Emergent genetic oscillations in a synthetic microbial consortium[J]. Science, 2015, 349(6251):986-9.
[5] Pai A, You L. Optimal tuning of bacterial sensing potential[J]. Molecular Systems Biology, 2009, 5(1):286-286.
[6] ETH_Zurich 2014: https://2014.igem.org/Team:ETH_Zurich/modeling/whole#Alternate_Design
[7] Murray I A, Shaw W V. O-Acetyltransferases for chloramphenicol and other natural products.[J]. Antimicrobial Agents & Chemotherapy, 1997, 41(1):1.
[2] Yadira B, Alejandro V, Jesus, P. Promoter and transcription factor dynamics tune protein mean and noise strength in a quorum sensing-based feedback synthetic circuit[DB/OL]. BioRxiv, 2017(2017-2-6)[2017-6-1]. https://www.biorxiv.org/content/early/2017/02/06/106229. DOI:10.1101/106229.
[3] BioNumbers. [2017-6-1]. http://www.bionumbers.hms.harvard.edu/
[4] Chen Y, Kim J K, Hirning A J, et al. SYNTHETIC BIOLOGY. Emergent genetic oscillations in a synthetic microbial consortium[J]. Science, 2015, 349(6251):986-9.
[5] Pai A, You L. Optimal tuning of bacterial sensing potential[J]. Molecular Systems Biology, 2009, 5(1):286-286.
[6] ETH_Zurich 2014: https://2014.igem.org/Team:ETH_Zurich/modeling/whole#Alternate_Design
[7] Murray I A, Shaw W V. O-Acetyltransferases for chloramphenicol and other natural products.[J]. Antimicrobial Agents & Chemotherapy, 1997, 41(1):1.
Home Copyright© iGEM 2017 Tsinghua-A. All rights reserved. | Follow us: igem2017THU_A@163.com