(9 intermediate revisions by 6 users not shown) | |||
Line 334: | Line 334: | ||
width:100%; | width:100%; | ||
background-color:inherit; | background-color:inherit; | ||
− | padding-left: | + | padding-left:8%; |
− | padding-right: | + | padding-right:8%; |
} | } | ||
Line 489: | Line 489: | ||
<p>Many SynBio groups are engineering microbes that could one day be useful in detecting diseases, fighting cancer and monitoring heavy metals in rivers. However, engineered microbes may leak into the non-designated environment, posing threats to our natural ecosystem. This is a major hurdle towards the commercialization of engineered microbes. To address this, we need effective kill switches to prevent engineered microbes from escaping into the environment. However, existing kill switches have limitations and, more importantly, it is difficult to readily tailor make kill switches for different applications.</p><br> | <p>Many SynBio groups are engineering microbes that could one day be useful in detecting diseases, fighting cancer and monitoring heavy metals in rivers. However, engineered microbes may leak into the non-designated environment, posing threats to our natural ecosystem. This is a major hurdle towards the commercialization of engineered microbes. To address this, we need effective kill switches to prevent engineered microbes from escaping into the environment. However, existing kill switches have limitations and, more importantly, it is difficult to readily tailor make kill switches for different applications.</p><br> | ||
<p> | <p> | ||
− | Team NUSgem aims to make engineering of customised, effective kill switches easier. To this end, we are developing a library of characterized sensors, a killing and verification module which can be used in | + | Currently, there is no harmonized framework for kill switch design and construction. Team NUSgem aims to make engineering of such customised, effective kill switches easier. To this end, we are developing a library of characterized sensors, a killing and verification module which can be used in computer-aided design and modelling tool (such as <a href ="http://www.cellocad.org/"> CELLO</a> and <a href="http://advancesyn.com/"> AdvanceSyn Studio </a>) and can be readily modelled. As a proof of concept, we will focus on developing a kill switch for engineered probiotics for human health.</p> |
+ | |||
+ | <p> | ||
+ | We are a team of 6 undergraduates and 1 recent graduate student from different disciplines including Biomedical Engineering, Electrical Engineering, Science and Economics.</p> | ||
</div> | </div> | ||
Line 509: | Line 512: | ||
<!--**************************************** Homepage Gallery ****************************************--> | <!--**************************************** Homepage Gallery ****************************************--> | ||
<h1>Learn More</h1> | <h1>Learn More</h1> | ||
− | <!--1st | + | <!--1st image_INTERLAB STUDY--> |
<div class="polaroid"> | <div class="polaroid"> | ||
Line 515: | Line 518: | ||
<div class="gallery-intro-container"> | <div class="gallery-intro-container"> | ||
− | <a href="https://2017.igem.org/Team:NUS_Singapore/InterLab"> | + | <a href="https://2017.igem.org/Team:NUS_Singapore/InterLab">INTERLAB STUDY</a> |
</div> | </div> | ||
Line 524: | Line 527: | ||
</div> | </div> | ||
− | <!--2nd | + | <!--2nd image_MODELLING--> |
<div class="polaroid"> | <div class="polaroid"> | ||
Line 530: | Line 533: | ||
<div class="gallery-intro-container"> | <div class="gallery-intro-container"> | ||
− | <a href="https://2017.igem.org/Team:NUS_Singapore/Model"> | + | <a href="https://2017.igem.org/Team:NUS_Singapore/Model">MODELLING</a> |
</div> | </div> | ||
Line 539: | Line 542: | ||
</div> | </div> | ||
− | <!--3rd | + | <!--3rd image_COLLABORATION--> |
<div class="polaroid"> | <div class="polaroid"> | ||
Line 545: | Line 548: | ||
<div class="gallery-intro-container"> | <div class="gallery-intro-container"> | ||
− | <a href="https://2017.igem.org/Team:NUS_Singapore/Collaborations" > | + | <a href="https://2017.igem.org/Team:NUS_Singapore/Collaborations" >COLLABORATION</a> |
</div> | </div> | ||
Line 554: | Line 557: | ||
</div> | </div> | ||
− | <!--4th | + | <!--4th image_GALLERY--> |
<div class="polaroid"> | <div class="polaroid"> | ||
Line 560: | Line 563: | ||
<div class="gallery-intro-container"> | <div class="gallery-intro-container"> | ||
− | <a href="https://2017.igem.org/Team:NUS_Singapore/Safety"> | + | <a href="https://2017.igem.org/Team:NUS_Singapore/Safety">SAFETY</a> |
</div> | </div> | ||
Line 637: | Line 640: | ||
<a href="https://www.facebook.com/NUSGEM2017/"><img class="social-icon" src="https://static.igem.org/mediawiki/2017/f/f5/NUS_Socialicon_facebook.png"></a> | <a href="https://www.facebook.com/NUSGEM2017/"><img class="social-icon" src="https://static.igem.org/mediawiki/2017/f/f5/NUS_Socialicon_facebook.png"></a> | ||
<a href="https://www.pintaram.com/u/igemnus2017"><img class="social-icon" src="https://static.igem.org/mediawiki/2017/6/64/NUS_Socialicon_instagram.png"></a> | <a href="https://www.pintaram.com/u/igemnus2017"><img class="social-icon" src="https://static.igem.org/mediawiki/2017/6/64/NUS_Socialicon_instagram.png"></a> | ||
− | <a href="https://www.youtube.com/ | + | <a href="https://www.youtube.com/watch?v=mR9A5ic0b4c"><img class="social-icon" src="https://static.igem.org/mediawiki/2017/6/60/NUS_Socialicon_youtube.png"></a> |
<div class="clear"></div> | <div class="clear"></div> | ||
Latest revision as of 16:07, 1 November 2017
Making Engineering of Customised Kill Switches Easier
Many SynBio groups are engineering microbes that could one day be useful in detecting diseases, fighting cancer and monitoring heavy metals in rivers. However, engineered microbes may leak into the non-designated environment, posing threats to our natural ecosystem. This is a major hurdle towards the commercialization of engineered microbes. To address this, we need effective kill switches to prevent engineered microbes from escaping into the environment. However, existing kill switches have limitations and, more importantly, it is difficult to readily tailor make kill switches for different applications.
Currently, there is no harmonized framework for kill switch design and construction. Team NUSgem aims to make engineering of such customised, effective kill switches easier. To this end, we are developing a library of characterized sensors, a killing and verification module which can be used in computer-aided design and modelling tool (such as CELLO and AdvanceSyn Studio ) and can be readily modelled. As a proof of concept, we will focus on developing a kill switch for engineered probiotics for human health.
We are a team of 6 undergraduates and 1 recent graduate student from different disciplines including Biomedical Engineering, Electrical Engineering, Science and Economics.
Learn More
Quick Link