Line 129: | Line 129: | ||
<h3>RNaseAlert Readout</h3> | <h3>RNaseAlert Readout</h3> | ||
<p> | <p> | ||
− | To characterize our Cas13a, we first turned to the standard of the field, namely the RNase Alert detection kit. This was used by Gootenberg and Doudna to characterize the Cas13a and detect pathogen RNA sequences<sup><a class="myLink" href="#ref_1">1</a></sup>. In the absence of Cas13a activation, the physical proximity of the quencher dampens fluorescence from the Fluor and there is no fluorescence activity. When Cas13a is activated, the RNA substrate is cleaved, and the Fluor and quencher are spatially separated in solution, emitting a bright green signal when excited by light of the appropriate wavelength. We did most of our experiments using the RNaseAlert system and the corresponding results are in the <a class="myLink" href="/Team:Munich/Cas13a">Cas13a</a> and <a class="myLink" href="/Team:Munich/Cas13a">target</a> subsections. | + | To characterize our Cas13a, we first turned to the standard of the field, namely the RNase Alert detection kit. This was used by Gootenberg and Doudna to characterize the Cas13a and detect pathogen RNA sequences<sup><a class="myLink" href="#ref_1">1,2</a></sup>. In the absence of Cas13a activation, the physical proximity of the quencher dampens fluorescence from the Fluor and there is no fluorescence activity. When Cas13a is activated, the RNA substrate is cleaved, and the Fluor and quencher are spatially separated in solution, emitting a bright green signal when excited by light of the appropriate wavelength. We did most of our experiments using the RNaseAlert system and the corresponding results are in the <a class="myLink" href="/Team:Munich/Cas13a">Cas13a</a> and <a class="myLink" href="/Team:Munich/Cas13a">target</a> subsections. |
</p> | </p> | ||
<p> | <p> | ||
Line 140: | Line 140: | ||
<h3>Spinach Aptamer Readout</h3> | <h3>Spinach Aptamer Readout</h3> | ||
<p> | <p> | ||
− | After the successful experimentation of the Cas13a with the RNaseAlert, we also tried out RNA aptamers for our readouts. For this, we used the Spinach aptamer which binds to the DFHBI changing its 3D structure<sup><a class="myLink" href="# | + | After the successful experimentation of the Cas13a with the RNaseAlert, we also tried out RNA aptamers for our readouts. For this, we used the Spinach aptamer which binds to the DFHBI changing its 3D structure<sup><a class="myLink" href="#ref_3">3</a></sup>. We activated the Cas13a by the specific target, which then cleaved the Spinach aptamer bound to DFHBI and were able to show that the fluorescence activity slowly decreases (Figure 1). |
</p> | </p> | ||
<p> | <p> | ||
Line 233: | Line 233: | ||
<p> | <p> | ||
The results we obtained using the RNAseAlert and Spinach Aptamer with our Cas13a system conclude that having a fluorescence readout is an efficient system. We also successfully used the RNaseAlert in our self-made fluorescence detector to characterize the Cas13a activity. Additionally, we were also able to try out different colorimetric readouts which were partially successful. The AuNp readout could be the potential colorimetric readout which could be further optimized, taking into account the positive result it gave with the RNaseA. The combination of all these challenges during the colorimetric readout leads us to believe, that there are more elegant ways to realize the colorimetric readout of an RNA digestion on a paper strip. | The results we obtained using the RNAseAlert and Spinach Aptamer with our Cas13a system conclude that having a fluorescence readout is an efficient system. We also successfully used the RNaseAlert in our self-made fluorescence detector to characterize the Cas13a activity. Additionally, we were also able to try out different colorimetric readouts which were partially successful. The AuNp readout could be the potential colorimetric readout which could be further optimized, taking into account the positive result it gave with the RNaseA. The combination of all these challenges during the colorimetric readout leads us to believe, that there are more elegant ways to realize the colorimetric readout of an RNA digestion on a paper strip. | ||
+ | </p> | ||
+ | </td> | ||
+ | </tr> | ||
+ | |||
+ | <tr><td colspan=6 align=center valign=center> | ||
+ | <h3>References</h3> | ||
+ | <p> | ||
+ | <ol style="text-align: left"> | ||
+ | <li id="ref_1">Gootenberg, J. S., Abudayyeh, O. O., Lee, J. W., Essletzbichler, P., Dy, A. J., Joung, J., ... & Myhrvold, C. (2017). Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, eaam9321.</li> | ||
+ | <li id="ref_2">Esfandiari, L., Wang, S., Wang, S., Banda, A., Lorenzini, M., Kocharyan, G., ... & Schmidt, J. J. (2016). PCR-Independent Detection of Bacterial Species-Specific 16S rRNA at 10 fM by a Pore-Blockage Sensor. Biosensors, 6(3), 37.</li> | ||
+ | <li id="ref_3">Paige, J. S., Wu, K. Y., & Jaffrey, S. R. (2011). RNA mimics of green fluorescent protein. Science, 333(6042), 642-646.</li> | ||
+ | </ol> | ||
</p> | </p> | ||
</td> | </td> |
Revision as of 17:14, 1 November 2017
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|