Difference between revisions of "Team:CSMU NCHU Taiwan/Model/Degradation"

 
(35 intermediate revisions by 4 users not shown)
Line 2: Line 2:
 
<html>
 
<html>
  
<!--
 
<div class="clear"></div>
 
 
 
<div class="column half_size">
 
<h1>Software</h1>
 
<h3>Best Software Tool Special Prize</h3>
 
<p>Regardless of the topic, iGEM projects often create or adapt computational tools to move the project forward. Because they are born out of a direct practical need, these software tools (or new computational methods) can be surprisingly useful for other teams. Without necessarily being big or complex, they can make the crucial difference to a project's success. This award tries to find and honor such "nuggets" of computational work.
 
 
 
<br><br>
 
To compete for the <a href="https://2017.igem.org/Judging/Awards">Best Software Tool prize</a>, please describe your work on this page and also fill out the description on the <a href="https://2017.igem.org/Judging/Judging_Form">judging form</a>.
 
<br><br>
 
You must also delete the message box on the top of this page to be eligible for this prize.
 
</p>
 
 
 
</div>
 
 
<div class="column half_size">
 
<h5> Inspiration </h5>
 
<p>
 
Here are a few examples from previous teams:
 
</p>
 
<ul>
 
<li><a href="https://2016.igem.org/Team:BostonU_HW">2016 BostonU HW</a></li>
 
<li><a href="https://2016.igem.org/Team:Valencia_UPV">2016 Valencia UPV</a></li>
 
<li><a href="https://2014.igem.org/Team:Heidelberg/Software">2014 Heidelberg</a></li>
 
<li><a href="https://2014.igem.org/Team:Aachen/Project/Measurement_Device#Software">2014 Aachen</a></li>
 
</ul>
 
 
</div> -->
 
 
<html lang="en">
 
<html lang="en">
 
   <head>
 
   <head>
Line 39: Line 7:
 
     <link href='https://fonts.googleapis.com/css?family=Arizonia' rel='stylesheet'>
 
     <link href='https://fonts.googleapis.com/css?family=Arizonia' rel='stylesheet'>
 
     <link href='https://fonts.googleapis.com/css?family=Open+Sans' rel='stylesheet'>
 
     <link href='https://fonts.googleapis.com/css?family=Open+Sans' rel='stylesheet'>
     <title>software</title>
+
     <title>Degradation</title>
 +
 
 
   </head>
 
   </head>
  
Line 57: Line 26:
 
   display: block;
 
   display: block;
 
   margin: 0 auto; }
 
   margin: 0 auto; }
 
 
.bg-container {
 
.bg-container {
 
   overflow: hidden;
 
   overflow: hidden;
 
   position: relative;
 
   position: relative;
   max-height: 200vh; }
+
   background-image: url(https://static.igem.org/mediawiki/2017/3/34/T--CSMU_NCHU_Taiwan--long-model.png);
   .bg-container > img {
+
   background-repeat: repeat-y;
    width: 100%;
+
  background-size: 100%;
    margin-top: -45px; }
+
}
  
 
.my-main-container {
 
.my-main-container {
  position: absolute;
 
  top: 0;
 
  left: 0;
 
 
   width: 100%;
 
   width: 100%;
  height: 100%;
 
 
   padding: 50px 7%;
 
   padding: 50px 7%;
  min-height: 200vh;
+
}
  overflow: hidden; }
+
  
 
.main-content {
 
.main-content {
Line 136: Line 99:
 
#HQ_page .path .pathWord p {
 
#HQ_page .path .pathWord p {
 
       font-weight: 700;
 
       font-weight: 700;
       text-align: left !important;  
+
       text-align: left !important;
 
       font-size: 16px;
 
       font-size: 16px;
 
}
 
}
Line 155: Line 118:
 
.m-text-area {
 
.m-text-area {
 
   padding-left: 225px; }
 
   padding-left: 225px; }
  .m-text-area h2 {
+
.m-text-area h2 {
 
     text-align: center;
 
     text-align: center;
 
     margin-bottom: 2rem !important;
 
     margin-bottom: 2rem !important;
 
     margin-top: 2rem;
 
     margin-top: 2rem;
     color: black !important; }
+
     color: black !important;
 +
}
  
 
.path-tags{
 
.path-tags{
Line 169: Line 133:
 
   color: #385e66;
 
   color: #385e66;
 
   list-style: none;
 
   list-style: none;
   font-size: 16px;
+
   font-size: 18px;
 +
  font-family: 'Ubuntu' !important;
 
}
 
}
  
Line 200: Line 165:
 
     margin-top: 1rem;
 
     margin-top: 1rem;
 
     color: #385e66 !important; }
 
     color: #385e66 !important; }
.m-text-area p2 {
 
    font-size: 15px;
 
    }
 
 
.ul-style li{
 
.ul-style li{
 
list-style-type: disc;
 
list-style-type: disc;
 
font-size:28px;
 
font-size:28px;
 +
}
 +
 +
.tag{
 +
  font-size:26px !important;
 +
  font-weight:bold;
 +
  color:#385e66 !important;
 +
  margin-top:5px;
 +
  font-family: 'Ubuntu' !important;
 
}
 
}
 
</style>
 
</style>
  
 
<body>
 
<body>
     <div class="bg-container" style="max-height:none;">
+
     <div class="bg-container" style="max-height:700vh; " >
       <img src="https://static.igem.org/mediawiki/2017/1/1b/T--CSMU_NCHU_Taiwan--modeling.png">
+
       <!-- <img src="https://static.igem.org/mediawiki/2017/1/1b/T--CSMU_NCHU_Taiwan--modeling.png"> -->
 
       <div class="my-main-container">
 
       <div class="my-main-container">
 
         <div class="main-content">
 
         <div class="main-content">
Line 219: Line 189:
 
                 <h2 class="m-subtitle">Overview</h2>
 
                 <h2 class="m-subtitle">Overview</h2>
 
                 <img src="https://static.igem.org/mediawiki/2017/0/06/Csmuxnchu_model_line_green.png" style="width: 60%; transform: translate(35%, -150%);">
 
                 <img src="https://static.igem.org/mediawiki/2017/0/06/Csmuxnchu_model_line_green.png" style="width: 60%; transform: translate(35%, -150%);">
               
+
 
 
                 <p>After conducting the previous modeling, we now obtain the possible structure and the binding position of the fusion protein. The next step is to inspect on the fusion protein’s enzyme activity. We want to know the degrading efficiency under some circumstances, hence by constructing a degradation model, and expect to learn how well does the fusion protein work. Finally, we sincerely send our gratitude to OUC-China on assisting us using Gillespie algorithm to process Stochastic simulation.<br></p>
 
                 <p>After conducting the previous modeling, we now obtain the possible structure and the binding position of the fusion protein. The next step is to inspect on the fusion protein’s enzyme activity. We want to know the degrading efficiency under some circumstances, hence by constructing a degradation model, and expect to learn how well does the fusion protein work. Finally, we sincerely send our gratitude to OUC-China on assisting us using Gillespie algorithm to process Stochastic simulation.<br></p>
               
+
 
             
+
 
 
             </div>
 
             </div>
 
             <div id="model-protein" class="m-block" >
 
             <div id="model-protein" class="m-block" >
 
                 <h2 class="m-subtitle">Result</h2>
 
                 <h2 class="m-subtitle">Result</h2>
 
                 <img src="https://static.igem.org/mediawiki/2017/0/06/Csmuxnchu_model_line_green.png" style="width: 60%; transform: translate(35%, -150%);">
 
                 <img src="https://static.igem.org/mediawiki/2017/0/06/Csmuxnchu_model_line_green.png" style="width: 60%; transform: translate(35%, -150%);">
               
+
 
 
                 <h3>Reaction formula</h3>
 
                 <h3>Reaction formula</h3>
 
               <div class="center"><img src="https://static.igem.org/mediawiki/2017/1/12/Csmuxnchu_model2_1.png" style="width: 40%" alt="" ></div>
 
               <div class="center"><img src="https://static.igem.org/mediawiki/2017/1/12/Csmuxnchu_model2_1.png" style="width: 40%" alt="" ></div>
Line 255: Line 225:
 
               <p><strong>Fig. II</strong> Data comparison between experimental data and simulation.</p>
 
               <p><strong>Fig. II</strong> Data comparison between experimental data and simulation.</p>
 
                 <br>
 
                 <br>
             
+
 
 
                 <img src="https://static.igem.org/mediawiki/2017/3/36/Csmuxnchu_model2_07.png" alt="" style="width:80%" >
 
                 <img src="https://static.igem.org/mediawiki/2017/3/36/Csmuxnchu_model2_07.png" alt="" style="width:80%" >
 
                 <img src="https://static.igem.org/mediawiki/2017/4/43/Csmuxnchu_model2_08.png" alt="" style="width:80%" >
 
                 <img src="https://static.igem.org/mediawiki/2017/4/43/Csmuxnchu_model2_08.png" alt="" style="width:80%" >
 
                 <br>
 
                 <br>
 
               <p><strong>Fig. III</strong> Estimated parameter values and their standard errors. Note that the standard errors are extremely higher than the parameter values, demonstrating that though parameter values shown here are best estimated, they are not accurate for lacking adequate experimental data.</p>
 
               <p><strong>Fig. III</strong> Estimated parameter values and their standard errors. Note that the standard errors are extremely higher than the parameter values, demonstrating that though parameter values shown here are best estimated, they are not accurate for lacking adequate experimental data.</p>
                 <br>    
+
                 <br>
 
                 <h3>Stochastic simulation</h3>
 
                 <h3>Stochastic simulation</h3>
 
                 <p>1.&nbsp;&nbsp;Simulation method: Gillespie algorithm</p>
 
                 <p>1.&nbsp;&nbsp;Simulation method: Gillespie algorithm</p>
 
                 <p>2.&nbsp;&nbsp;Number of samples: 30000 (300shown)</p>
 
                 <p>2.&nbsp;&nbsp;Number of samples: 30000 (300shown)</p>
             
+
 
 
                 <img src="https://static.igem.org/mediawiki/2017/8/85/Csmuxnchu_model2_09.png" alt="" style="width:80%" >
 
                 <img src="https://static.igem.org/mediawiki/2017/8/85/Csmuxnchu_model2_09.png" alt="" style="width:80%" >
 
                 <br>
 
                 <br>
 
               <p><strong>Fig. IV</strong> Stochastic simulation results of degradation of aflatoxin by MSMEG_5998. Red lines represent the stochastic simulations, and the black line represents the mean level of degradation.</p>
 
               <p><strong>Fig. IV</strong> Stochastic simulation results of degradation of aflatoxin by MSMEG_5998. Red lines represent the stochastic simulations, and the black line represents the mean level of degradation.</p>
 
                 <br>
 
                 <br>
               <p>3.&nbsp;&nbsp;Comparison between experiments and simulations</p>  
+
               <p>3.&nbsp;&nbsp;Comparison between experiments and simulations</p>
 
                 <img src="https://static.igem.org/mediawiki/2017/6/69/Csmuxnchu_model2_10.png" alt="" style="width:80%" >
 
                 <img src="https://static.igem.org/mediawiki/2017/6/69/Csmuxnchu_model2_10.png" alt="" style="width:80%" >
             
+
 
               
+
 
 
                 <br>
 
                 <br>
 
               <p><strong>Fig. V</strong> Comparison between experimental data and simulation results. Simulation data is the mean level of the stochastic simulations, R^2 is calculated to be 0.9962.</p>
 
               <p><strong>Fig. V</strong> Comparison between experimental data and simulation results. Simulation data is the mean level of the stochastic simulations, R^2 is calculated to be 0.9962.</p>
Line 283: Line 253:
 
                 <p>1.&nbsp;&nbsp;According to the raw data, the fusion protein is able to degrade Aflatoxin B1, which matches the prediction from the results we learned in the docking model.</p>
 
                 <p>1.&nbsp;&nbsp;According to the raw data, the fusion protein is able to degrade Aflatoxin B1, which matches the prediction from the results we learned in the docking model.</p>
 
                 <p>2.&nbsp;&nbsp;Via the stimulation, the team is able to learn after a certain period of time that how much Aflatoxin B1 will be remaining. According to the results, the fusion protein is able to degrade 50% of the toxin within 3 hours and reach a 70% degradation in 7 hours. It is an amazing information to our team that how great the ability of degradation of syn-MSMEG5998 is.</p>
 
                 <p>2.&nbsp;&nbsp;Via the stimulation, the team is able to learn after a certain period of time that how much Aflatoxin B1 will be remaining. According to the results, the fusion protein is able to degrade 50% of the toxin within 3 hours and reach a 70% degradation in 7 hours. It is an amazing information to our team that how great the ability of degradation of syn-MSMEG5998 is.</p>
                 <p>3.&nbsplSince the cofactor, F420 is not easily accessible and the control variables are complicated, it is difficult to construct an enzyme model by fully working in wet lab. Fortunately, with the modeling techniques, the team is able to systematically conduct analysis under limited data and resource; therefore modeling enables us to predict results for wet lab and assist the whole project.</p>                
+
                 <p>3.Since the cofactor, F420 is not easily accessible and the control variables are complicated, it is difficult to construct an enzyme model by fully working in wet lab. Fortunately, with the modeling techniques, the team is able to systematically conduct analysis under limited data and resource; therefore modeling enables us to predict results for wet lab and assist the whole project.</p>
             
+
 
  
 
             </div>
 
             </div>
         
 
         
 
         
 
           
 
           
 
 
           </div>
 
           </div>
 
         </div>
 
         </div>
Line 297: Line 262:
 
       <div class="path-tags">
 
       <div class="path-tags">
 
         <ul>
 
         <ul>
           <a href="https://2017.igem.org/Team:CSMU_NCHU_Taiwan/Model" style="color:black;">
+
           <a href="https://2017.igem.org/Team:CSMU_NCHU_Taiwan/Model" style="color:black;font-size:18px">Structure & Docking Model</a>
           
+
            Structure &Docking Model
+
         
+
          </a>
+
   
+
 
           <br>
 
           <br>
           <a href="#">
+
           <p class="tag">Degradation Model</p>
            <img src="https://static.igem.org/mediawiki/2017/b/be/T--CSMU_NCHU_Taiwan--model-tag.png" style="position: fixed; top: 240px;  width: 200px; height:40px">
+
            <br>
+
            <span>Degradation Model</span>
+
          </a>
+
 
           <li id="intro-btn" class="tag-btn">- Overview</li>
 
           <li id="intro-btn" class="tag-btn">- Overview</li>
           <li id="intro-btn" class="tag-btn">- Result</li>
+
           <li id="protein-btn" class="tag-btn">- Result</li>
 
           <li id="docking-btn"class="tag-btn">- Discussion</li>
 
           <li id="docking-btn"class="tag-btn">- Discussion</li>
 
+
<br>
 +
            <a href="https://2017.igem.org/Team:CSMU_NCHU_Taiwan/Model/Parts"><p style="font-size:17px;font-family: 'Ubuntu'">Parts Model</p></a>
 
         </ul>
 
         </ul>
 
       </div>
 
       </div>
Line 331: Line 288:
 
         }, 500);
 
         }, 500);
 
       });
 
       });
       $("#protein-btn").click(function() {
+
       $("ul>li#protein-btn").click(function() {
 
         $('html, body').animate({
 
         $('html, body').animate({
 
             scrollTop: $("#model-protein").offset().top
 
             scrollTop: $("#model-protein").offset().top
Line 341: Line 298:
 
         }, 500);
 
         }, 500);
 
       });
 
       });
     
+
 
   
+
 
 
   });
 
   });
  

Latest revision as of 17:53, 1 November 2017

Degradation

Degradation Model

Overview

After conducting the previous modeling, we now obtain the possible structure and the binding position of the fusion protein. The next step is to inspect on the fusion protein’s enzyme activity. We want to know the degrading efficiency under some circumstances, hence by constructing a degradation model, and expect to learn how well does the fusion protein work. Finally, we sincerely send our gratitude to OUC-China on assisting us using Gillespie algorithm to process Stochastic simulation.

Result

Reaction formula



ODE equation



Fit the experimental data:

1.  Estimation method: Estimating non-mixed effects model with Lsqnonlin.

2.  Estimated parameters:



  •  Raw data:




Fig. I Experimental data of degradation of aflatoxin.




Fig. II Data comparison between experimental data and simulation.



Fig. III Estimated parameter values and their standard errors. Note that the standard errors are extremely higher than the parameter values, demonstrating that though parameter values shown here are best estimated, they are not accurate for lacking adequate experimental data.


Stochastic simulation

1.  Simulation method: Gillespie algorithm

2.  Number of samples: 30000 (300shown)


Fig. IV Stochastic simulation results of degradation of aflatoxin by MSMEG_5998. Red lines represent the stochastic simulations, and the black line represents the mean level of degradation.


3.  Comparison between experiments and simulations


Fig. V Comparison between experimental data and simulation results. Simulation data is the mean level of the stochastic simulations, R^2 is calculated to be 0.9962.


Discussion

1.  According to the raw data, the fusion protein is able to degrade Aflatoxin B1, which matches the prediction from the results we learned in the docking model.

2.  Via the stimulation, the team is able to learn after a certain period of time that how much Aflatoxin B1 will be remaining. According to the results, the fusion protein is able to degrade 50% of the toxin within 3 hours and reach a 70% degradation in 7 hours. It is an amazing information to our team that how great the ability of degradation of syn-MSMEG5998 is.

3.Since the cofactor, F420 is not easily accessible and the control variables are complicated, it is difficult to construct an enzyme model by fully working in wet lab. Fortunately, with the modeling techniques, the team is able to systematically conduct analysis under limited data and resource; therefore modeling enables us to predict results for wet lab and assist the whole project.