Difference between revisions of "Team:INSA-UPS France/Design"

 
(39 intermediate revisions by 2 users not shown)
Line 6: Line 6:
 
<html>
 
<html>
 
<style>
 
<style>
 
+
   .section_container{
main{
+
     width: 1200px;
   position:relative;
+
  overflow: auto;
+
  height:100%;
+
}
+
 
+
.main_content{
+
  position:fixed;   
+
  top:90px;
+
  right:0px;
+
  left:0px;
+
  bottom:0px;
+
  overflow:auto;
+
  background-image: linear-gradient(45deg, #4296c1 0%, #e4efe9 100%);
+
}
+
.middle_container{ 
+
  padding-bottom: 80px;
+
}
+
.section_container{
+
  width:90%;
+
  min-height:100%;
+
  margin:0px auto;
+
  position:relative;
+
}
+
@media screen and (max-width: 900px){
+
     .section_container{
+
      width:100%;
+
    }
+
 
   }
 
   }
section{
+
</style>
  background-color: rgba(255,255,255,0.2);
+
  padding:3% 10%;
+
  text-align: justify;
+
  border-radius:20px;
+
  position:relative;
+
  margin-top:100px;
+
  font-size:1.5vw;
+
}
+
section h1{
+
  font-family: 'Quicksand', sans-serif;
+
  font-size:34pt;
+
  margin-top:-75px;
+
  text-align: right;
+
}
+
section h2{
+
  font-family: 'Quicksand', sans-serif;
+
  font-size:20pt;
+
}
+
section p, section ul{
+
  font-family: 'Merriweather', serif;
+
  font-size:14pt;
+
  font-weight: 300;
+
  margin-top:20px;
+
}
+
  
</style>
 
  
 
<main class="site-main">
 
<main class="site-main">
Line 74: Line 22:
 
       <img style="width:25%;min-width: 260px; position:absolute;right:0;top:-200px; " src="https://static.igem.org/mediawiki/2017/e/e3/T--INSA-UPS_France--design_croco.png" alt="">
 
       <img style="width:25%;min-width: 260px; position:absolute;right:0;top:-200px; " src="https://static.igem.org/mediawiki/2017/e/e3/T--INSA-UPS_France--design_croco.png" alt="">
 
       <p style="margin-top: 50px;">
 
       <p style="margin-top: 50px;">
         Our project created from ground a synthetic consortium to demonstrate the power of this approach through its application to the cholera thematic. Our proof of concept consortium involves three microorganism: i) an engineered <i>E. coli</i> to mimic<i> V. cholerae</i> ii) an engineered </i>V. harveyi</i> to sense the presence of the engineered <i>E. coli</i> and produce diacetyl in response iii) an engineered yeast <i>P. pastoris</i> modified to detect diacetyl and to induce the production of antibacterial peptides (AMPs) in order to trigger lysis of<i> Vibrio </i> species. Here is presented a closer view of the molecular details of our project for each micro-organism, and our experimental plan.
+
         We created a synthetic consortium and demonstrated the power of such approach to fight against cholera disease. Our synthetic consortium involves three microorganism: i) an engineered <i>E. coli</i> to mimic<i> V. cholerae</i> ii) an engineered </i>V. harveyi</i> to sense the presence of the engineered <i>E. coli</i> and in repsonse to produce diacetyl iii) a yeast <i>P. pastoris</i> engineered to detect diacetyl and in response to produce antibacterial peptides (AMPs) in order to trigger lysis of<i> Vibrio </i> species. Here is presented a closer view of the molecular details for each micro-organism as well as an overview of our experimental plan.
  
 
       </p>
 
       </p>
Line 82: Line 30:
 
     <section style="background: none;">
 
     <section style="background: none;">
 
       <h1 style="text-align:left;">Overview</h1>
 
       <h1 style="text-align:left;">Overview</h1>
       <img src="https://static.igem.org/mediawiki/2017/b/b8/T--INSA-UPS_France--description_loop.png" alt="" style="width:100%;">
+
       <img src="https://static.igem.org/mediawiki/2017/archive/b/b8/20171101194815%21T--INSA-UPS_France--description_loop.png" alt="" style="width:100%;">
    </section>
+
 
+
    <section>
+
      <h1 style="text-align: left;">Organisms</h1>
+
      <h2><i>Escherichia coli</i></h2>
+
      <p>
+
        For safety reasons, the bacteria gram negative <i>E. coli</i> was chosen to mimic<i> V. cholerae</i>. Moreover <i>E. coli</i> is an easy organism to deal with, especially as it is well documented, easy to transform with exogenous DNA and easy to culture. The strain K-12 MG1655 was transformed with a plasmid allowing expression of the protein CqsA from<i> V. cholerae</i>, the enzyme responsible for the synthesis of CAI-1. However, as a proof of concept in our project, we also transformed our <i>E. coli</i> strain with the gene coding for the CqsA of </i>V. harveyi</i>, a non-pathogen strain, producing the molecule C8-CAI-1 (an analogue of the<i> V. cholerae</i> CAI-1)<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/21219472/" target="_blank">1</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/15466044/" target="_blank">2</a></sup>. This molecule is a carbohydrate chain based displaying an hydroxyl group on carbon 3 and ketone function on carbon 4. The CqsA synthetase from </i>V. harveyi</i> is able to produce C8-CAI-1 from endogenous <i>E. coli</i> (S)-adenosylmethionine (SAM) and octanoyl-coenzyme. Quorum sensing producing systems were placed under the pLac promoter and we used plasmid pSB1C3 to maintain compatibility with the iGEM registry.
+
 
+
 
+
 
+
 
+
</p>
+
      <img src="https://static.igem.org/mediawiki/2017/f/fc/T--INSA-UPS_France--design_plasmid-coli.png" alt="" style="width: 10%; position:absolute;bottom:0; left:10%;">
+
      <p style="margin-left:15%;">
+
     
+
 
+
      </p>
+
    </section>
+
 
+
 
+
   
+
    <section>
+
      <h2><i>V. harveyi</i></h2>
+
      <p>
+
        </i>V. harveyi</i> is a gram negative bacteria, well studied for its quorum sensing system. This bacteria displays its own pathway for the detection of C8-CAI-1. The gene <i>cqsS</i> encodes for the sensor C8-CAI-1 and a single point mutation in it sequence allows </i>V. harveyi</i> to detect both C8-CAI-1 and CAI-1 from <i> V. cholerae</i>. To avoid auto-activation of </i>V. harveyi</i>, we used the JMH626 strain, in which the <i> cqsA <i> gene, encoding the enzyme responsible for the production C8-CAI-1, has been deleted. Furthermore, additional genes <i>luxS</i> and <i>luxS</i> coding for key enzymes involved in the expression of other quorum sensing molecules have been deleted, making the strain JMH626 specific for detecting non-endogenous C8-CAI-1. </i>V. harveyi</i> is also able to regulate the activation of genes under the control of the promoter pQRR4, in a C8-CAI-1 concentration dependent manner <sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/21219472/" target="_blank">1</a></sup>. At high C8-CAI-1 concentration, the promoter is inactivated. Thus we added the inverter tetR/pTet to activate a gene of interest in presence of C8-CAI-1. The gene of interest is <i>als</i>. This gene encodes for the acetolactate synthase (Als) involved in the synthesis of diacetyl from pyruvate<sup><a href="http://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=vhr00650&keyword=diacetyl" target="_blank">3</a></sup>, our transmitter molecule (Figure 1).
+
      </p>
+
      <img src="https://static.igem.org/mediawiki/2017/f/fa/T--INSA-UPS_France--design_plasmid-harveyi.png" alt="" style="width: 10%; position:absolute;bottom:0; left:10%;">
+
      <p style="margin-left:15%;">
+
      The pBBR1MCS-44<sup><a href="http://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=vhr00650&keyword=diacetyl" target="_blank">4</a></sup> broad host range plasmid was chosen to allow the transfer of the system into </i>V. harveyi</i> by conjugation (i.e. this is the only way to modify the </i>V. harveyi</i> chassis).
+
      </p>
+
<p style="margin-left:15%;">
+
In conclusion, we designed a </i>V. harveyi</i> strain enable to detect both exogenous CAI-1 or C8-CAI-1, and to produce diacetyl as a molecular response.
+
  </p>
+
    </section>
+
   
+
    <section>
+
      <h2><i>P. pastoris</i></h2>
+
      <p>
+
        </i>V. harveyi</i> cannot not be used as the effector since production of antimicrobial peptides (AMPs) is lethal for <i> Vibrio </i> species. <i>P. pastoris</i> is a yeast commonly used in academic laboratories and industry for its high potential to produce protein. Yeasts were previously described to produce a wide range of AMPs <sup><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494115/
+
" target="_blank">5</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/23624708" target="_blank">6</a></sup>. Furthermore, a system allowing efficient communication between yeast and prokaryotes has already been decribed i.e. the diacetyl-dependant Odr-10 receptor system<sup><a href="https://2013.igem.org/Team:SCUT" target="_blank">7</a></sup>. This system allows the expression of targets genes under the control of pFUS1 via the Ste12 pathway (Figure 2).
+
 
+
      </p>
+
      <img src="https://static.igem.org/mediawiki/2017/6/67/T--INSA-UPS_France--design_plasmid-pichia.png" alt="" style="width: 10%; position:absolute;bottom:0; left:10%;">
+
      <p>
+
      The constitutive pGAP promoter allows a continuous expression of the receptor Odr-10, making </i>P. pastoris</i> in theorie highly sensitive to diacetyl.
+
      </p>
+
<p>
+
To kill<i> V. cholerae</i>, we looked for a new and innovative antibiotic solution to limit the risk of acquired-resistance. We decided to use AMPs, that are small membrane disrupting molecules toxic for a large panel of microorganisms<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/27837316" target="_blank">8</a></sup>. Here we selected AMPs from crocodiles. Crocodiles live in harsh environment and are known to possess an impressive defence system, that allows them to catch very few disease and antimicrobial peptides are part of it<sup><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3490821/" target="_blank">9</a></sup>. We focused on 3 different AMPs described to have the best efficiency against <i>V. cholerae</i>. Those AMPs are Leucrocin I<sup><a href="http://www.sciencedirect.com/science/article/pii/S0145305X10003071?via%3Dihub" target="_blank">10</a></sup>, D-NY15<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/24192554" target="_blank">11</a></sup> and cOT2<sup><a href="http://www.sciencedirect.com/science/article/pii/S0005273617300433" target="_blank">12</a></sup>. Leucrocine I possess one cationic charge for 7 amino acids. D-NY15 is its optimized counterpart with 4 cationic charges and a sequence of 15 amino-acid long. Finally, cOT2 is 29 amino acid long and possesses 6 cationic charges. These AMPs are placed under control of the pGAP constitutive promoter for preliminary tests and under pFUS1 promoter to promote  the expression in response to diacetyl. The genetic constructions are inserted into the  integrative pPICZα plasmid ie. a good plasmid for protein production. The signal peptide α-factor is fused to the AMPs to allow for secretion of the peptides.
+
</p>
+
  <p style="margin-left:15%;">
+
The action of these AMPs is the last event of our synthetic consortium.
+
</p>
+
 
     </section>
 
     </section>
  
Line 149: Line 45:
 
       .left_container img{
 
       .left_container img{
 
         width:100%;
 
         width:100%;
 +
        margin-top:250px;
 
       }
 
       }
  
Line 158: Line 55:
 
     <div class="left_container">
 
     <div class="left_container">
 
     <div class="left_container__inside">
 
     <div class="left_container__inside">
       <img src="https://static.igem.org/mediawiki/2017/a/a8/T--INSA-UPS_France--design_blupuriline.png" alt="">
+
       <img src="https://static.igem.org/mediawiki/2017/1/16/T--INSA-UPS_France--Design_blupuriline.png" alt="">
 
     </div>
 
     </div>
 
     </div>
 
     </div>
Line 179: Line 76:
 
     <div class="right_container">
 
     <div class="right_container">
  
     <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt="" style="width:30%;">
+
     <!--<img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt="" style="width:40%;">-->
     <section class="modules_design" style="border:solid 5px #ae3d3d;margin-top:0px;margin-bottom: 0px;">
+
     <section class="modules_design" style="border:solid 5px #ae3d3d;margin-top:0px;margin-bottom: 20px;">
       <h2 style="color:#ae3d3d;">Sense</h2>
+
       <h2 style="color:#ae3d3d;"><i>Escherichia coli</i></h2>
 
       <p>
 
       <p>
          We chose to take advantage of the intraspecies quorum sensing of <i>V. cholerae</i>: the <b>CAI-1/CqsS system</b>. To mimic this pathway in our laboratory, we produced <i>in vivo Vibrio</i> quorum-sensing molecule in <i>E. coli</i> strain and we express an optimized CqsS receptor in <i>V. harveyi</i>.
+
        For safety reasons, the bacteria gram negative <i>E. coli</i> was chosen to mimic <i> V. cholerae</i>. <i>E. coli</i> is an easy organism to deal with, especially as it is well documented, easy to transform with exogenous DNA and easy to culture. The strain K-12 MG1655 was transformed with a plasmid allowing expression of the protein CqsA from<i> V. cholerae</i>, the enzyme responsible for the synthesis of CAI-1. However, as a proof of concept, we also transformed our <i>E. coli</i> strain with the gene coding for the CqsA of </i>V. harveyi</i>, a non-pathogen strain, producing the molecule C8-CAI-1 (an analogue of the<i> V. cholerae</i> CAI-1)<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/21219472/" target="_blank">1</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/15466044/" target="_blank">2</a></sup>. C8-CAI1 is a carbohydrate chain based displaying an hydroxyl group on carbon 3 and ketone function on carbon 4. The CqsA synthetase from </i>V. harveyi</i> produce C8-CAI-1 from endogenous <i>E. coli</i> (S)-adenosylmethionine (SAM) and octanoyl-coenzyme. <i> cqsA </i> from both <i>V. harveyi</i> and <i> V. cholerae</i> were placed under the pLac promoter and we used plasmid pSB1C3 to maintain compatibility with the iGEM registry.
       </p>
+
       </p>  
 
+
 
     </section>
 
     </section>
     <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt="" style="width:30%;">
+
 
     <section class="modules_design" style="border:solid 5px #468789;margin-top:0px;margin-bottom: 0px;">
+
     <!--<img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt="" style="width:40%;">-->
      <h2 style="color:#468789;">Transmit</h2>
+
     <section class="modules_design" style="border:solid 5px #468789;margin-top:0px;margin-bottom: 20px;">
 +
<h2 style="color:#468789;"><i>V. harveyi</i></h2>
 
       <p>
 
       <p>
      In response to quorum sensing, our sensor <i>V. harveyi</i> activates the pathway leading to the <b>pQRR4 promoter</b> inhibition. The signal is inverted by the <b>tetR/pTet</b> system to trigger <i>als</i> gene expression and  diacetyl production.
+
        <i>V. harveyi</i> is a gram negative bacteria, well studied for its quorum sensing system. This bacteria displays its own pathway for the detection of C8-CAI-1. The gene <i>cqsS</i> encodes for the sensor C8-CAI-1 and a single point mutation in its sequence allows <i>V. harveyi</i> to detect both C8-CAI-1 and CAI-1 from <i> V. cholerae</i>. To avoid auto-activation of <i>V. harveyi</i>, we used the JMH626 strain, in which the <i> cqsA </i> gene, coding the enzyme involved in the production C8-CAI-1, has been deleted. Furthermore, additional genes <i>luxS</i> and <i>luxS</i> coding for key enzymes involved in the expression of other quorum sensing molecules have been deleted. All these mutations make the strain JMH626 specific for detecting non-endogenous C8-CAI-1. <i>V. harveyi</i> is also able to regulate the activation of genes under the control of the promoter pQRR4, in a C8-CAI-1 concentration dependent manner <sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/21219472/" target="_blank">1</a></sup>. At high C8-CAI-1 concentration, the promoter is inactivated. Thus we added the inverter tetR/pTet to activate a gene of interest in presence of C8-CAI-1. The gene of interest is <i>als</i> that encodes for the acetolactate synthase (Als). This enzyme synthetized diacetyl from pyruvate<sup><a href="http://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=vhr00650&keyword=diacetyl" target="_blank">3</a></sup>. Diacetyl is our ransmitter molecule (Figure 1).
Diacetyl in turn activates the <b>Odr-10 receptor</b> implemented in the yeast <i>Pichia pastoris</i>.
+
 
       </p>
 
       </p>
     
 
   
 
          </section>
 
    <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt=""  style="width:30%;">
 
    <section class="modules_design" style="border:solid 5px #f37b6f;margin-top:0px;margin-bottom: 0px;">
 
      <h2 style="color:#f37b6f;">Respond</h2>
 
 
       <p>
 
       <p>
    Once the Odr-10 receptor has sensed diacetyl, the <b>pFUS</b> promoter triggers expression of antimicrobial peptides (AMPs). These AMPs are secreted due to their signal peptide and they disrupts the membrane of the <i>Vibrio</i> species
+
      The pBBR1MCS-4<sup><a href="http://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=vhr00650&keyword=diacetyl" target="_blank">4</a></sup>, a broad host range plasmid, was chosen to allow the transfer of the system into <i>V. harveyi</i> by conjugation (i.e. this is the only way to modify the <i>V. harveyi</i> chassis).
 
       </p>
 
       </p>
 +
<p>
 +
In conclusion, we designed a <i>V. harveyi</i> strain enable to detect both exogenous CAI-1 or C8-CAI-1, and to produce diacetyl as a molecular response.
 +
  </p>
 +
          </section>
 +
    <!--<img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt=""  style="width:40%;">-->
 +
    <section class="modules_design" style="border:solid 5px #f37b6f;margin-top:0px;margin-bottom: 20px;">
 +
      <h2 style="color:#f37b6f;"><i>P. pastoris</i></h2>
 +
      <p>
 +
        <i>V. harveyi</i> cannot not be used as the effector since production of antimicrobial peptides (AMPs) is lethal for <i> Vibrio </i> species. <i>P. pastoris</i> is a yeast commonly used in academic laboratories and industry for its high potential to produce protein. In addition, yeasts were previously described to produce a wide range of AMPs <sup><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494115/
 +
" target="_blank">5</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/23624708" target="_blank">6</a></sup>. Finally, a system allowing efficient communication between yeast and prokaryotes has already been decribed i.e. the diacetyl-dependant Odr-10 receptor system<sup><a href="https://2013.igem.org/Team:SCUT" target="_blank">7</a></sup>. This system allows the expression of targets genes under the control of pFUS1 via the Ste12 pathway (Figure 2). For all these reason, we thus chose <i>P. pastoris</i>. We used the constitutive pGAP promoter to express the receptor Odr-10 in <i>P. pastoris</i>
 +
 +
      </p>     
 +
<p>
 +
To kill<i> V. cholerae</i>, we looked for a new and innovative antibiotic solution to limit the risk of acquired-resistance. We decided to use AMPs, that are small membrane disrupting molecules toxic for a large panel of microorganisms<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/27837316" target="_blank">8</a></sup>. Here we selected AMPs from crocodiles. Crocodiles live in harsh environment and are known to possess an impressive defence system, that allows them to catch very few disease and antimicrobial peptides are part of it<sup><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3490821/" target="_blank">9</a></sup>. We focused on 3 different AMPs described to have the best efficiency against <i>V. cholerae</i>. Those AMPs are Leucrocin I<sup><a href="http://www.sciencedirect.com/science/article/pii/S0145305X10003071?via%3Dihub" target="_blank">10</a></sup>, D-NY15<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/24192554" target="_blank">11</a></sup> and cOT2<sup><a href="http://www.sciencedirect.com/science/article/pii/S0005273617300433" target="_blank">12</a></sup>. Leucrocine I possess one cationic charge for 7 amino acids. D-NY15 is its optimized counterpart with 4 cationic charges and a sequence of 15 amino-acid long. Finally, cOT2 is 29 amino acid long and possesses 6 cationic charges. These AMPs were placed under control of the pGAP constitutive promoter for preliminary tests and under pFUS1 promoter to promote their expression in response to diacetyl. The genetic constructions were inserted into the  integrative pPICZα plasmid i.e. a good plasmid for protein production. The signal peptide α-factor was fused to the AMPs to allow for secretion of the peptides.
 +
</p>
 +
  <p>
 +
The action of these AMPs is the last event of our synthetic consortium.
 +
</p>
  
 
     </section>
 
     </section>
     <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt=""  style="width:30%;">
+
     <!--<img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt=""  style="width:40%;">-->
  
  
Line 220: Line 128:
 
       </p>
 
       </p>
 
       <ul>
 
       <ul>
         <li>C8-CAI-1 & CAI-1 NMR</li>
+
         <li>Measurement of C8-CAI-1 & CAI-1in supernateant by NMR</li>
         <li>Bioluminescence</li>
+
         <li>Bioluminescence assay</li>
 
         </ul>
 
         </ul>
 
     </section>
 
     </section>
Line 234: Line 142:
 
       </p>
 
       </p>
 
       <ul>
 
       <ul>
         <li>Conjugation test with RFP fluorescence</li>
+
         <li> Conjugation test using a plasmid expressing RFP</li>
         <li>CCqsS* pathway test with RFP fluorescence</li>
+
         </ul>
      </ul>
+
 
       <p>
 
       <p>
         diacetyl production
+
         Diacetyl production
 
       </p>
 
       </p>
 
       <ul>
 
       <ul>
         <li>diacetyl NMR (<i>E. coli</i> and </i>V. harveyi</i>)</li>
+
         <li> Measurement by NMR of diacetyl in supernateant of <i> E. coli</i> and <i>V. harveyi</i> producing strains </li>
         <li>pTet characterization in </i>V. harveyi</i> by reporter gene</li>
+
         </ul>
      </ul>
+
 
     </section>
 
     </section>
 
      
 
      
Line 250: Line 156:
 
       <h2><i>P. pastoris</i></h2>
 
       <h2><i>P. pastoris</i></h2>
 
       <p>
 
       <p>
                diacetyl detection
+
          Diacetyl detection
 
       </p>
 
       </p>
 
       <ul>
 
       <ul>
         <li>pGAP validation</li>
+
         <li> <i> In vivo </i> functionality of pGAP using RFP reporter system </li>
         <li>ODR10/pFus test with fluorescence</li>
+
         <li><i> In vivo </i> functionality of ODR10/pFUS1 system  test using RFP reporter system </li>
 
       </ul>
 
       </ul>
 
       <p>
 
       <p>
         Antimicrobial peptides (AMP)
+
         Antimicrobial peptides (AMPs)
 
       </p>
 
       </p>
 
       <ul>
 
       <ul>
         <li>AMP gene expression</li>
+
         <li>Verification of AMP genes expression by RT-PCR</li>
         <li>AMP activity: halo assay</li>
+
         <li>Verification of AMPs activity by toxicity assay</li>
 
       </ul>
 
       </ul>
 
     </section>
 
     </section>
     <!-- fin section -->  
+
     <!-- fin section -->
 +
 
 +
    <style>
 +
      .links_end{
 +
        background: none;
 +
      }
 +
      .links_end table{
 +
        width:100%;
 +
      }
 +
      .links_end th, .links_end td{
 +
        font-size:18pt;
 +
        padding:10px;
 +
      }
 +
      .links_end td{
 +
       
 +
        border:solid #eee 1px;
 +
      }
 +
    </style>
 +
 
 +
    <section class="links_end">
 +
      <table>
 +
        <tr>
 +
          <th colspan="3">
 +
            Strategy pages
 +
          </th>
 +
        </tr>
 +
        <tr>
 +
          <td><a href="https://2017.igem.org/Team:INSA-UPS_France/Description">Description</a></td>
 +
          <td><i>Design</i></td>
 +
          <td><a href="https://2017.igem.org/Team:INSA-UPS_France/Parts">Parts</a></td>
 +
        </tr>
 +
      </table>
 +
    </section> 
  
 
   </div>
 
   </div>
 
   </div>
 
   </div>
  
  <style>
 
 
footer{
 
  position:relative;
 
  text-align:center;
 
  margin-top:20px;
 
  background: #323537;
 
  width:100%;
 
}
 
 
/* CONTACT ICONS */
 
 
.icons{ 
 
  display:inline-block;
 
  margin:40px 0;
 
 
 
}
 
 
.icons > a{
 
  color:black;
 
  margin:10px;
 
  text-shadow:2px 2px 0px white;
 
}
 
 
#fbIcon:hover{
 
  color:#3b5998;
 
  text-shadow:2px 2px 0 #000000;
 
}
 
 
#twitterIcon:hover{
 
  color:#55acee;
 
  text-shadow:2px 2px 0 #000000;
 
}
 
 
#contactIcon:hover{
 
  color:#e5e5e5;
 
  text-shadow:2px 2px 0 #000000;
 
}
 
#instaIcon:hover{
 
  color:#8a3ab9;
 
  text-shadow:2px 2px 0 #000000;
 
}
 
 
/* SPONSORS IMG */
 
 
.footer_sponsors img{
 
  max-height:50px;
 
  display:inline-block;
 
  margin:10px;
 
  opacity:0.5;
 
}
 
.footer_sponsors img:hover{
 
  opacity:1;
 
}
 
 
</style>
 
 
   <footer>
 
   <footer>
 
      
 
      
Line 364: Line 245:
 
   </main>
 
   </main>
  
<!--
 
  -->
 
 
</div>
 
 
<script type="text/javascript">
 
  $('.js-sticky').addClass('is-sticky');
 
</script>
 
  
 
</html>
 
</html>
 
{{INSA-UPS_France/General_script}}
 
{{INSA-UPS_France/General_script}}
 
{{INSA-UPS_France/Header_script}}
 
{{INSA-UPS_France/Header_script}}

Latest revision as of 19:49, 1 November 2017


Design

We created a synthetic consortium and demonstrated the power of such approach to fight against cholera disease. Our synthetic consortium involves three microorganism: i) an engineered E. coli to mimic V. cholerae ii) an engineered V. harveyi to sense the presence of the engineered E. coli and in repsonse to produce diacetyl iii) a yeast P. pastoris engineered to detect diacetyl and in response to produce antibacterial peptides (AMPs) in order to trigger lysis of Vibrio species. Here is presented a closer view of the molecular details for each micro-organism as well as an overview of our experimental plan.

Overview

Modules & Parts

Escherichia coli

For safety reasons, the bacteria gram negative E. coli was chosen to mimic V. cholerae. E. coli is an easy organism to deal with, especially as it is well documented, easy to transform with exogenous DNA and easy to culture. The strain K-12 MG1655 was transformed with a plasmid allowing expression of the protein CqsA from V. cholerae, the enzyme responsible for the synthesis of CAI-1. However, as a proof of concept, we also transformed our E. coli strain with the gene coding for the CqsA of V. harveyi, a non-pathogen strain, producing the molecule C8-CAI-1 (an analogue of the V. cholerae CAI-1)1,2. C8-CAI1 is a carbohydrate chain based displaying an hydroxyl group on carbon 3 and ketone function on carbon 4. The CqsA synthetase from V. harveyi produce C8-CAI-1 from endogenous E. coli (S)-adenosylmethionine (SAM) and octanoyl-coenzyme. cqsA from both V. harveyi and V. cholerae were placed under the pLac promoter and we used plasmid pSB1C3 to maintain compatibility with the iGEM registry.

V. harveyi

V. harveyi is a gram negative bacteria, well studied for its quorum sensing system. This bacteria displays its own pathway for the detection of C8-CAI-1. The gene cqsS encodes for the sensor C8-CAI-1 and a single point mutation in its sequence allows V. harveyi to detect both C8-CAI-1 and CAI-1 from V. cholerae. To avoid auto-activation of V. harveyi, we used the JMH626 strain, in which the cqsA gene, coding the enzyme involved in the production C8-CAI-1, has been deleted. Furthermore, additional genes luxS and luxS coding for key enzymes involved in the expression of other quorum sensing molecules have been deleted. All these mutations make the strain JMH626 specific for detecting non-endogenous C8-CAI-1. V. harveyi is also able to regulate the activation of genes under the control of the promoter pQRR4, in a C8-CAI-1 concentration dependent manner 1. At high C8-CAI-1 concentration, the promoter is inactivated. Thus we added the inverter tetR/pTet to activate a gene of interest in presence of C8-CAI-1. The gene of interest is als that encodes for the acetolactate synthase (Als). This enzyme synthetized diacetyl from pyruvate3. Diacetyl is our ransmitter molecule (Figure 1).

The pBBR1MCS-44, a broad host range plasmid, was chosen to allow the transfer of the system into V. harveyi by conjugation (i.e. this is the only way to modify the V. harveyi chassis).

In conclusion, we designed a V. harveyi strain enable to detect both exogenous CAI-1 or C8-CAI-1, and to produce diacetyl as a molecular response.

P. pastoris

V. harveyi cannot not be used as the effector since production of antimicrobial peptides (AMPs) is lethal for Vibrio species. P. pastoris is a yeast commonly used in academic laboratories and industry for its high potential to produce protein. In addition, yeasts were previously described to produce a wide range of AMPs 5,6. Finally, a system allowing efficient communication between yeast and prokaryotes has already been decribed i.e. the diacetyl-dependant Odr-10 receptor system7. This system allows the expression of targets genes under the control of pFUS1 via the Ste12 pathway (Figure 2). For all these reason, we thus chose P. pastoris. We used the constitutive pGAP promoter to express the receptor Odr-10 in P. pastoris

To kill V. cholerae, we looked for a new and innovative antibiotic solution to limit the risk of acquired-resistance. We decided to use AMPs, that are small membrane disrupting molecules toxic for a large panel of microorganisms8. Here we selected AMPs from crocodiles. Crocodiles live in harsh environment and are known to possess an impressive defence system, that allows them to catch very few disease and antimicrobial peptides are part of it9. We focused on 3 different AMPs described to have the best efficiency against V. cholerae. Those AMPs are Leucrocin I10, D-NY1511 and cOT212. Leucrocine I possess one cationic charge for 7 amino acids. D-NY15 is its optimized counterpart with 4 cationic charges and a sequence of 15 amino-acid long. Finally, cOT2 is 29 amino acid long and possesses 6 cationic charges. These AMPs were placed under control of the pGAP constitutive promoter for preliminary tests and under pFUS1 promoter to promote their expression in response to diacetyl. The genetic constructions were inserted into the integrative pPICZα plasmid i.e. a good plasmid for protein production. The signal peptide α-factor was fused to the AMPs to allow for secretion of the peptides.

The action of these AMPs is the last event of our synthetic consortium.

Experimental plan

E. coli

Quorum sensing molecule production

  • Measurement of C8-CAI-1 & CAI-1in supernateant by NMR
  • Bioluminescence assay

V. harveyi

Conjugation

  • Conjugation test using a plasmid expressing RFP

Diacetyl production

  • Measurement by NMR of diacetyl in supernateant of E. coli and V. harveyi producing strains

P. pastoris

Diacetyl detection

  • In vivo functionality of pGAP using RFP reporter system
  • In vivo functionality of ODR10/pFUS1 system test using RFP reporter system

Antimicrobial peptides (AMPs)

  • Verification of AMP genes expression by RT-PCR
  • Verification of AMPs activity by toxicity assay