(22 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{Kyoto}} | {{Kyoto}} | ||
+ | {{Kyoto/header}} | ||
+ | <html> | ||
+ | <style type="text/css"> | ||
+ | ul.result { | ||
+ | margin-left:10%; | ||
+ | list-style:none; | ||
+ | text-align:left; | ||
+ | font-family: serif, 'Times New Roman'; | ||
+ | font-size:150%; | ||
+ | } | ||
+ | p.res{ | ||
+ | font-size:200%; | ||
+ | } | ||
+ | p.pic{ | ||
+ | text-align:center; | ||
+ | margin-left:0 auto; | ||
+ | } | ||
+ | p.caption{ | ||
+ | color:#000000; | ||
+ | text-align:left; | ||
+ | font-size: 14.5px; | ||
+ | } | ||
+ | |||
+ | .”caption”{ | ||
+ | margin-left:10%; | ||
+ | margin-right:10%; | ||
+ | text-align:left; | ||
+ | font-size: 14.5px; | ||
+ | color:#000000; | ||
+ | } | ||
+ | ul.reference{ | ||
+ | color:#606060; | ||
+ | list-style:none; | ||
+ | margin-left:10%; | ||
+ | margin-right:10%; | ||
+ | font-family: serif, 'Times New Roman'; | ||
+ | } | ||
+ | #proof_left { | ||
+ | text-align:center; | ||
+ | display: table-cell; | ||
+ | vertical-align: bottom; | ||
+ | width: 524px; | ||
+ | } | ||
+ | #proof_right { | ||
+ | text-align:center; | ||
+ | display: table-cell; | ||
+ | vertical-align: bottom; | ||
+ | width: 524px; | ||
+ | } | ||
+ | #jump{ | ||
+ | position:fixed; | ||
+ | bottom:10%; | ||
+ | right:7%; | ||
+ | width:9%; | ||
+ | } | ||
+ | #jump img{ | ||
+ | width:100%; | ||
+ | } | ||
+ | |||
+ | p.picture{ | ||
+ | text-align:center; | ||
+ | margin:5%; | ||
+ | } | ||
+ | footer{ | ||
+ | background-color:#ffffff; | ||
+ | } | ||
+ | </style> | ||
<body> | <body> | ||
<div id="BACKGROUND"> | <div id="BACKGROUND"> | ||
<div id="wrapper"> | <div id="wrapper"> | ||
− | + | <h1>Basic Part</h1> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
+ | |||
+ | |||
+ | <h5>Rev Protein</h5> | ||
+ | <p>For this year’s iGEM competition, we have chosen to submit Rev protein for the award of <a href="http://parts.igem.org/Part:BBa_K2403000">the Best Basic part (BBa_K2403000)</a>. In eukaryotic cells mature mRNA is exported by Tap/p15 (Mex67p/ Mtr2p in yeast) from the nucleus into the cytoplasm for translation into protein. However, in synthetic biology, other types of RNA with complex structures are frequently designed and used. If RNA with complex structure is expressed in a eukaryotic cell, Tap/p15 cannot export it effectively, and the RNA will remain in the nucleus. To solve this problem, we developed parts for the HIV Rev protein and associated cis-acting RRE (rev response element) for nuclear export of artificial RNA. iGEMers can export their RNA sequences containing an RRE to the cytoplasm if they express Rev protein simultaneously. </p> | ||
+ | |||
+ | <p class="pic"><img src="https://static.igem.org/mediawiki/2017/d/de/Kyoto_fig6b.jpeg" width="60%"></p> | ||
+ | |||
+ | <h5>How Rev works</h5> | ||
+ | |||
+ | <p>Rev recruits CRM1, a principal nuclear export factor in cells which mediates export of cellular RNAs including snRNA and all 4 ribosomal RNAs to the cytoplasm.</p> | ||
+ | |||
+ | <h5>Key advantage</h5> | ||
+ | |||
+ | <p>Rev protein makes it possible to export complex RNA structures from the nucleus to the cytoplasm, which otherwise cannot be achieved effectively. | ||
+ | <br> | ||
+ | <br> | ||
+ | </p> | ||
+ | |||
+ | </div> | ||
+ | </div> | ||
+ | </body> | ||
</html> | </html> |
Latest revision as of 22:21, 1 November 2017
Basic Part
Rev Protein
For this year’s iGEM competition, we have chosen to submit Rev protein for the award of the Best Basic part (BBa_K2403000). In eukaryotic cells mature mRNA is exported by Tap/p15 (Mex67p/ Mtr2p in yeast) from the nucleus into the cytoplasm for translation into protein. However, in synthetic biology, other types of RNA with complex structures are frequently designed and used. If RNA with complex structure is expressed in a eukaryotic cell, Tap/p15 cannot export it effectively, and the RNA will remain in the nucleus. To solve this problem, we developed parts for the HIV Rev protein and associated cis-acting RRE (rev response element) for nuclear export of artificial RNA. iGEMers can export their RNA sequences containing an RRE to the cytoplasm if they express Rev protein simultaneously.
How Rev works
Rev recruits CRM1, a principal nuclear export factor in cells which mediates export of cellular RNAs including snRNA and all 4 ribosomal RNAs to the cytoplasm.
Key advantage
Rev protein makes it possible to export complex RNA structures from the nucleus to the cytoplasm, which otherwise cannot be achieved effectively.