Difference between revisions of "Team:Newcastle/Model"

 
(7 intermediate revisions by 2 users not shown)
Line 126: Line 126:
  
 
       <a class="nav-item nav-link" id="nav-simio-tab" data-toggle="tab" href="#nav-simbio" role="tab" aria-controls="nav-simbio" aria-selected="false" style="font-weight:normal; font-size: 0.8em">Multicellular Modelling: Simbiotics</a>
 
       <a class="nav-item nav-link" id="nav-simio-tab" data-toggle="tab" href="#nav-simbio" role="tab" aria-controls="nav-simbio" aria-selected="false" style="font-weight:normal; font-size: 0.8em">Multicellular Modelling: Simbiotics</a>
 
+
<br />
 
       <a class="nav-item nav-link" id="nav-DOE-tab" data-toggle="tab" href="#nav-DOE" role="tab" aria-controls="nav-DOE" aria-selected="false" style="font-weight:normal; font-size: 0.8em">Cell Free Protein Synthesis Systems Optimisation</a>
 
       <a class="nav-item nav-link" id="nav-DOE-tab" data-toggle="tab" href="#nav-DOE" role="tab" aria-controls="nav-DOE" aria-selected="false" style="font-weight:normal; font-size: 0.8em">Cell Free Protein Synthesis Systems Optimisation</a>
  
Line 374: Line 374:
  
 
<h3 style="font-family: Rubik; margin-top: 2%; margin-bottom: 2%">Integration into Experimental Design</h3>
 
<h3 style="font-family: Rubik; margin-top: 2%; margin-bottom: 2%">Integration into Experimental Design</h3>
<br />
+
 
 
<p>
 
<p>
  
Line 382: Line 382:
  
 
<h3 style="font-family: Rubik; margin-top: 2%; margin-bottom: 2%">Discussions and Conclusions</h3>
 
<h3 style="font-family: Rubik; margin-top: 2%; margin-bottom: 2%">Discussions and Conclusions</h3>
<br />
+
 
 
<p>
 
<p>
  
Line 390: Line 390:
  
 
<h3 style="font-family: Rubik; margin-top: 2%; margin-bottom: 2%">Future Work</h3>
 
<h3 style="font-family: Rubik; margin-top: 2%; margin-bottom: 2%">Future Work</h3>
<br />
+
 
 
<p>
 
<p>
  
Line 396: Line 396:
  
 
</p>
 
</p>
 
+
<br />
 
<center>
 
<center>
 
<div>
 
<div>
Line 412: Line 412:
  
 
Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., Kummer, U., (2006),
 
Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., Kummer, U., (2006),
  COPASI -- A COmplex PAthway SImulator, <i>Bioinformatics</i>, 22(24), pp 3067-3074<br />
+
  COPASI -- A COmplex PAthway SImulator, <i>Bioinformatics</i>, 22(24), pp 3067-3074 <br/><br/>
  
Hucka, M., <i>et al.</i>, (2003), The Systems Biology Markup Language (SBML): A Medium for Representation and Exchange of Biochemical Network Models, <i>Bioinformatics</i>, 19(4), pp 524-531<br />
+
Hucka, M., <i>et al.</i>, (2003), The Systems Biology Markup Language (SBML): A Medium for Representation and Exchange of Biochemical Network Models, <i>Bioinformatics</i>, 19(4), pp 524-531 <br/><br/>
  
Naylor, J., Fellerman, H., Ding, Y., Mohammed, W.K., Jakubovics, N.S., Mukherjee, J., Biggs, C.A., Wright, P.C., Krasnogor, N., (2017), Simbiotics: A Multiscale Integrative Platform for 3D modeling of Bacterial Populations, <i>ACS Synth. Biol.</i>, 6(7), pp 1194-1210<br />
+
Naylor, J., Fellerman, H., Ding, Y., Mohammed, W.K., Jakubovics, N.S., Mukherjee, J., Biggs, C.A., Wright, P.C., Krasnogor, N., (2017), Simbiotics: A Multiscale Integrative Platform for 3D modeling of Bacterial Populations, <i>ACS Synth. Biol.</i>, 6(7), pp 1194-1210 <br/><br/>
  
  
Line 613: Line 613:
 
<p>
 
<p>
  
Anderson, M. J. & Whitcomb, P. J., 2010. Design of Experiments. In: Kirk-Othmer Encyclopedia of Chemical Technology. <i>s.l.:John Wiley & Sons, Inc</i>, pp. 1-22. <br />
+
Anderson, M. J. & Whitcomb, P. J., 2010. Design of Experiments. In: Kirk-Othmer Encyclopedia of Chemical Technology. <i>s.l.:John Wiley & Sons, Inc</i>, pp. 1-22. <br/><br/>
  
Garamella, J., Marshall, R., Rustad, M. & Noireaux, V., 2016. The All <i>E. coli</i> TX-TL Toolbox 2.0: A Platform for Cell-Free Synthetic Biology. <i>ACS Syn. Biol.</i>, 5(4), pp. 344-355.<br />
+
Garamella, J., Marshall, R., Rustad, M. & Noireaux, V., 2016. The All <i>E. coli</i> TX-TL Toolbox 2.0: A Platform for Cell-Free Synthetic Biology. <i>ACS Syn. Biol.</i>, 5(4), pp. 344-355. <br/><br/>
  
Kelwick, R., Webb, A. J., MacDonald, J. & Freemont, P. S., 2016. Development of a Bacillus subtilis cell-free transcription-translation system for prototyping regulatory elements. <i>Metab. Eng.</i>, Volume 38, pp. 370-381.<br />
+
Kelwick, R., Webb, A. J., MacDonald, J. & Freemont, P. S., 2016. Development of a Bacillus subtilis cell-free transcription-translation system for prototyping regulatory elements. <i>Metab. Eng.</i>, Volume 38, pp. 370-381. <br/><br/>
  
Li, J., Gu, L., Aach, J. & Church, G. M., 2014. Improved Cell-Free RNA and Protein Synthesis System. PLoS ONE, 9(9).<br />
+
Li, J., Gu, L., Aach, J. & Church, G. M., 2014. Improved Cell-Free RNA and Protein Synthesis System. PLoS ONE, 9(9). <br/><br/>
  
SAS Institute Inc., 2016. JMP® 13 Design of Experiments Guide. Cary, NC, USA: SAS Institute Inc.<br />
+
SAS Institute Inc., 2016. JMP® 13 Design of Experiments Guide. Cary, NC, USA: SAS Institute Inc. <br/><br/>
  
Yang, W. C., Patel, K. & Wong, H. E., 2012. Simplifying and streamlining <i>Escherichia coli</i>-based cell-free protein synthesis. <i>Biotechnol. Prog.</i>, 28(2), pp. 413-420.<br />
+
Yang, W. C., Patel, K. & Wong, H. E., 2012. Simplifying and streamlining <i>Escherichia coli</i>-based cell-free protein synthesis. <i>Biotechnol. Prog.</i>, 28(2), pp. 413-420. <br/><br/>
  
  
Line 644: Line 644:
  
 
       <h3 style="font-family: Rubik; margin-top: 2%; margin-bottom: 2%">Motivation and Aim</h3>
 
       <h3 style="font-family: Rubik; margin-top: 2%; margin-bottom: 2%">Motivation and Aim</h3>
       <p>Digital microfluidics is an area of study intersecting biology, computer science, electronics and several different engineering disciplines. The technology has seen a number of advances and improvements over recent years, with the dream of a “lab on a chip” inching ever closer. Digital microfluidic devices satisfy the requirements of our project very well as they allow the process of switching modular components to be automated.
+
       <p>Digital microfluidics is an area of study intersecting biology, computer science, electronics and several different engineering disciplines. The technology has seen a number of advances and improvements over recent years, with the dream of a “lab on a chip” inching ever closer. Digital microfluidic devices satisfy the requirements of our project very well as they allow the process of switching modular components to be automated. We explored how digital microfluidics could be used to automatically mix the the different modular cellular components in our biosensors in different ratios to optimise the biosensor response characteristics. Our first step was to develop a simulator to model the behaviour of droplet movement on droplet-based devices.
       The aim of creating this model is to create software to be used alongside microfluidic devices to continue the theme of automation of production of modular components in the project.</p>
+
       The aim of creating this model was to eventually create software to be used alongside microfluidic devices to continue the theme of automation of production of modular components in the project.</p>
  
 
       <h3 style="font-family: Rubik; margin-top: 2%; margin-bottom: 2%">Why Digital Microfluidics?</h3>
 
       <h3 style="font-family: Rubik; margin-top: 2%; margin-bottom: 2%">Why Digital Microfluidics?</h3>

Latest revision as of 22:40, 1 November 2017

spacefill

Our Models


For our project, we built three types of models. The first was an agent-based model which simulated our multicellular biosensor framework. This model gave insight into the optimal ratio of cell-types to have in the system. This information was used during experimental characterisation to optimise our system.

Our second model was a statistical, multifactorial Design of Experiments (DoE) approach towards optimising Cell-Free Protein Synthesis (CFPS) systems. This statistical model was used to generate an experimental design to gather data on the importance of certain supplements in CFPS systems, and then use the experimental data to optimise CFPS systems.

Our third model was an agent-based model designed to replicate the functions of a digital microfluidic chip and schedule the tasks for the device. The final piece of software controls agents which are the microfluidic droplets and moves them around the simulated chip according to predefined movement plans which can be read from either the program itself or custom external files. This provides a quicker, more inexpensive means of testing the chip than repeated real-world experiments.


Please click on the links below to find out more about our models.