Difference between revisions of "Team:BostonU/Description"

 
(6 intermediate revisions by 2 users not shown)
Line 33: Line 33:
 
.body-type {
 
.body-type {
 
font-family: 'Roboto', sans-serif;
 
font-family: 'Roboto', sans-serif;
font-size: 16pt !important;
+
font-size: 12pt !important;
 
text-decoration: none !important;
 
text-decoration: none !important;
 
line-height: 2;
 
line-height: 2;
Line 79: Line 79:
 
}
 
}
 
body {
 
body {
background-image: url("https://static.igem.org/mediawiki/2017/c/c1/T--BostonU--seaport.png");
+
background-image: url("https://static.igem.org/mediawiki/2017/c/c7/T--BostonU--SaiPipetting2.jpg");
 
background-repeat: no-repeat;
 
background-repeat: no-repeat;
 
     background-attachment: fixed;
 
     background-attachment: fixed;
Line 99: Line 99:
 
width: 100%;
 
width: 100%;
 
align-content:center;
 
align-content:center;
text-align:center
+
text-align:center;
 
vertical-align:middle;
 
vertical-align:middle;
 
}
 
}
 
#backgroundimage1 p {
 
#backgroundimage1 p {
 
top: 40%;
 
top: 40%;
color: #8C181B;
+
color: #FEFEFE;
 
position: relative;
 
position: relative;
 
}
 
}
Line 135: Line 135:
 
width: 100%;
 
width: 100%;
 
color: #1d1d1d;
 
color: #1d1d1d;
 +
z-index: 1;
 
}
 
}
 
#backgroundimage2 {
 
#backgroundimage2 {
Line 160: Line 161:
 
   margin: 0;
 
   margin: 0;
 
   padding: 40px;
 
   padding: 40px;
 +
}
 +
.link-slideup {
 +
position: relative;
 +
overflow: hidden;
 +
-webkit-backface-visibility: hidden;
 +
backface-visibility: hidden;
 +
}
 +
.link-slideup a {
 +
position: relative;
 +
display: inline-block;
 +
outline: none;
 +
color: #D45B5C;
 +
vertical-align: bottom;
 +
text-decoration: none;
 +
white-space: nowrap;
 +
}
 +
.link-slideup a::before, .link-slideup a::after {
 +
pointer-events: none;
 +
-webkit-backface-visibility: hidden;
 +
backface-visibility: hidden;
 +
}
 +
.link-slideup a {
 +
overflow: hidden;
 +
font-weight: 500;
 +
}
 +
.link-slideup a::before {
 +
position: absolute;
 +
top: 0;
 +
left: 0;
 +
z-index: -1;
 +
width: 100%;
 +
height: 100%;
 +
background-color: #A9A9A9;
 +
opacity: 1;
 +
content: '';
 +
-webkit-transition: -webkit-transform 0.2s;
 +
transition: transform 0.2s;
 +
-webkit-transform: translateY(95%);
 +
transform: translateY(95%);
 +
opacity: 0.3;
 +
}
 +
.link-slideup a:hover::before, .link-slideup a:focus::before {
 +
-webkit-transform: translateY(0);
 +
transform: translateY(0);
 +
}
 +
#overview_description {
 +
width: 720px;
 
}
 
}
 
</style>
 
</style>
 
</head>
 
</head>
 
<body>
 
<body>
<div id="backgroundimage1"><div class="background-gradient-down"><p class="wide-heading-type mainwrap align-center">PROJECT DESCRIPTION</p></div></div>
+
<div id="backgroundimage1"><div class="background-gradient-down">
<div id="panel1">
+
  <p class="wide-heading-type mainwrap align-center">PROJECT OVERVIEW</p>
  <p class="body-type mainwrap indented">The presence of specific RNAs in cells can be indicative of their state. Detecting these RNAs on a small scale allows for identification of viruses such as Zika and Ebola, however measuring larger sets of RNA remains complex. Current methods of RNA detection are time consuming and require expensive machinery and technical expertise. Toehold switches offer an alternative means of RNA detection. Toehold switches are de novo designed riboregulators that exhibit high specificity, wide dynamic range, and ease of use.</p>
+
</div></div>
  <p class="body-type mainwrap">&nbsp;</p>
+
<div id="panel1" class="link-slideup">
  <p class="body-type mainwrap"> FIGURE</p>
+
<div id="overview_description"class="mainwrap">
  <p class="body-type mainwrap">&nbsp;</p>
+
<img class=""src="https://static.igem.org/mediawiki/2017/a/af/T--BostonU--overview_description.svg"></img>
  <p class="body-type mainwrap indented">Toehold switches are composed of two parts: the first is a strand of mRNA called a switch that forms a hairpin loop secondary structure in which the start codon for a downstream gene is sequestered. The other component is a linear section of mRNA known as a trigger that binds to the beginning of the switch, causing the switch to unfold and allowing for protein expression from the gene contained downstream of the hairpin. If the expression cassette codes for a fluorescent protein, a fluorescence readout can allow for the detection of the trigger mRNA.</p>
+
<p class="body-type mainwrap">[1] Pardee, Keith, et al. "Rapid, low-cost detection of Zika virus using programmable biomolecular components." Cell 165.5 (2016): 1255-1266.</p>
  <p class="body-type mainwrap indented">Toeholds have been shown to be effective in detecting viral RNA for Zika and Ebola (Pardee et al), by measuring 10-20 RNAs. At this point, utilizing toehold switches to detect large sets of RNA is not feasible. We aim to ease this problem by developing a logic framework that allows for the detection of multiple mRNAs to drive molecular computing. In our system, we will utilize trigger-toehold pairs to drive the downstream expression of recombinase proteins. These proteins control the expression of genes flanked by recombinase-recognition sites. This results in a system that produces variable measurable responses based on the presence of specific mRNA sequences. </p>
+
<p class="body-type mainwrap">[2] Pardee, Keith, et al. "based synthetic gene networks." Cell 159.4 (2014): 940-954.</p>
  <p class="body-type mainwrap indented">&nbsp;</p>
+
<p class="body-type mainwrap">[3] Burney, R.O. et al. MicroRNA Expression Profiling of Eutopic Secretory Endometrium in Women with versus without Endometriosis. Molecular Human Reproduction 15.10 (2009): 625631. PMC. Web. 1 Nov. 2017.</p>
  <p class="body-type mainwrap indented">FIGURE </p>
+
<p class="body-type mainwrap">[4] Green, Alexander A., et al. "Toehold switches: de-novo-designed regulators of gene expression." Cell 159.4 (2014): 925-939.</p>
  <p class="body-type mainwrap indented">&nbsp;</p>
+
<p class="body-type mainwrap">[5] Artavanis, Georgios, et al. "The role of single occupancy effects on integrase dynamics in a cell-free system." bioRxiv (2016): 059675. </p>
  <p class="body-type mainwrap indented">Furthermore, we integrate this RNA-inducible logic within a cell-free transcription translation system to reduce the experimental burden on time and supplies. This work serves to establish functionality of RNA-inducible logic in a cell-free system, and provides a platform for future implementation in applications that require detection of multiple RNAs, including disease diagnostics. </p>
+
 
</div>
 
</div>
 
</div>
 
</div>

Latest revision as of 22:59, 1 November 2017

PROJECT OVERVIEW